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Abstract

The European anchovy, Engraulis encrasicolus, is currently one of the principal target spe-
cies for commercial fisheries in Europe. In this study, the mitochondrial Control Region (CR)
and the Cytochrome Oxidase | (COI) mitochondrial gene were analyzed in 74 specimens of
E. encrasicolus from four localities in the central Mediterranean. In both populations, the two
markers revealed the presence of two main haplogroups, A and B, already detected in pre-
vious investigations of different classes of molecular markers. Both CR and COIl markers
consistently identified two haplogroups. The COIl sequence analysis identified a non-synon-
ymous transversion (T to G) at position 116 of the translated sequence, resulting in an
amino acid change. All COI sequences of haplogroup A had an amino acid sequence with
alanine in this position, while serine was present in the same position in haplogroup B. The
two haplogroups A and B were also discriminated by the variable number of TACA elements
at the 5’-end of the mitochondrial CR. The selection tests applied to the CO/ dataset
revealed that codon 116 was not under positive selection, that seven amino acid changes
were under purifying selection, and that two amino acids were under episodic positive
selection.

Introduction

The European anchovy, Engraulis encrasicolus (Linnaeus, 1758), is a clupeoid pelagic species
widely distributed in the Mediterranean, Black and Azov Seas, Eastern Atlantic coastline from
Norway to Angola [1, 2], and around the tip of southern Africa [3, 4]. Its biology has received
particular attention due to the commercial interest of its fisheries [5 — 8]. In the last twenty
years a number of scientific studies have focused on the detection of genetic population struc-
ture in this commercially important species, through morphological and molecular analyses.
Molecular studies described a complex genetic structure of E. encrasicolus using allozymes,
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mitochondrial DNA (mtDNA) and nuclear markers [9 —14]. In the Atlantic Ocean and the
Mediterranean Basin, ten genetically differentiated European anchovy populations have been
identified by surveys of the variability of the mitochondrial control region with implications
for the management of fishery stocks [15, 16]. In particular, mtDNA, SNPs and nuclear intron
markers have all supported the presence of two sympatric clades, named phylads or hap-
logroups A and B. The distribution of these haplogroups differs among natural populations but
shows a constant proportion in each population, over time [15, 17-19]. Clade B prevails at the
northern and southern high latitudes with frequencies decreasing towards the tropics, whereas
clade A is present with higher frequencies in the tropical and subtropical areas [19]. Studies by
Magoulas et al. [17, 18] and Grant [4] pointed out the role of climate change during Pleistocene
glaciations, suggesting that the two phylads evolved in isolation in an Atlantic refugium and in
the Mediterranean, respectively. It has also been suggested that the two mtDNA clades can also
occur in simpatry, and that temperature seems to have shaped their relative frequency, as a
result of range expansion and post-glacial secondary mixing [18, 19]. European anchovy popu-
lation dynamics and distribution patterns are known to be strongly dependent on the environ-
ment. Thus, this species has been considered an ideal organism to study both the adaptative
behaviour of small pelagic fish under different environmental conditions [19], and to under-
stand the effect of quaternary climatic fluctuations on the distribution of marine organisms
[14]. More specifically, studies by Silva et al. [14] demonstrated that the high mobile nature of
anchovies allowed them to escape the adverse temperatures during the last glacial maximum
without losing genetic diversity. Further, Silva et al. [19] detected positive selection in a single
codon of the mitochondrial cytochrome b (cytb) gene in clade B, geographically correlated
with environmental temperature. In the Mediterranean basin, within a latitudinal range of
about 10° (45°-35°N) the annual average sea surface temperature goes from 15°C, in the north-
ern Adriatic to 20°C in the Strait of Sicily or Sicilian Channel between the Sicilian and the
North African coasts [20]. Moreover, the main water masses present in this channel, connect-
ing the western and the eastern basins of the Mediterranean Sea, are characterized by a com-
plex multi-scale thermohaline circulation, driven by ocean currents, wind effects, and
mesoscale activity. All these environmental features are known to modify the temperature
regime of the surface waters in the Sicilian anchovy habitat [21, 22]. Although the Sicilian
Channel can be considered a key zone in the Mediterranean basin for the European anchovy
population structure, few genetic studies [23] have been carried out in this area that was identi-
fied by Garcia Lafuente et al. [24] as one of the main spawning area of E. encrasicolus. Based on
the considerations above, in this study the genetic structure of four populations of European
anchovy from the Tyrrhenian, Ionian and Adriatic seas and the Sicilian Channel was investi-
gated through the sequence analysis of two mitochondrial markers already used to detect A
and B haplogroups in E.encrasicolus [16, 25], namely the noncoding Control Region (CR) and
the coding Cytochrome Oxidase I (COI). The CR has been often used to infer intraspecific
genetic structure and population demographic history [26-32]. Partial sequences of the mito-
chondrial Cytochrome ¢ Oxidase I (COI) gene, a highly conserved, bioenergetic gene encoding
for protein subunits of the respiratory chain [33], have been used to investigate the phylogeny
of several animal taxa, including fishes, and as barcode sequences [34-39]. The aims are: i) to
explore the nucleotide sequences of the two mitochondrial markers to unveil the molecular
traits discriminating the two haplogroups of E. encrasicolus; ii) starting from the main conclu-
sion of Silva et al. [19], and considering that a thermal cline is present between the Adriatic and
the Sicilian Channel [20], to explore whether selection acted on the COI gene, using tests of
recombination and selection based on different models of evolution.
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Materials and Methods
Sampling, DNA extraction and PCR amplification

