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Introduction: Sjogren's syndrome (SS) is a chronic inflammatory autoimmune disease, which affects the
exocrine glands. Its primary symptoms are decreased moisture in the mouth and eyes. Therapies are
limited to treatment with steroids, which has unpleasant side effects, so new treatments would be
beneficial. One possibility might be stem cells, such as bone marrow mesenchymal stem cells (BMMSCs)
or dental pulp-derived stem cells (DPSCs); these have been reported to exert immunomodulatory effects
on activated lymphoid cells. This study aimed to evaluate the effects of conditioned media from DPSCs
(DPSC-CM) or BMMSCs (BMMSC-CM) on salivary functions in SS.
Methods: Cytokine array analysis was performed to assess the types of cytokines present in the media.
DPSC-CM or BMMSC-CM was administered in an SS mouse model. Histological analysis of the salivary
glands was performed, and gene expression levels of inflammatory and anti-inflammatory cytokines in
the submandibular glands (SMGs) were evaluated.
Results: DPSC-CM contained more anti-inflammatory factors than BMMSC-CM. The mice that were given
DPSC-CM had a lower number of inflammation sites in the SMGs than those in the other experimental
groups, and their salivary flow rate increased. The expression levels of interleukin (IL)-10 and transforming
growth factor-$1 increased in the DPSC-CM group, while those of [I-4, II-6, and II-17a decreased. The mice
that received DPSC-CM showed a significantly increased percentage of regulatory T cells and a signifi-
cantly decreased percentage of type T helper 17 cells compared to other groups.
Conclusions: These results indicate that DPSC-CM could be an effective therapy for SS-induced hypo-
salivation, since it decreases the number of inflammatory cytokines and regulates the local inflammatory
microenvironment in the SMGs.
© 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0)).
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1. Introduction association with other rheumatic diseases (secondary SS), such as
rheumatoid arthritis, systemic sclerosis, polymyositis, mixed cry-
oglobulinemia, and systemic lupus erythematosus (SLE) [2].

SS is most often associated with SLE and occurs in 9%—33% of SLE

Sjogren's syndrome (SS) is a chronic inflammatory autoimmune
disease that interferes with the functions of the exocrine glands

and is marked by decreased moisture secreted from the mucous
glands of the mouth and eyes [1]. This disease is more common in
middle-aged women; it can occur alone (primary SS) or in
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patients [3—5]. The most prominent feature of SLE is the production
of multiple circulating autoantibodies; some reactivities, such as
the anti-double-stranded DNA (dsDNA), anti-Sjogren's syndrome A
(SSA), and anti-Sjogren's syndrome B (SSB) antibody, are specific
serologic markers of SLE [6]. The diagnostic boundaries between
primary SS and SLE can be difficult to discern because they share
clinical and laboratory features.
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Three drugs are currently licensed for the treatment of lupus:
corticosteroids, hydroxychloroquine, and belimumab [7]. Immu-
nosuppressants, such as azathioprine, methotrexate, and myco-
phenolate, are also used; despite these treatments, however, lupus
patients face serious morbidity. Steroids are not likely to cause
serious side effects if they are taken for a short time or at a low dose
[8], but there are unpleasant minor unpleasant side effects, such as
an increased appetite, mood changes, and insomnia. Therefore,
new treatments are needed for the management of the secondary
SS consequences of active lupus.

Extensive clinical trials have recently been conducted using
mesenchymal stem cell (MSC)-based therapies for treating a range
of diseases [9—11]. Studies have shown that transplanted cells can
play multiple and important roles; they can not only migrate in
their host tissues and participate directly in the regeneration of
tissue but also display paracrine effects [12—15]. MSCs produce
cytokines that can decrease inflammation, enhance progenitor cell
proliferation, improve tissue repair, and decrease infection.

Studies have shown that dental pulp-derived stem cell-
conditioned media (DPSC-CM) has immunoregulatory properties
that contribute to tissue repair and anti-inflammatory effects
comparable to bone marrow-derived mesenchymal stem cell-
conditioned media (BMMSC-CM) [16]. In this study, we will eval-
uate the therapeutic effects of DPSC-CM and BMMSC-CM in mouse
models of secondary SS.

