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Endocrinology is the study focusing on hormones and their actions. Hormones are
known as chemical messengers, released into the blood, that exert functions through
receptors to make an influence in the target cell. The capacity of the mammalian
organism to perform as a whole unit is made possible based on two principal control
mechanisms, the nervous system and the endocrine system. The endocrine system
is essential in regulating growth and development, tissue function, metabolism, and
reproductive processes. Endocrine diseases such as diabetes mellitus, Grave’s disease,
polycystic ovary syndrome, and insulin-like growth factor I deficiency (IGFI deficiency)
are classical endocrine diseases. Endocrine dysfunction is also an increasing factor of
morbidity in cancer and other dangerous diseases in humans. Thus, it is essential to
understand the diseases from their genetic level in order to recognize more pathogenic
genes and make a great effort in understanding the pathologies of endocrine diseases.
In this study, we proposed a deep learning method named DeepGP based on graph
convolutional network and convolutional neural network for prioritizing susceptible
genes of five endocrine diseases. To test the performance of our method, we
performed 10-cross-validations on an integrated reported dataset; DeepGP obtained
a performance of the area under the curve of ∼83% and area under the precision-recall
curve of ∼65%. We found that type 1 diabetes mellitus (T1DM) and type 2 diabetes
mellitus (T2DM) share most of their associated genes; therefore, we should pay more
attention to the rest of the genes related to T1DM and T2DM, respectively, which could
help in understanding the pathogenesis and pathologies of these diseases.

Keywords: endocrine disease, Graves’ disease, T2DM, PCOS, T1DM, IGF-I, deep learning methods

INTRODUCTION

Endocrine diseases fall into broad categories of hormone over- or underproduction, modulate
tissue response to hormones, or tumors caused by endocrine tissue (Belfiore and LeRoith, 2018).
Hormones synthesized and released by the endocrine glands exert their functions by regulating
the biological process of cells. There are several examples of common endocrine diseases: type I/II
diabetes mellitus, Graves’ disease (GD), polycystic ovary syndrome (PCOS), and insulin-like growth
factor I (IGFI) deficiency, etc. To date, genome-wide association studies (GWAS) have reported
numerous gene regions associated with different endocrine diseases. The aim of GWAS
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analysis is to determine how the combined allele frequency
of multiple susceptibility genes can affect autoimmunity
and/or disease risk.

Graves’ disease is an organ-specific autoimmune thyroid
disease, resulting from excessive secretion of thyroid hormones
by thyroid tissue (Dvornikova et al., 2020). The pathogenesis of
GD is mediated by the production of antibodies to TSH receptors,
which provide increased secretion of thyroid hormones and a
rapid growth of the thyroid after stimulation (Smith et al., 2018;
Soh and Aw, 2019). Since, GD is a hereditary and polygenic
transmission disease (Perricone and Shoenfeld, 2019). It has been
identified that associations between CTLA-4, FOXP3, TLR class
polymorphism, and a number of pathological conditions develop
in GD (Xiao et al., 2015; Fathima et al., 2019).

Diabetes mellitus, such as type 1 diabetes mellitus (TIDM)
and type 2 diabetes mellitus (T2DM) are also a typical group
of endocrine diseases. But basic pathogenic differences exist in
these two types of diabetes mellitus. T1DM is immune mediated
while T2DM is mediated by metabolic mechanisms (Eizirik
et al., 2020). Glucagon secretion is observed to be reduced in
patients with T1DM, with an increasing risk of insulin-induced
hypoglycemia, but it is enhanced in T2DM, exacerbating the
effects of reduced insulin release and action on glucose of blood
levels (Gromada et al., 2018). Recent studies have detected several
novel and promising TDM-susceptible genes, such as GCKR,
SLC30A8, TLR4, and FTO (Ehrmann et al., 1999; Rotterdam
ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group,
2004; Day et al., 2015).

Polycystic ovary syndrome is a common endocrinopathy
among women, with symptoms including irregular menstrual
cycles, hyperandrogenism and polycystic ovarian morphology
(Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus
Workshop Group, 2004). It is also accompanied with obesity
and insulin resistance, increasing the risk of diabetes, metabolic
syndrome, and other cardiovascular diseases (Ehrmann et al.,
1999). There are several published causal variants from GWAS
studies associated with PCOS (Day et al., 2015; Hayes et al.,
2015). Despite the detrimental impact of the disorder on
women’s health, the etiology remains poorly understood.