A total of 74 adult individuals of morphologically identified E. encrasicolus (deposited as
vouchers at the Department of Biological, Geological and Environmental Science, Section of
Animal Biology, in Catania, Italy) from four populations were collected in the central Mediter-
ranean from 2012 to 2013 (Table 1).

Fishes were obtained from artisanal fish landing sites, at night. Fish samples were collected
off Porticello (38°05°05”N-13°32’47”E, Tyrrhenian Sea), Riposto (37°43’10”N-15°1536"E,
Ionian Sea), Porto Empedocle (37°14°’59”N-13°31°02”E, Sicilian Channel) and Ancona (43°
46’47”N-14°09’37”E, Adriatic Sea). Fishes were transferred to 95% ethanol before further pro-
cessing in the laboratory. No experimentation with animals was performed. No other ethical
issues applied to the present research. Total genomic DNA was extracted from muscle tissue
(25-30 mg) using the DNeasy tissue kit (Qiagen, Hilden, Germany) following the manufactur-
er’s instructions. All PCR amplifications were carried out in 25 ul using approximately 50 ng of
the isolated DNA as a template. In addition, each PCR reaction contained 16Taq DNA poly-
merase buffer (supplied by the respective Tag DNA polymerase manufacturer), 1.5-2 mM of
MgCl2, 200 mM of each ANTP, 10 pmols of each primer and 0.5 U of Taq DNA polymerase
(Platinum Taq DNA polymerase, Invitrogen). Amplification and sequencing of the mtDNA
COI gene was performed using the primers FishF1 and FishR1 described in Ward et al. [38].
Thermal cycles involved an initial denaturing step of 2 min at 94°C, followed by 35 cycles of
denaturation at 94°C for 30 s, annealing at 52°C for 45 s and extension at 72°C for 1 min. Nega-
tive controls were included in all PCR runs to control for cross-contamination. Double-
stranded products were checked by agarose gel electrophoresis, purified with the Qiaquick
PCR purification kit (Qiagen) and subsequently sequenced in the forward and reverse direc-
tions. For PCR amplification of mitochondrial CR, two primers (ENG_FW: 5’ - TGTAAAAC
GACGGCCAGTTTCTAAAGTTAAACTACCCTCT; ENG_REV1: 5 -CAGGAAACAGCTATGAC
TTAAGTGAACGCTCGGCATGG-3' ) specific to European anchovy were designed from the
species’ complete mtDNA sequence.