2. Materials and methods
2.1. Ethics statement

The study design and methods were approved by and carried
out according to the Institutional Review Board of the Center for
Clinical and Translational Research of Kyushu University Hospital
(IRB serial numbers 25—287 and 26—86) and the tenets of the
Declaration of Helsinki. Informed consent was obtained from all
patients or their relatives prior to inclusion in the study.

All animal protocols were approved by the Animal Experiments
Care and Use Committee of Kyushu University (approval nos. A19-
060-0 and 29—104). Maximum efforts were made to minimize
animal suffering; all measurements under catheter insertion were
performed with the animals under deep anesthesia.

2.2. Cell preparation

Human DPSCs and BMMSCs were purchased from Lonza, Inc.
(Walkersville, MD, USA). DPSCs were cultured in DPSC basal me-
dium (Lonza, Inc.) containing DPSC SingleQuots (Lonza, Inc.) at
37 °C in 5% CO; and 95% air. The BMMSCs were cultured in MSC
basal medium (Lonza, Inc.), containing MSC-GM SingleQuots
(Lonza, Inc.), at 37 °C in 5% CO; and 95% air. After primary culture,
the cells were subcultured at a density of approximately
1 x 10% cells/cm?. Cells from the third to sixth passages were used
for the experiments.

2.3. Preparation of CM

After achieving 80% confluence, the DPSCs or BMMSCs were
replenished with serum-free Dulbecco's Modified Eagle's Medium
(DMEM (-); Gibco, Rockville, MD, USA) containing an
antibiotic—antimycotic solution. The cell-cultured CM was
collected after 48 h of incubation and centrifuged at 440 x g for
5 min at 4 °C. The supernatant was collected, centrifuged at 17,400
x g for 3 min at 4 °C, and filtered using 0.22 pm pore filters (Millex-
GP; Merck Millipore Ltd., Billerica, MA, USA). The DPSC-CM and
BMMSC-CM were stored at —80 °C before use in the experiments.
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2.4. Cytokine antibody array

Cytokine array analysis was performed via laser scanning using
174 human-cytokine array plates to assess the cytokines present in
the DPSC-CM and BMMSC-CM (Quantibody® Human Cytokine
Array 6000; RayBiotech, Inc., Norcross, GA, USA). Each scan was
performed in duplicate, and data were calculated as the ratio of the
cytokine levels in DPSC-CM to that in BMMSC-CM.

2.5. Mice model and injection of DPSC-CM or BMMSC-CM

We used 10-week-old MRL/MpJ-faslpr/faslpr (MRL/Ipr) female
mice (Charles River Laboratories Japan [Yokohama, Japan]) as the
model of secondary SS. The MRL/Ipr mouse is an autoimmune strain
that develops lacrimal and salivary gland inflammation (dacryoa-
denitis and sialadenitis) and is a model for human SS [17]. The mice
were divided into four treatment groups, each receiving intrave-
nous injections twice a week (n = 6 per group): (1) non-treatment
group, (2) DMEM (-) group (500 pL injections), (3) BMMSC-CM
group (500 pL injections), and (4) DPSC-CM group (500 pL in-
jections). The mice were euthanized 2 weeks after the intravenous
injections.

2.6. Measurement of stimulated saliva flow

The MRL/Ipr mice were anesthetized with chloral hydrate (0.4 g/
kg body weight), and the stimulated saliva flow was measured as
previously described [18,19]. At 3 min after intraperitoneal injec-
tion of pilocarpine (0.05 mg/100 g body weight), a micropipette
was used to collect whole saliva from the oral cavity for 10 min, and
the amount of saliva collected was then calculated.