Insulin-like growth factor I production is mainly mediated by
growth hormones (GH); both GH and IGF-I have an anabolic
effect on skeletal muscle and bone. Despite the effects on growing
process in childhood, GH also plays an important role in the
regulation of metabolism, body composition, and mood, which
persist into adult life (Gazzaruso et al., 2014). However, low
serum levels of IGF-I have been detected in patients suffering
from chronic liver disease and malnutrition despite normal or
elevated GH secretion (Cuneo et al., 1995).

Though there have been numerous susceptible loci identified
by GWAS that are associated with endocrine diseases, etiology
and pathology is still unclear. Analogous to other complex traits,
common susceptibility loci identified by GWAS account for only
a small proportion of the genetic heritability of the traits. As
GWAS were designed to detect the common allelic variants with
a minor allele frequencies of 2 to 5%, the variants occurred
less frequently but with greater effect sizes being ignored which
may account for the observed deficit in heritability (Manolio
et al., 2009). Since SNPs detected by GWAS may not be the

real causative regions, the SNPs related to them may be the real
causative genes of complex diseases due to the theory of linkage
disequilibrium (LD). Therefore, we take the expression level of
genes regulated by SNPs into account to reduce the impact of
LD. eQTL research plays an important role in prioritizing SNP
loci in GWAS susceptible regions (Barral et al., 2012). Previous
studies usually investigate susceptible genes of complex diseases
based on the regulation function of SNPs on gene expression.
MR analysis, for example, is proposed to explain the causative
effect on a phenotype of gene expression based on the regulation
of genetic variants (Freeman et al., 2013). However, it is rarely
available in practice to obtain such a large sample size of different
types of data, such as phenotype, genome-wide SNP genotype,
and gene expression data, to perform a MR analysis. To overcome
this, a SMR method was proposed which integrates summary-
level data from independent GWAS with eQTL data to identify
disease susceptible genes (Zhu et al., 2016).

Machine learning methods have been widely used in
prediction problems, such as support vector machine (SVM),
network embedding algorithms (such as node2vec), network
diffusion algorithms (such as Laplacian heat diffusion, random
walk with restart), etc. Combined with multiple biomolecular
features, novel biomarkers, genes, and proteins can be predicted
(Chen et al., 2018, 2019; Zhang et al., 2020). Nowadays, deep
learning methods have also been utilized in bioinformatics.
Liu et al. (2017) applied convolutional neural network
(CNN) model to identify cell cycle-regulated genes. Graph
convolutional network (GCN) was utilized to predict disease-
related metabolites in the study by Zhao et al. (2020). Most
machine learning and deep learning methods focused on feature
extraction and selection. However, no computational method
has been developed to predict the susceptible genes of endocrine
diseases based on integrated omics data to eliminate the LD
disequilibrium bias.

In this study, we developed “DeepGP,” a method to prioritize
susceptible genes of endocrine diseases based on deep learning
approaches. First, we obtained curated disease-gene associations
of five endocrine diseases from disGeNET database; susceptible
regions and expression level data were downloaded from GWAS
catalog and GTEx database, respectively. After mapping the
genes to susceptible loci based on position information of genes,
the feature vector of each gene was composed of two types of
features, a phenotype-based feature derived from GWAS dataset
and a transcriptome-based feature derived from eQTL data.
Disease similarity network can be obtained from our previous
work, which can represent disease features. GCN was then
utilized to decipher the integrated feature representations of
the gene. Finally, the classification of candidate genes was
performed by CNN.

MATERIALS AND METHODS

Work Frame
DeepGP contains three main parts, data preprocessing (feature
extraction), feature reconstruction based on GCN, and endocrine
disease-related gene prediction based on CNN. In the feature
extraction process, we obtained endocrine disease-related gene
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information from DisGeNET (Bauer-Mehren et al., 2010), GWAS
Catalog (Buniello et al., 2019), and GTEx Portal databases
(Carithers and Moore, 2015). After extracting the features
of genes and diseases, we built a heterogeneous network
composed of genes and diseases. We then utilized the GCN
method to reconstruct the integrated gene features to obtain a
more precise feature representation of each gene. In the disease
gene prediction part, CNN is used to prioritize the causative
genes related to endocrine diseases based on a comprehensive
feature representation of disease-gene pairs. The workflow of
DeepGP is shown in Figure 1.