The PCR conditions were as follows: initial denaturation at 94°C for 5 min, followed by
denaturation at 94°C for 45 sec, annealing at 55°C (45 sec) and extension at 72°C (1 min)
repeated for 35 cycles and with a final extension step at 72°C for 5 min. Negative controls were
included in all PCR runs to control for cross-contamination. Double-stranded products were
checked by agarose gel electrophoresis and purified with the Qiaquick PCR purification kit
(Qiagen). PCR products were subsequently sequenced in the forward and reverse direction by
Genechron (http://www.genechron.it/index.php/sanger-sequencing) using an ABI Prism 3100
automated sequencer (Applied Biosystems) and M13 forward and M13 reverse primers for
sequencing.

Data analysis

The chromatograms obtained were assembled and checked by eye. Edited sequences were
aligned using the default settings in ClustalX 2.0 software [40] and the alignment was manually
revised in BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html). The number of polymor-
phic sites and genetic diversity indexes (number of haplotypes, haplotype diversity and nucleo-
tide diversity) were calculated using DNAsp 5.1 [41] (Table 1). An analysis of molecular
variance (AMOVA), implemented in ARLEQUIN version 3.5.2.1 [42] was applied to the dis-
tance matrix to estimate variance components and ®st values. A haplotype network was built
using the median joining (M]) algorithm [43] in the program Network 4.6.1.3. (Fluxus-
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Table 1. Diversity measures for the collecting sites of Engraulis encrasicolus for CR and COI: number of sequences (n), number of haplotypes
(Np), haplotype diversity (h), nucleotide diversity (1) and relative standard deviation (SD).

Location
Sicilian Channel
lonian Sea
Adriatic Sea
Tyrrhenian Sea

doi:10.1371/journal.pone.0143297.t001

October 2012

October 2013

0.001)

Control region Cytochrome Oxidase |
Date of collection n N, h+SD m£SD (107?) N, h+SD m+SD (107?)
18 11 0.941 (0.033) 0. 025 (0.002) 12 0.948 (0.033) 0.012 (0.002)
September 2013 20 13 0.947 (0.032) 0.029 (0.002) 10 0.837 (0.076) 0.012 (0.001)
18 11 0.908 (0.051) 0.023 (0.004) 11 0.817 (0.095) 0.008 (0.002)
( (

18 9 0.908 (0.039) 0.029 (0.003) 10 0.941 (0.029) 0.009
overall 0.98 (0.005) overall 0.93 (0.024)

engineering.com). Nucleotide diagnostics (NDs) [44, 45] for each European anchovy hap-
logroup were detected after the editing of sequence alignments using CLC Sequence Viewer 7.6
(www.clcbio.com). To correctly assign each sequence to haplogroup A or B, we used the
mtDNA CR sequences of the population in the Canary Islands where 100% of the individuals
belong to clade A, as a reference (GenBank accession numbers: HQ215641, JQ595031,
JQ595040, JQ595059, JQ595109, JQ595102, JQ595187-JQ595216) [16]. After alignment, the
mtDNA CR sequences that clustered with those of the Canary Islands were considered to
belong to clade A.

Tests of recombination and selection

To test the presence of mitochondrial COI recombinants, we used the Genetic Algorithms for
Recombination Detection (GARD) [46] (HyPhy package, accessed at www.datamonkey.org).
To test the presence of selection on COI, the Z-test [47] was performed in MEGA v.6 [48]. To
determine the site-specific selection pressures acting on the COI gene, the single-likelihood
ancestor counting (SLAC), fixed-effects likelihood (FEL), internal FEL (IFEL), fast uncon-
strained Bayesian approximation (FUBAR) and mixed effects model of evolution (MEME)
methods were applied. Sites with p-values less than 0.05 for SLAC, FEL, IFEL and MEME, as
well as sites with posterior probability of more than 0.9 for FUBAR were all considered as
being under selection [19]. To visualize the structural position of positively selected sites, the
secondary structure of the barcode region was predicted using the PSIPRED method [49, 50].
The 3-dimensional structure was drawn with Jmol (accessed at http://www.jmol.org).

The 217 COI amino acid sequence examined in this study is homologous to the 18-234 frag-
ment of the full bovine COI protein sequence (http://c.expasy.org/uniprot/P00396#seq).