2.7. Histological analysis

Hematoxylin and eosin (H&E) staining and immunohisto-
chemistry were performed as previously described [12]: dissected
submandibular glands (SMGs) were fixed in 4% paraformaldehyde,
dehydrated in graded ethanol, cleared in xylene, and embedded in
paraffin. The samples were cut to create 5-pm-thick histological
sections, which were stained with H&E and analyzed under a light
microscope.

To clearly assess the inflammation, focus scores were analyzed.
The ratio of the foci area to the total area of SMGs was calculated
and presented (six independent experiments for each group).

2.8. Terminal deoxynucleotidyl transferase-mediated dUTP nick-
end labeling) staining

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling (TUNEL) staining was performed (Click-iT Plus TUNEL
Assay with Alexa Fluor 647; Thermo Fisher Scientific, Inc., Wal-
tham, MA, USA) to detect apoptotic cells. Images of the sections
were taken with a fluorescence microscope (BZ-X810; Keyence,
Osaka, Japan; n = 10 per group). We calculated the percentage of
TUNEL-positive cells per total number of cells in the SMGs of each
group.

2.9. Enzyme-linked immunosorbent assay (ELISA) analysis

The concentrations of anti-dsDNA and anti-SSA in the mice were
measured using mouse anti-dsDNA and mouse anti-Ro52/SSA
ELISA kits (Signosis, Inc., Santa Clara, CA, USA). The serum sam-
ples were diluted at a ratio of 1:50.
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2.10. Extraction of RNA and synthesis of complementary DNA
(cDNA)

Total RNA isolated from the SMGs (n = 6 per group) was
dissected with a QIAshredder and RNeasy Mini Extraction Kit
(QIAGEN, Hilden, Germany) as previously described [20]. One
microgram of total RNA was prepared and used for cDNA synthesis.
The RNA was incubated for 1 h at 42 °C with 20 units of RNase
inhibitor (Promega Japan, Tokyo, Japan), 0.5 pg of Oligo(dT)2-1s
primer (Thermo Fisher Scientific, Inc.), 0.5 mM deoxyribonucleo-
tide triphosphate (AB0196; Thermo Fisher Scientific, Inc.), 10 mM
dithiothreitol, and 100 units of RNA reverse transcriptase (Life
Technologies Japan, Ltd., Tokyo, Japan).

2.11. Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR)

gRT-PCR was used to determine the mRNA levels of the cyto-
kines. The resulting cDNA was amplified using PowerUp™ SYBR®
Green Master Mix (Thermo Fisher Scientific, Inc.) and the AriaMX
Real-Time PCR instrument (version 1.7; Agilent Technologies, Inc.,
Santa Clara, CA, USA). We analyzed the mRNA levels of interleukin
(I)-2, interferon (Ifn)-v, II-10, II-4, 1I-6, 1l-17a, and transforming
growth factor (Tgf)-(1.

Target mRNA levels were expressed relative to f-actin (house-
keeping gene), using the 22T method for the analyses (performed
in triplicate). The following PCR primers were used for further
specific analysis: 1I-2, 5'-ACTGTTGTAAAACTAAAGGGCTCTG-3’ and
5'-GCAGGAGGTACATAGTTATTGAGGG-3'; Ifn-, 5-
CTTGGCTTTGCAGCTCTTCC-3' and 5'-CACATCTATGCCACTTGAGT-
TAAAA-3'; [l-4, 5-TCTTTCTCGAATGTACCAGGAGC-3’ and 5'-
TGTGAGGACGTTTGGCACATC-3'; 1I-6, 5'-AGTTCCTCTCTGCAAGA-
GACTTC-3’ and 5-TTTCCACGATTTCCCAGAGAAC-3'; II-17a, 5'-
CAGGGAGAGCTTCATCTGTGTCTC-3’ and 5’-TGCGCCAAGGGAGT-
TAAAGAC-3’; 1I-10, 5'-GGTAGAAGTGATGCCCCAGG-3’ and 5'-
AATCGATGACAGCGCCTCAG-3'; Tgf-61, 5'-CAGGGA-
GAGCTTCATCTGTGTCTC-3’ and 5-TGCGCCAAGGGAGTTAAAGAC-3/;
and (-actin, 5'-CACTCCTAAGAGGAGGATGGTCG-3’ and 5'-
CAGACCTGGGCCATTCAGAAA-3'.