Data Collection and Preprocessing
Genome-wide association studies have identified thousands of
genetic variants that are associated with diseases and traits of
medical importance in humans. However, the genes detected
from the SNPs identified by GWAS which are pathogenic on
diseases remain largely unknown due to the complicated LD
between SNPs. Intuitively, genes closest to the top associated
variants in position are the most likely causative genes. However,
there have been studies reporting that causal genes are distinct
from the nearest genes (Zhu et al., 2016). Studies have verified
that gene expression may be influenced by different genetic
variants among genes with different genotypes of the genetic
variants, which means the phenotypes can be influenced by
genetic variants through regulating the expression of their target
genes. Therefore, we used a GCN network embedding method
based on two types of omics data to obtain the comprehensive
feature vector of each gene.

We first collected endocrine diseases from the “Endocrine
diseases” chapter according to the International Classification
of Diseases 11th Revision released by the World Health
Organization. The major glands of the endocrine system include
the pineal gland, pituitary gland, pancreas, ovaries, testes,
thyroid gland, parathyroid gland, hypothalamus, and adrenal
glands. Considering that some of the endocrine diseases have
not been previously widely investigated, we chose five of the
endocrine diseases, GD (which is mainly related to thyroid
gland), T1DM/T2DM (which is mainly related to pancreas),
PCOS (which is mainly related to ovaries), and IGFI deficiency
(which is mainly related to pituitary gland). We then collected

curated disease genes from the DisGeNET database (Piñero
et al., 2016), causative loci from the GWAS database (Buniello
et al., 2019), and expression level data from the GTEx
database (Carithers and Moore, 2015). In addition, gene–gene
interaction network was downloaded from HumanNet v2.0,
where the correlation scores between a pair of genes were
calculated. We then utilized an R package named biomaRt to
obtain detailed information, such as gene location, chromosome
number, and start and end position of each gene. BiomaRt
can also be used to transform different gene IDs, such as gene
symbol, Ensembl ID, and entrez ID, from different databases.
After mapping the genes to the susceptible loci identified
by GWAS and eQTL, genes with at least one susceptible
SNP were kept. Finally, we obtained 7,406 genes, including
4,212 known causal genes and 3,194 candidate genes obtained
from HumanNet v2.0.

Therefore, each gene has a feature of 2 × 25D based on
GWAS and eQTL summary data according to five diseases. For
the phenotype-based feature of each gene, we used the p-value of
top 5 related SNPs of each disease to indicate the gene feature
vector, for genes with less than five related SNPs, the feature
vector is filled with 1. Thus, the phenotype-based feature of each
gene could be denoted as:

Gi
S = [P

1
SP

2
S, · · · , P

25
S ] (1)

where PiS denotes the p-value of SNPs mapped by gene locations.
Transcriptome-based feature of each gene can be extracted by the
same method:

GT
S = [P

1
T, P2

T, · · · , P25
T ] (2)

where PiT denotes the p-value of susceptible loci consistent
with that from the phenotype-based feature vector of each gene
obtained from eQTL data. Thus, an initial integrated 2 × 25D
feature vector of each gene is constructed.

Feature Reconstruction by GCN
In this section, we introduced a network-embedding algorithm
based on GCN in order to present a new representation of
gene features. GCN is a graph deep learning method based on
node features and network architecture to classify the nodes

FIGURE 1 | Workflow of DeepGP.
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of a network. Although GCNs have been successfully applied
in other domains, to our knowledge, this is the first time that
GCN was utilized to represent latent gene features from several
omics datasets and network properties, while also being capable
of disentangling the underlying molecular mechanisms driving
the etiology of endocrine diseases.

Considering a graph G = (V, E, W), where V denotes the
nodes of the network, E denotes the edges of the network, and
W the weight matrix encoding the interacting weight between
nodes, which is obtained from HumanNet v2.0 as the gene
interactions between gene pairs, the feature matrix of the nodes
can be denoted as X ∈ RN×F . Thus, the eigenvectors of the graph
Laplacian L can be denoted as:

L = D−
1
2 ÃD−

1
2 (3)

where the adjacency matrix Ã = A+ I has added self-
connections since gene nodes should contain both
gene interaction and gene itself information and D is
the degree matrix.

