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Purpose: This study developed machine learning (ML) classifiers of postoperative
corneal endothelial cell images to identify postkeratoplasty patients at risk for allograft
rejection within 1 to 24 months of treatment.

Methods: Central corneal endothelium specular microscopic images were obtained
from 44 patients after Descemet membrane endothelial keratoplasty (DMEK), half of
whom had experienced graft rejection. After deep learning segmentation of images
from all patients’ last and second-to-last imaging, time points prior to rejection were
analyzed (175 and 168, respectively), and 432 quantitative features were extracted
assessing cellular spatial arrangements and cell intensity values. Random forest (RF)
and logistic regression (LR) models were trained on novel-to-this-application features
from single time points, delta-radiomics, and traditional morphometrics (endothelial
cell density, coefficient of variation, hexagonality) via 10 iterations of threefold cross-
validation. Final assessments were evaluated on a held-out test set.

Results:MLclassifiers trained onnovel-to-this-application features outperformed those
trained on traditional morphometrics for predicting future graft rejection. RF and LR
models predicted post-DMEK patients’ allograft rejection in the held-out test set with
>0.80 accuracy. RF models trained on novel features from second-to-last time points
and delta-radiomics predicted post-DMEK patients’ rejection with >0.70 accuracy. Cell-
graph spatial arrangement, intensity, and shape features were most indicative of graft
rejection.

Conclusions:ML classifiers successfully predicted future graft rejections 1 to 24months
prior to clinically apparent rejection. This technology could aid clinicians to identify
patients at risk for graft rejection and guide treatment plans accordingly.

Translational Relevance: Our software applies ML techniques to clinical images and
enhances patient care by detecting preclinical keratoplasty rejection.

Introduction

The determination and monitoring of endothelial
cell density (ECD) changes following keratoplasty as
a surrogate measure for graft success and risk for

future graft failure has been one of the first uses
of specular microscopy since invented by Maurice
in 1968.1 With the ability to determine the central
corneal ECD from both the donor and subsequently
postoperatively with longitudinal studies in the recip-
ient, numerous studies have been performed on the
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pattern and degree of endothelial cell loss (ECL)
as well as the factors (donor, recipient, operative,
postoperative) influencing ECL following penetrating
keratoplasty (PKP),2–5 Descemet stripping automated
endothelial keratoplasty (DSAEK),6–12 and Descemet
membrane endothelial keratoplasty (DMEK).13–18
There, however, has been limited use of this imaging
tool to study the impact of graft rejection on ECL
following these procedures, much less its use to predict
future clinical graft rejection episodes prior to rejec-
tion being clinically apparent (conjunctival injection,
keratoprecipitates, endothelial rejection line, increased
corneal thickness, and frank corneal edema).

One of the major limitations in studying the impact
of graft rejection on ECL are that many endothe-
lial rejection episodes are asymptomatic. In a study
conducted by Price et al.,19 of the included 14 rejec-
tion cases, 11 (79%) remained asymptomatic and were
diagnosed only in their second year of follow-up
once keratoprecipitates were detectable. This, however,
was only feasible due to frequent imaging follow-
ups at 1, 3, 6, and 12 months post-DMEK. Similar
results were reported by Hos et al.,20 in which 7 of
the 12 (60%) rejection cases were asymptomatic, and
Baydoun et al.,21 in which 4 of the 17 (25%) rejec-
tion cases were asymptomatic. Thus, it is difficult to
assess the timing of a graft rejection due to asymp-
tomatic grafts despite increased ECL, the absence or
infrequent endothelial imaging postoperatively, and the
inability to perform imaging once the graft has become
edematous. Nevertheless, Stulting et al.22 reported a
lower ECD in surviving DSAEK grafts at 3 years in
the Cornea Preservation Time Study, while noting that
graft rejection was not a leading cause of DSAEK
failure. Li et al.23 found a similar result after annually
imaging 615 eyes from patients with Fuch’s dystrophy.
The 45 cases of graft rejection saw greater decline in
median percentage of ECD across all imaging time
points compared to cases without rejection. Ohguro
et al.24 expanded corneal endothelium imaging evalu-
ation from the central region to include the periphery.
It was found that among 20 corneas that had under-
gone penetrating keratoplasty, 10 experienced allograft
rejection, demonstrating a significant decrease in ECD
in both the central and the peripheral regions.