Results
Mitochondrial CR analysis and NDs

For the CR, after alignment, a 577 bp fragment was analyzed. We obtained 74 sequences defin-
ing 44 haplotypes (S1 File), with a total of 76 polymorphic sites including 18 singletons and 58
parsimoniously informative sites. No shared haplotypes were found among populations. High
values of haplotype and nucleotide diversity indices were found in Ionian Sea and Sicilian
Channel populations (Table 1). AMOVA revealed overall low but statistically significant
genetic structuring of the analyzed samples (®st = 0.11 p< 0.0001 +/- 0.0000). The majority of
the variance was distributed within (89.50%) and not among (10.50%) samples (S2 File). Over-
all haplotype diversity of mitochondrial CR (0.98) was much higher than COI (Table 1). The
M] network showed the clear splitting of the control region haplotypes into two groups includ-
ing samples from all populations (Fig 1).
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Fig 1. Median-joining network for the COIl and CR of Engraulis encrasicolus. The area of the circles is proportional to each haplotype frequency. Colors
refer to the region in which haplotypes were found. In the case where haplotypes are shared among regions, pie charts show the relative haplotype frequency
in each region. Grey circles represent mtDNA CR and COl clades A (light grey) and B (dark grey) proportions. Only in the Sicilian Channel the relative

proportion of the two clades is different for the two markers.

doi:10.1371/journal.pone.0143297.g001
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The inclusion of mtDNA CR sequences of the Canary Islands [16] in the dataset (not
shown) allowed the identification of haplogroup A. Notably, four or five 5>~-TACA-3’ repeats
were found at the 5" end of the CR, at positions 82, 120, 124, 140 and 160. More specifically, no
TACA repeats at position 124 were found in haplotypes of haplogroup A, while 65% of haplo-
types in haplogroup B had TACA repeats in this position. The TACA at position 140 was not
found in 96% of the haplotype sequences in haplogroup B, while all haplotypes in haplogroup
A had TACA repeats in this position. A total of four NDs, including three transversions (posi-
tions: 37,222 and 467) and one transition at position 333, discriminated haplogroups A and B
(S2 File).

COlI sequence analysis, NDs

Unambiguously aligned sequences were obtained for 651 bp of COI sequence from 74 tissue
samples of E. encrasicolus. All sequences were deposited in GenBank under the accession num-
bers reported in S1 File. No insertions, deletions or stop codons were observed. The lack of
stop codons is consistent with all amplified sequences being functional mitochondrial COI
sequences, along with the fact that all amplified sequences were of the same length (651 bp).
This suggests that NUMTs (nuclear DNA sequences originating from mitochondrial DNA
sequences) were not sequenced (vertebrate NUMTS are generally smaller than 600 bp) [51]. A
total of 57 variable nucleotide sites with 28 parsimony-informative sites defined 39 distinct
anchovy haplotypes (S1 File). Two haplotypes were found in different sampled regions: H5 in
the Adriatic Sea, Sicilian Channel and Ionian Sea; and H18 in the Tyrrhenian Sea, Sicilian
Channel and Ionian Sea. High values of haplotype diversity were found in the Sicilian Channel
and Tyrrhenian Sea samples (Table 1). AMOVA revealed overall low but statistically signifi-
cant genetic structuring of the analyzed samples (dst = 0.11 p< 0.007+/- 0.0023). The majority
of the variance was distributed within (88.88%) and not among (11.12%) samples (S3 File).
The MJ network showed the clear splitting of the COI haplotypes into two groups (A and B)
including samples from all populations (Fig 1).

A total of six nucleotide diagnostics (NDs) for haplogroup discrimination of E. encrasicolus
(group A and group B) are identified in the S4 File. Four of these are transitions (positions:
344, 358,421 and 454) and two are transversions (positions: 347 and 367). All substitutions are
silent with the exception of the G to T transversion at position 347, which changes the amino
acid from alanine (A) to serine (S) at position 116 in 58% of the sequences (Fig 2).

All amino acid sequences of haplogroup A have an alanine at position 116, and the serine is
found in the same position in all sequences of haplogroup B (S5 File).