Finally, we can define a propagation rule for each layer:

Hl+1
= (LHlXW l) (4)

ReLU (x) =
{
x, x>0
0, x≤0

(5)

where σ denotes a nonlinearity, such as the Rectified Linear
Unit activation function. The input of the first layer is X, which
includes the gene expression feature and gene variation feature
of five interested traits, so H0

=X. Therefore, the feature of
the gene network could be extracted by formula (4). Since we
combined two omics types of data, each gene feature could
be represented as a 2 × 25D vector. Thus, we have a feature
representation of each gene; the feature can be denoted as:

gi =

[
P1
i,s, P

2
i,s, P

3
i,s, · · · , P

25
i,s

P1
i,T, P2

i,T, P3
i,T, · · · , P25

i,T

]
.

Causal Gene Prediction With CNN
After obtaining the best combination of initial feature
representation by GCN, we constructed disease features based on
disease similarity matrix calculated by the method ImpAESim.
Each disease feature can be denoted as a 1× 5D vector:

Di=
{
Si,j
}
, j =1, 2, 3, 4, 5 (6)

Si,j denotes the similarity between Di and Dj, Si,j is 1 if i = j. We
then combined the gene feature and disease feature as a 3 × 5D
feature of disease–gene pair.

We then trained a CNN model to predict causal genes based
on the gene features derived from GCN. Analogous to other
machine learning methods, CNN consists of a training step where
the estimation of network parameters from a given training
dataset is learned, and the testing step utilized the well-trained
network to predict outputs of new testing dataset (Min et al.,
2017). Since our feature format of each gene–disease pair is
3× 5D, which can be regarded as an image with three channels, in
this work, the structure of the CNN section is shown in Figure 2.
The CNN section includes four parts as follows: convolution
layer, max-pooling layer, fully connected layer, and an output
layer. Convolution layer is responsible for extracting the subspace
features of the input. Max-pooling layer is used for dimension
reduction to discard the redundant information. The final fully
connected layer connects all the nodes and the output layer
applying sigmoid as the activation function to solve the binary
classification problem.

The tanh function is the activation function in each
convolutional layer.

tanh (x) =
sinh x
cosh x

=
ex − e−x

ex + e−x
(7)

The sigmoid function is used as the activation function in the
output layer.

δ (x)= 1/(1+ e−x) (8)

Since our disease gene prediction can be treated as a binary
classification problem, we chose the binary cross-entropy
function as the loss function to assess the probability of the
output.

loss = −
n∑
i 1

y
′

i log
(
yi
)
+ (1− y

′

i)log(1− y
′

i) (9)

∂ loss
∂y
=−

n∑
i=1

y
′

i
yi
−

1− y
′

i

1− y′i
(10)

According to formulas (7, 8), loss is 0 as long as y
′

i is equal to yi .
As a result, each disease–gene pair was assigned a correlation

score with a range of [0, 1], where 1 denotes the pair having the
strongest association and 0 means no association.

FIGURE 2 | Structure of CNN model.
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Training Steps
According to the 4,212 curated disease-related genes to
five endocrine diseases, there are 6,258 positive disease–
gene pairs derived from the curated disease–gene associations,
and 14,802 (4,212 × 5–6,258) pairs are not reported to be
associated; we randomly selected 6,258 pairs to construct
the negative samples. However, the sample size of different
diseases are extremely unbalanced, as shown in Table 1;
the sample size ranges from 28 IGFI–gene pairs to 3,058
T2D–gene pairs due to the insufficiency of studies related
to these diseases, which may have a serious negative impact
on the classification performance. From the analysis for
summary data derived from GWAS and eQTL, T1D, and
T2D share as much as 950 genes in total, with 679/1,629
genes merely related to T1D and 2,108/3,058 genes merely
related to T2D.

After obtaining the new dataset that consisted of 6,258
positive samples and 6,258 negative samples, we conducted a

10-cross-validation on this new dataset to test the performance.
First, the dataset is randomly divided into 10 groups, then
10 times of iterations were performed based on nine of 10
groups as training set and one group as test set, which
made sure that each group can be used as an independent
test set.

RESULTS

Performance Evaluation on Predicting
Disease–Gene Associations
The area under the curve (AUC) and the area under the
precision-recall curve (AUPR) are used to assess DeepGP. The
AUC and AUPR of each iteration in 10-cross-validation process
are shown in Table 2. As a result, DeepGP achieved a mean AUC
of 0.845 and a mean AUPR of 0.833, which have shown better and
stable in disease–gene prediction.