An intriguing use of specular microscopy to
monitor the impact of graft rejection on subsequent
graft failure was a study by Monnereau et al.25 These
authors demonstrated a potential for identifying post-
DMEK patients at risk for a graft rejection with a
qualitative grading scale that evaluated cell morphol-
ogy and arrangement. It proved effective as the scores
between rejection and control patients were signifi-
cantly different during the study’s duration.25 Their

observational findings by trained technicians raised the
possibility that a machine learning approach to the
analysis of prospectively acquired endothelial imaging
could automate this observational approach. Thus, the
prospect of the detection of early events in the rejec-
tion process prior to clinical rejection symptoms and
signs is raised. These findings could then potentially
change practices for postoperative management with
more frequent endothelial imaging and lead to earlier
intervention strategies to prevent further endothelial
damage and ultimate graft failure.

Using the same cohort as that reported by
Monnereau et al.,25 we will extract quantitative
features from semiautomatically segmented post-
DMEK endothelial cell images and use machine
learning to predict at-risk patients prior to rejection.
In addition to using single time point images, we
propose utilizing techniques suggested by Chang et
al.,26 Zhang et al.,27 and Rao et al.28 to incorporate
delta-radiomics or the change in features between
two time points as predictive measures for adverse
outcomes.

Method

Figure 1 outlines the overall workflow of this study.

Data Cohort

The Netherlands Institute for Innovative Ocular
Surgery (NIIOS, Rotterdam, The Netherlands)
provided 925 central endothelial cell images from 44
patient eyes that had undergone a DMEK. The criteria
of eye and follow-up image selection were described
in Baydoun et al.,21 in which 1077 DMEK eyes were
analyzed, of which only 27 experienced allograft rejec-
tion. Five of the rejection eyes from the Baydoun et
al.21 data set were excluded from their publication data
as well as the data set included in the rejection data
set of this study due to various reasons (poor image
quality due to congenital glaucoma and rejection prior
to imaging). These cases were more advanced rejection
cases than the focus of this study, in which we were
seeking to discover early rejection prediction prior to
the onset of clinical symptoms. Our final set included
22 rejection eyes, which were age and gender matched
to 22 control eyes (i.e., eyes undergoing DMEK but
without rejection at any time postoperatively) for
the study. The images were acquired using a Topcon
SP3000 specular microscope (Topcon EuropeMedical,
Capelle a/d IJsse, The Netherlands) at multiple and
various time points following keratoplasty ranging
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Figure 1. Rejection keratoplasty prediction workflow. Images taken at the second-to-last imaging time point and last imaging time point
prior to rejection (T1 and T2, respectively) are segmented by a U-Net deep learning model. Using cell segmentations, 432 features are
extracted from each image. The delta-radiomics data set is calculated by taking the difference of the T2 and T1 features and dividing this
difference by the time duration between the two sets of images. All three data sets are then split, with two-thirds of patient eyes used for
training and one-third of patient eyes for held-out for testing. The training set underwent three feature selection (FS) techniques and 10
iterations of three-fold cross-validation to build RF and LR machine learning (ML) models. The top 3, 5, 7, and 10 features were collected
from each of the three time point data sets to train final RF and LR models. Model prediction performance (e.g., accuracy) was evaluated on
the patient eyes held-out test set. In total, 120 cross-validationmodels were trained and 8 final models were developed for postkeratoplasty
rejection prediction.

from 1 to 123 months. All images were deidentified
and handled in a method approved by the University
Hospitals Cleveland Medical Center (Cleveland, OH,
USA) Institutional Review Board.