2.12. Immunohistochemical analysis

Immunohistochemical staining was performed for T-bet (1:500;
sc-21763; Santa Cruz Biotechnology, Inc., Dallas, TX, USA) to eval-
uate Th1 cells; GATA binding protein 3 (GATA3; 1:500; sc-268;
Santa Cruz Biotechnology, Inc.) was used for the Th2 cells; fork-
head box protein P3 (FOXP3; 1:200; NB100-39002; Novus Bi-
ologicals, Centennial, CO, USA) was used for regulatory T (Treg)
cells; and RAR-related orphan receptor (ROR)y (1:1000; ab207082;
Abcam, Cambridge, UK) was used for Th17 cells.

The sections were rehydrated, subjected to antigen retrieval
using Dako Target Retrieval Solution (pH 9.0; Dako North America,
Inc., Carpinteria, CA, USA) for 10 min at 121 °C, blocked for
endogenous peroxidase with 0.3% H,0; in methanol, and incubated
for 30 min. After washing with phosphate-buffered saline, the
sections were blocked for nonspecific binding using Blocking One
Histo (Nacalai Tesque, Inc., Kyoto, Japan) for 15 min at room tem-
perature and then incubated with the primary antibody overnight
at 4 °C. The sections were reacted using peroxidase stain 3,3-
diaminobenzidine (DAB) kit (Nacalai Tesque, Inc.) for 1 h and
developed with DAB solution. Hematoxylin counterstaining was
performed following the DAB reaction.
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2.13. Statistical analysis

All experiments were conducted in triplicate and repeated at
least twice. Group means and standard deviations were calculated
for each measured parameter. Statistical differences were evaluated
using the Student's t-test, Mann—Whitney U test, and Tukey's
honest significant difference test. A p-value < 0.05 was considered
to be statistically significant, and a p-value of <0.01 was considered
to be highly significant.

DPSC-CM BMMSC-CM

\ooooto.nJP()s

[ee e e e e e opPOS

"EEEEEER RC

2 o

Anti-inflammatory factors
(Intensity)
DPSC-CM BMMSC-CM

O TGF-B1 11623 2186
@ IL-10 7989 234
@ IL-13 5098 80
® IGF-1 3521 3324
® TECK 1609 1513
® MCP-1 965 483
@ IL-29 943 1019
® Adiponectin 502 0
® Siglec-9 396 0
® GM-CSF 159 188

Fig. 1. DPSC-CM contains more anti-inflammatory factors than BMMSC-CM. (a) Images
of the multiplexed sandwich ELISA-based quantitative array (POS, positive control). (b)
The anti-inflammatory factors of DPSC-CM vs. MSC-CM. Abbreviations: TGF-p1:
transforming growth factor-p1; IL-10: interleukin-10; IL-13: interleukin-13; IGF-1:
insulin-like growth factor-1; TECK: thymus-expressed chemokine; MCP-1: monocyte
chemoattractant protein-1; IL-29: interleukin-29; Siglec-9: sialic acid-binding immu-
noglobulin-type lectin-9; GM-CSF: granulocyte macrophage colony-stimulating factor.
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3. Results

3.1. DPSC-CM contains more anti-inflammatory cytokines than
BMMSC-CM

As shown in Fig. 1a and b, ten representative anti-inflammatory
cytokines were selected. DPSC-CM contained more anti-
inflammatory cytokines than BMMSC-CM (TGF-B1, x5; IL-
10, x34; and IL-13, x63) (Fig. 1b).

Regenerative Therapy 16 (2021) 73—80

3.2. DPSC-CM prevents a decrease in saliva and inhibits
inflammation in SMGs

Our protocols for the administration of DMEM (—), BMMSC-CM,
and DPSC-CM are shown in Fig. 2a. As shown in Fig. 2b, DPSC-CM
alleviated inflammation in the SMGs of the mice, and the focus
scores in the DPSC-CM group were lower than those in the non-
treatment, DMEM (—), and BMMSC-CM groups (Fig. 2c).