TABLE 1 | Number of curated disease genes.

Disease T2D T1D PCOS GD IGFI deficiency

No. of samples 3,058 1,629 974 568 28

TABLE 2 | AUC and AUPR of DeepGP in 10 times 10 cross-validation.

1 2 3 4 5 6 7 8 9 10 Average

AUC 0.832 0.845 0.821 0.854 0.864 0.855 0.831 0.861 0.856 0.831 0.845

AUPR 0.827 0.837 0.816 0.845 0.838 0.825 0.816 0.858 0.842 0.826 0.833

FIGURE 3 | Performance comparison among different methods.
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Comparison Experiments With Classic
Methods
We evaluated the performance of DeepGP and classic machine
learning methods, such as SVM, random forest (RF), Naïve
Bayes, and deep neural network (DNN) for predicting
disease–gene associations. To validate the performance of
extracting best combination of gene features by GCN, we
alternatively only used CNN for feature extraction and
prediction. Then, to assess the effect of convolution layers
in CNN, we applied a typical deep learning method DNN
and two classic machine learning methods SVM and RF. As a
contrast, we also only used a SVM model for the classification
task. Therefore, we compared the performance of five methods
with DeepGP: CNN, GCN-DNN, GCN-SVM, GCN-RF,
and SVM.

The method of training and testing was performed the same
as DeepGP. As shown in Figure 3, comparing with other
classic machine learning methods, DeepGP achieves the highest
performance according to both AUC and AUPR. CNN and
DNN achieved the second and third highest AUROC which
infers deep learning methods are better than classic machine
learning methods in this disease–gene prediction task; however,
it can also be inferred that convolution layers are essential. In
addition, the performance was improved after feature encoding
by GCN.

It has been shown that the depth of CNN models can
affect the classification performance. To assess the influence
of the depth of CNN models, we compared DeepGP with a
shallower CNN model, denoted as GCN+CNN (B), consisting
of one set of one convolution layer and one max-pooling
layer. Since the feature dimension of each disease–gene pair is
3 × 5, we also enlarged the kernel size to detect the effect of
dimension reduction. The performance is shown in Figure 4.

GCN+CNN (A) denotes the structure of DeepGP, GCN+CNN
(B) denotes the shallower CNN model, and GCN+CNN (C)
denotes the structure of CNN with enlarged kernel size. As
a result, DeepGP achieved the best performance comparing
with other methods even though the feature dimension of
each sample is low. Hence, according to the above results,
we conclude that our proposed DeepGP is competitive against
other methods.

Validation of Prediction Results
After verifying the effectiveness of DeepGP based on the
comparison experiments. We conducted the disease–gene
prediction process among all the unknown disease–gene pairs.
We set a threshold of 0.5 as default to screen the scores
and identified 7,702 of 14,903 pairs to be true. Among the
predicted associations, 971 novel genes were identified to be
associated with GD, 3,142 novel genes associated with PCOS,
and 2,437 and 1,154 novel genes associated with T1DM and
T2DM, respectively. Due to deficiency of studies focused on
IGFI deficiency, only 28 of 4,212 were reported as curated genes
related to the trait. The highest score of IGFI gene pairs was 0.33,
which is under the threshold, and was predicted to be have no

TABLE 3 | Top 5 related genes with four diseases.

GD PCOS T1D T2D

CCL27 RBM14 ADM2 (+) UPK3B (+)

CXCL16 miR-1307 Enho (+) miR-592

BECN1 CMKLR1 FUT6 (+) NELFCD (+)

PROX1 AKT3 FUT7 miR-589 (+)

PTX3 GCGR ATRNL1 (+) Linc00641 (+)

FIGURE 4 | Performance comparison with variational deep learning methods.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 July 2021 | Volume 9 | Article 700061

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-700061 June 30, 2021 Time: 16:34 # 7

Zhang et al. Disease Gene Prediction Methods

associations by DeepGP. For the rest of the diseases, 772 of 3,778
genes were shared.