Tests of recombination and selection

No evidence for recombination was found in the COI dataset with GARD. The Z-test rejected
the null hypothesis of strict neutrality (dyon_synonyMous = dsynonymous; P = 0,000) in favor
of the alternative hypothesis of positive selection (dy > dg) in clade B. Seven amino acids were
under purifying selection and two under positive selection (codons 11 and 121). Episodic posi-
tive selection was detected with the MEME method for codon 11 and 121 in clade B (Table 2)
and with MEME and IFEL methods for codon 121 in clade A.

In haplogroup A histidine replaced methionine at codon 11 and proline replaced histidine
at codon 121. The amino acids in the “Folmer region” (the standard barcode region) form five
helices (http://c.expasy.org/uniprot/P00396#seq). Based on the prediction of the protein sec-
ondary structure, codon 116 is located in the third coil toward the inter-membrane space.
Codons 11 and 121 under episodic positive selection are located in the first helix and in the
third coil, respectively (Fig 3).
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Fig 2. COI amino acid aligned sequences of Engraulis encrasicolus. The red box indicates the amino
acid change. Serine (S) is found in haplogroup B and alanine (A) in haplogroup A.

doi:10.1371/journal.pone.0143297.9002

Comparison between CR and COl results

The two divergent haplogroups detected with both mitochondrial markers were separated by 7
point mutations in the COI network and by 19 point mutations in the CR network. The per-
centage of divergence between the two clades was 4.4% for CR and 2% for COI. Substantial
agreement exists between CR and COI in the assignment of each individual to the same hap-
logroup for all populations except for Sicilian Channel (Fig 1). Overall, 46% of the CR haplo-
types and 42% of the COI haplotypes were included in clade A. More specifically, clade B
prevails in the Adriatic and in the Ionian samples with both markers.

Table 2. Positively and negatively selected sites in the cytochrome oxidase | gene estimated by FUBAR, SLAC, IFEL, FEL and MEME models.

Codon 1 42 82 104 113 121 150 155 211

Selection type positive purifying purifying purifying purifying positive purifying purifying purifying

all FUBAR #it # # #it #it
SLAC *
IFEL

Clade A FUBAR ## #it #it
SLAC
IFEL &
FEL * d
MEME **

Clade B FUBAR #it # # #it #i#
SLAC
IFEL

*bpp >0.9;

*bpp >0.95;

#*ppp >0.99

*p < 0.05;

** p <0.01;

**¥p <0.001

doi:10.1371/journal.pone.0143297.t1002
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Fig 3. 3-dimensional structure of the COI barcode region and structural location of positively selected
sites (green arrows). On the right, lateral view with the amino terminal tail (N) facing towards the
mitochondrial matrix surface and the carboxy terminal tail (C) facing towards the inter-membrane space
surface. On the left, a top view. White arrow point to the neutral non-synonymous change at position 116
allowing for haplogroup discrimination.