The stimulated saliva flow rate increased in the 12-week-old
mice injected with DPSC-CM than that in the other groups (Fig. 2d).
Interestingly, anti-dsDNA and anti-Ro52/SSA were highly detected
in the serum collected from the non-treated, DMEM (-), or

DMEM (-), BMMSC-CM or DPSC-CM administration via tail vein
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Fig. 2. Evaluation of inflammatory infiltration in the SMGs of MRL/Ipr mice. (a) The study protocol. (b) Representative histological images of the SMGs for H&E staining in 12-week-
old MRL/Ipr mice. The bars of lower magnifications are 500 um, and those of higher magnifications are 50 pum. (c) The degree of inflammatory infiltration in the SMGs. Data are
representative of the mean + standard deviation (n = 6. ***p < 0.001). (d) The salivary flow rate in each group at 12 weeks of age (n = 6 per group, ***p < 0.001). (e) Quantification
of anti-dsDNA (top) and anti-SSA/Ro-52 (bottom) antibodies in the MRL/Ipr mice at 12 weeks of age. Data represent the mean + standard deviation (n = 6, **p < 0.01, *p < 0.05).
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BMMSC-CM-administered mice than those in the DPSC-CM group
(Fig. 2e).

3.3. Relative mRNA expression levels of inflammatory or anti-
inflammatory cytokines in the SMGs

The SMGs of mice who received DPSC-CM had significantly
decreased relative mRNA expression levels of inflammatory cyto-
kines, such as II-2, Ifn-v, Il-4, 1I-6, and II-17a (Fig. 3a). On the other
hand, levels of II-10 and Tgf-f1, both anti-inflammatory cytokines,
were significantly increased in these mice (Fig. 3a).
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#xkp < 0.00, **p < 0.01, *p < 0.05). (b) TUNEL assays of the SMGs of the MRL/Ipr mice reveal that the nuclei were stained with DAPI (blue) (Bars = 50 um). Percentage of TUNEL-
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3.4. DPSC-CM administration decreases the number of apoptotic
cells in the SMGs

We then investigated apoptotic cells and found that they
increased in the SMGs of the non-treatment and DMEM (—) groups
than the BMMSC-CM and DPSC-CM groups (Fig. 3b). The number of
apoptotic cells significantly decreased in the group receiving DPSC-
CM relative to the group receiving BMMSC-CM (Fig. 3b).

3.5. DPSC-CM induces FOXP3-expressing cells and inhibits RORy-
expressing cells in the mouse spleen

We investigated the T helper subset in the mouse spleen tissue
to confirm the mechanism by which DPSC-CM influences the whole
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body. As shown in Fig. 4, FOXP3-expressing cells, which were used
as the marker of Treg cells, increased in the DPSC-CM-treated
group. However, RORy-expressing and GATA3-expressing cells
which were used as markers of the type T helper 17 [Th17] and Th2
cells, respectively, decreased in the DPSC-CM-treated group than in
the other groups. T-bet-expressing cells, which were used as the
marker of Th1 cells, showed no changes in all groups.

Regenerative Therapy 16 (2021) 73—80

4. Discussion

In this study, we evaluated the therapeutic effects of CM from
DPSCs or BMMSCs in a secondary SS mouse model. DPSC-CM
contains numerous anti-inflammatory factors (e.g., TGF-f1, IL-10,
and IL-13) than BMMSC-CM (Fig. 1a and b).