Case Study
Graves’ Disease
Graves’ disease is mainly mediated by T cells which produce
cytokines and chemokines in abnormal amounts. CCL27 is
reported to be associated with serum chemokine concentrations
detected in GD, which might be a good biomarker for GD
(Hiratsuka et al., 2015). CXCL16 have been demonstrated
to bind to the unique receptor CXCR6, which is expressed
on a subset of multiple types of T cells, and it has been
implicated in the pathogenesis of atherosclerosis and GD
(Günther et al., 2012). It has been identified that loci at
BECN1 can be denoted as a significant extract differentially
methylated region for Graves’ orbitopathy under the context of
GD (Shi et al., 2019).

Polycystic Ovary Syndrome
RBM14 and miR-1307 have been reported to be up-regulated
in PCOS patients in the study of Xu et al. (2015) and Che
et al. (2020). Besides, CMKLR1, known as chemerin chemokine-
like receptor 1, is the receptor of chemerin which is expressed
at both mRNA and protein levels in human granulosa cells,
and it has been reported to vary in women with PCOS
(Bongrani et al., 2019).

Diabetes Mellitus
Due to the pathophysiological characteristics and many other
potential etiopathogenesis factors T1DM and T2DM share, there
are genes linked to both diseases such as GLIS3 (Mahajan
et al., 2014), EIL2AK3 (also named as PERK; Delépine et al.,
2000), etc. According to the result obtained from our method,
we identified 2,582 genes related to T1D and 1,153 genes
related to T2D, with a number of 474 shared genes. We
then searched the top-ranked predicted genes related to T1D
and T2D. According to the work of Ahmed et al., ADM2 is
found to be preferentially up-regulated by bacteroides dorei
(BD), which is a bacteria increased significantly at the time
of onset of T1D. Enho is an energy homeostasis-associated
gene that can produce a regulatory peptides named adropin,
which has been identified to be strongly associated with type
1 diabetes in children (Polkowska et al., 2019). FUT7 gene has
been demonstrated to be linked with an antigen termed bile
salt-dependent lipase which is reported to be associated with
type 1 diabetes (Panicot et al., 1999). UPK3B is regarded as
a mesothelial-like cell marker of a major adipocyte progenitor
cell subpopulations which may induce adipocyte dysfunction in
visceral adipose tissue in type 2 diabetes (Strieder-Barboza et al.,
2020). miR-592 is reported to be associated with T2D due to its
background of insulin resistance by Song et al. (2019). NELFCD
has been identified to be matched with risk haplotypes across five
FDM-risk haplotype, which is further identified in a common
T2D gene, ANK1.

Therefore, we can illustrate that the predicted disease-gene
pairs are reliable from the case studies mentioned above; top
related genes with diseases are shown in Table 3. The “+” means

the gene identified with T1D (T2D) is also related to T2D (T1D)
according to the DisGeNET database.

DISCUSSION

In summary, we proposed a disease gene prediction method
based on integrated deep learning models. We construct
gene features considering both biological process and “linkage
disequilibrium” theory. Identifying disease genes merely based
on disease-susceptible loci identified by GWAS studies may be
inaccurate due to LD. It has been indicated that genetic variants
can affect the phenotype by regulating the gene expression
level. In this study, eQTL data are also utilized to extract gene
features. To fully use the underlying information contained
in a gene interaction network, GCN was applied to extract
comprehensive gene features based on the constructed gene
network. Therefore, our method exploits the predictive power
derived from complementary data types and the underlying
network simultaneously. Disease features are derived based on
disease similarity, which is calculated by the method named
ImpAESim. Finally, we combined gene and disease features as
a disease–gene pair feature. CNN was then used to classify the
disease–gene pairs as a binary classification task.

As a result, DeepGP achieved an average AUC of 0.845 and
an average AUPR of 0.833 after a 10 times 10-cross-validation
based on the constructed training set, which is superior to
other classic machine learning and deep learning methods. We
then used the well-trained model to predict the novel disease-
gene associations based on the disease–gene pairs which have
not been reported to be associated before. We verified the
prediction results based on a case study. Most of the top disease-
related genes have reported evidences to illustrate that the
genes may have associations with the diseases. In addition, we
also identified 474 genes shared by T1DM and T2DM which
may be helpful in designing therapeutic methods for diabetes
mellitus patients. Therefore, the novel disease genes identified
by DeepGP provide a strong support for the feasibility of
extracting diagnostic markers for future validation and shed
light on new strategies for the diagnosis and treatment of
endocrine diseases.
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