Images were normalized to a 0.8-μm2 pixel resolu-
tion resulting in dimensions of 675 × 359 pixels.
Between two and six images were available for the rejec-
tion eyes and one per control eye at each imaging
time point. We had 175 images from eyes with rejec-
tion at the last (time point 2 or T2) and second-to-
last (time point 1 or T1) imaging time points prior
to rejection. Approximately three to four images were
available for each rejection eye at each time point.
A similar number of images were selected from each
control eye (DMEK without subsequent rejection) to
create a balanced data set. For the 22 rejection eyes,
their last imaging time point prior to rejection occurred
between 3 and 78 months postkeratoplasty. To match
this time range, four control images from each eye were
randomly selected between 3 and 78 months postker-
atoplasty. For the second-to-last time point, rejection
eyes had images taken between 2 and 12 months prior

to their corresponding last imaging time point. Four
images taken 2 to 12 months prior to their correspond-
ing first imaging time points were randomly selected
from each control eye. In essence, all “last imaging time
point” images were taken 3 to 78 months postkerato-
plasty. All “second-to-last imaging time point” images
were taken 1 to 72 months postkeratoplasty. This selec-
tion process collected 168 control eye endothelial cell
(EC) images. Figure 2 shows four example images from
this data set taken at multiple times postkeratoplasty.
Each image varies in cell size and shape, physiologic
findings, and image quality. Note that some images in
the data set have columns of very bright or very dark
pixels lacking available cellular data.

Deep Learning Segmentation

Prior to cell-by-cell feature extraction, cell border
segmentation was performed using a modified process
described in Joseph et al.29 Image columns and rows
were cropped if their pixel intensity sum was less than
22% of the image’s column and row pixel intensity
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Figure 2. Example endothelial cell images taken at (a) 1month, (b) 3months, (c) 86months, and (d) 54months post-Descemetmembrane
endothelial keratoplasty demonstrating varying cell size, shape, arrangement, and image quality.

mean sum, respectively. They were also cropped if their
pixel intensity sum was greater than 110,000. Next, the
illumination gradient was removed from each image
by subtracting the image’s background and normal-
izing intensity between 0 and 255. This was followed
by U-Net deep learning segmentation from a model
trained as previously published.29 The final U-Net
binary segmentations were manually edited using a
guided software tool.30 Approximately 5 to 10 correc-
tions were made per image to fine-tune the predictions.

Feature Extraction

A feature bank of 432 features that represent cellu-
lar and image intensity distribution, textures, and
shape parameters was developed. See Supplementary
1 for the list of 432 features. Cell intensity average,
maximum, minimum, standard deviation, and kurto-
sis were computed. Histogram features were computed
where the range of pixel values was mapped to [0, 255]
before being split into 25 bins and tallied as feature
values. These values were multiplied by a weight-
ing factor that took into consideration the size of
each cell with respect to the segmented area. Prior to
and after weighting the features, the feature averages
were computed. The number of outlier pixels in each
cell’s intensity distribution was counted. The standard
deviation of the above computations was also calcu-
lated. The same features were extracted for the entire
segmented area. Finally, the percentage of image pixel
intensities between each bin of the histogram features
was recorded.

Texture features included cell entropy and cell
skewness. Shape features included cell area, cell perime-

ter, and cell circularity. The average, standard devia-
tion, and kurtosis were taken for each of these features.
Like the intensity distributions, an image’s distribu-
tion of cell area, cell perimeter, and cell circularity was
analyzed. The number of cells was counted within each
of the 25 bins created for cells areas between 0 and 2000
pixels, cell perimeters between 0 and 200 pixels, and
cell circularity between 0.75 and 2.0. The number of
cells was recordedwith areas greater than 2000, perime-
ters greater than 200, and circularity less than 0.75 or
greater than 2.0.