The MRL/Ipr strain is a well-established mouse model for SLE
[21,22]. It is characterized by the inflammation of multiple tissues
(e.g., skin, joints, glands, lungs, heart, and kidneys), massive

GATA3

BMMSC-CM DMEM (-) Non-treatment

DPSC-CM

BMMSC-CM DMEM (-) Non-treatment

DPSC-CM

Fig. 4. Localization of each Th subset in the spleens of the MRL/Ipr mice. Inmunohistochemical staining for T-bet (Th1 cells), GATA3 (Th2 cells), Foxp3 (Treg cells), and RORy
(Th17 cells). Panels on the left ose on the right show the higher-magnification images (bars = 50 pm) of the areas surrounded by dotted lines.
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lymphadenopathy, and splenomegaly, which progress in an age-
dependent manner. Destructive mononuclear infiltrates in the
lacrimal and SMGs of MRL/lpr mice are hallmarks of SS: we
confirmed lymphocyte infiltration around the salivary duct cells in
12-week-old mice (Fig. 2b); the salivary flow rate declined at 12
weeks in MRL/Ipr mice in the non-treatment and DMEM (—) groups
than in the DPSC-CM group (Fig. 2d).

Extensive studies have been conducted to elucidate the immu-
nomodulatory properties of MSCs; however, existing clinical trials
of cell-based therapy are controversial, and their security is not
guaranteed [23]. Many studies have determined that cell paracrine
factors have functions similar to those of cells and the study of
exosomes in the field of immunology is extensive [24—26]. Para-
crine factors are better preserved, have lower risks of tumorigen-
esis and immune rejection, and can be used as alternative therapies
for various immune diseases, comparable to cells [25].

A previous study reported that BMMSC-CM contains cytokines
such as vascular endothelial growth factor, monocyte chemo-
attractant protein (MCP)-1, MCP-3, and hepatocyte growth factor.
Many types of biomaterials and stem cell transplantation therapies
have recently been proposed to enhance anti-inflammatory effects
and functional recovery [19,27]. BMMSC acquisition is a difficult
procedure; DPSC-CM is a more accessible resource, but its immu-
noregulation properties have not been fully studied.

Studies have shown that the Th17/Treg imbalance is a driving
factor in the occurrence and development of immune diseases such
as SLE and SS [28,29]. We investigated mRNA levels of inflamma-
tory and anti-inflammatory cytokines, which are induced in the
Th1, Th2, Treg, or Th17 cells of MRL/Ipr mice SMGs. As shown in
Fig. 3a, DPSC-CM administration decreased expression levels of Ifn-
v, II-6, and Il-17a and increased those of II-10 and Tgf-G1 in the
SMGs, indicating Treg cell differentiation in the local environment.
Furthermore, IFN-y is primarily secreted by cytotoxic or Th1 T cells
and natural killer cells [30]. One study reported that exogenous
administration of IFN-y with desiccating stress exposure increased
epithelial apoptosis, indicating that IFN-y promotes epithelial
apoptosis through the extrinsic apoptosis pathway in SS [31]. We
investigated and confirmed that DPSC-CM had an anti-apoptotic
effect on the SMGs (Fig. 3b). We evaluated the kidneys of MRL/Ipr
mice, and the results suggested that DPSC-CM also improved the
kidneys (e.g., creatinine level); decreased the expression levels of
Ifn-v, II-6, and Il-17a; and increased the expression levels of II-10
and Tgf-G1, which can easily promote Treg cells in the kidneys
(Supplementary Fig. 1).

Effector cytokines of Th17 and Treg cells have been increasingly
recognized as key players in anaphylaxis, autoimmunity, and
inflammation [32]. IL-10 produced by Treg cells resulted in
amelioration of the severity of collagen-induced arthritis mice than
wild-type mice [33]. Our experimental results confirmed that
DPSC-CM induced Treg cells and suppressed Th1 and Th17 cells in
splenic lymphocytes relative to other groups (Fig. 4).

5. Conclusions

This is the first study to report that DPSC-CM alleviates hypo-
salivation caused by SS by decreasing the number of inflammatory
cytokines, regulating the local inflammatory microenvironment,
and decreasing apoptosis in the SMGs. DPSC-CM shows promise as
a novel option in cell-free therapy for various autoimmune diseases
such as SLE and SS.
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