doi:10.1371/journal.pone.0143297.g003

Discussion

Both mitochondrial molecular markers identified two main haplogroups which were identified
as the haplogroups A and B, by comparison with some mtDNA CR sequences from the Canary
Islands [16]. Both revealed low but significant genetic structuring with ®st values congruent
with those detected in other studies [18]. The average COI haplotype diversity (h = 0.93) is
lower than for CR (h = 0.98). These results indicate the effectiveness of COI sequence variation
in detecting genetic structure in E. encrasicolus and other teleosts such as swordfish and lan-
ternfish species [52, 53]. The distribution of TACA repeats in the CR allowed to discriminate
the two haplogroups of European anchovy; a similar result was obtained in Xiphias gladius
where TACA repeats discriminated geographical stocks of this species [52]. A relevant result
was the detection of a non-synonymous substitution at the site 347 of the COI sequence. It
should be noted that the substitution involved an aliphatic and apolar amino acid (alanine)
and a hydroxylated and polar amino acid (serine), which are functionally different. This is con-
trary to the evidence that substitutions in the COI amino acid sequence are known to be fre-
quent among physicochemically similar amino acids [54]. The relevance of this finding should
be assessed given that the 655 bp region of COI codes for 218 amino acids and tends to be
strongly conserved due to functional constraints on amino acid substitutions. Studies by Ward
and Holmes [54] on the nucleotide and amino acid variability of COI in fishes demonstrated
that the ratio of non-synonymous to synonymous substitutions is much lower than one, indi-
cating that this gene is subject to strong purifying selection. In exploring the role of the muta-
tion and selection in mitochondrial protein-coding genes, Castellana et al. [33] noted the
strong influence of purifying selection on all mitochondrial genes and especially on COI, COII,
COIII and Cytb, with crucial functions in the respiratory chain and thus strongly preserved.
However, the frequently discussed role of positive selection in thermal adaptation and aerobic
performance has also been demonstrated for these genes in invertebrates and vertebrates [55-
57], making the implicit assumption of neutrality of mitochondrial markers no longer valid
[58]. The European anchovy has been studied in this respect by Silva et al. [19], which detected
positive selection in a single codon of the mitochondrial Cytb gene in the clade B strongly cor-
related with the temperature. The authors discuss the functional role of the non-synonymous
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substitution that they identified, suggesting that it may have an impact on the overall metabolic
performance of clade B. The tests of selection applied to our COI dataset indicated positive
selection only for clade B through the Z test. Seven codons were found to be under purifying
selection and two (codons 11 and 121) under episodic positive selection. However, codon 116,
located near codon 121 on the third coil, was not among the codons under selection. Codons
under episodic positive selection experience purifying selection for the majority of their evolu-
tion, interspersed with bursts of positive selection that may occur only in restricted lineages
[59]. Mutations at such sites may experience transient positive selection, followed by purifying
selection to maintain the change, and could play a key role in adaptive evolution [59, 60].
Molecular footprints of episodic positive selection have been underestimated until now and the
MEME method shows a great power to unveil sites under this model of selection. Tomasco &
Lessa [57] found two sites in both COII and Cytb, using MEME, showing footprints of episodic
positive selection, likely functionally relevant.

We have not evaluated the functional implications of the amino acid substitutions found in
the COI gene, all involving residues with dissimilar properties. However, amino acid substitu-
tions not involved regions known to have highly conserved, important functions (e.g. d-path-
way or proton pathway or binding the heme or cytochrome c interactions) [54]. We could only
argue that subtle modifications may alter interactions between proteins and their stability,
modifying the performance of oxidative phosphorylation processes under different environ-
mental selective pressures [19, 56, 61]. The above results are consistent with the main conclu-
sions of previous investigations aimed to demonstrate the high responsiveness of European
anchovy to the changing environment [14, 19] and the strong influence of contemporary and
historical processes in shaping the distribution and the genetic structure of this small pelagic
species [18].

Our sequence analyses revealed the molecular traits of the mitochondrial CR and COI frag-
ments useful to discriminate haplogroups of E. encrasicolus. The application of the MEME
method unveiled that two sites of COI were under episodic positive selection. These results add
to the emerging data from the most recent surveys on adaptive selection of mitochondrial
DNA, suggesting that episodic positive selection affects a large proportion of sites, also in a
highly conserved gene such as COL
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S1 File. List of CR and COI haplotypes from E. encrasicolus samples.
(XLSX)

S2 File. Variable nucleotide sites in the 575-577 bp sequences of the European anchovy CR
examinated in this work. Marked haplotypes belong to haplogroup A.
(PDF)

S3 File. Analysis of Molecular Variance (AMOVA) calculated for the populations examined
in this work with Arlequin ver 3.5.2.1.
(XLSX)

$4 File. Variable nucleotide sites in the 651 bp sequences of the European anchovy COI
gene examinated in this work. Marked haplotypes belong to haplogroup A. The non-synony-
mous mutation highlighted in red is diagnostic for discrimination of A and B haplogroups.
(PDF)

S5 File. Variable codon sites in the 217 amino acids of the European anchovy COI gene
examinated in this work. The codon 116 highlighted in red is diagnostic for discrimination of
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A and B haplogroups. The codons 11 and 121 highlighted in grey are under episodic positive
selection.
(PDF)
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