Our feature bank also included cell-graph features,
which have shown promising results.31,32 Cell-graph
features provide quantitative analysis of cellular spatial
arrangement in images. Figure 3 represents the follow-
ing cell graphs from which we extracted several
features: Voronoi tessellations, Delaunay triangula-
tions, cell-cluster graphs, and minimum spanning tree.
The extracted features included statistical metrics of
Voronoi tessellation area, perimeter, and chord lengths;
Delaunay triangulation area and side lengths; and
minimum spanning tree edge lengths. Also, from
Voronoi tessellations, we acquired features about the
number of polygons in each image, as well as the
average, standard deviation, and disorder of distance
between one cell centroid and its closest three, five,
and seven nearest neighbors. Other features calcu-
lated from Voronoi tessellations included the average,
standard deviation, and disorder of number of nearest
neighbors within 10, 20, 30, 40, and 50 pixels of
each cell centroid in each image. Features extracted
from cell-cluster graphs included the number of nodes,
edges, isolated nodes with no connections, center
nodes with multiple connections, end nodes with one
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Figure 3. Graphs used to compute cell arrangement features. (a) Example post-Descemetmembrane endothelial keratoplasty endothelial
cell images with (b) Voronoi tessellation, (c) Delaunay tessellation, (d) cluster graph, and (e) minimum spanning tree feature graph overlays.

connection, and other clustering features. Finally, three
traditional morphometrics—ECD, coefficient of varia-
tion (CV), and percentage of hexagonal cells (HEX)—
were computed and compared to novel features for
predictive ability.

These features were extracted from single imaging
time points. The predictive value of delta-radiomics
or the change in features between two imaging time
points was also investigated. Since pairs of images from
a control eye was already formed via time-matching
image selection mentioned in Data Cohort, the delta-
radiomics were calculated using Equation (1).

� − Radiomics = Ftime point 2 − Ftime point 1

�T
(1)

Ftime point 2 is the feature from the last imaging time
point image, Ftime point 1 is the feature from the second-
to-last imaging time point image, �T is the time
difference between the two images in months, and
�-Radiomics is the resulting change in feature over
time. For rejection eyes, every combination of images
between the two time points was paired to compute the
delta-radiomics. Thus, 330 delta-radiomic data points
from 19 rejection eyes and 80 delta-radiomic data
points from 22 control eyes were computed.

Machine Learning Model Prediction

Four machine learning models were developed
from four feature data sets: time point 1 data,
time point 2 data, delta-radiomics, and traditional
morphometrics. Risk prediction models were trained
via standard machine learning practices starting
with cross-validation training, feature selection, model
building, and held-out test set evaluation. Cross-

validation training involved splitting the data into a
training data set and a held-out test set. Two-thirds of
the eyes and their corresponding images or data points
were randomly selected for the training data set, and
the remaining one-third made up the held-out test set.
We ensured that the training and testing set maintained
the same proportion of control and rejection eyes as
the overall data set. Then, 10 iterations of three-fold
cross-validation were performed by splitting the train-
ing data into two-thirds training and one-third valida-
tion. The cross-validation training set features were z-
score normalized. The held-out test set was normalized
to the means and standard deviations of each training
set feature.

The feature selection process entailed three steps
to select the top 3, 5, 7, and 10 features. The first
step occurred prior to the first data-splitting step
and removed highly correlated features. Among any
group of highly correlated features (rs ≥ 0.95, Spear-
man correlation coefficient), all except one feature was
removed. The training set features within each cross-
validation’s fold underwent a similar features selec-
tion process as described in Chang et al.26 A feature
was removed if, after building a univariate Cox regres-
sion model, it was not significantly better than the
null model (P < 0.1). The remaining features trained
a random forest model from which the top 3, 5, 7,
and 10 features were selected based on the out-of-bag
loss.

The top 3, 5, 7, and 10 features were utilized to
train two models: random forest (RF) and logistic
regression (LR). These classifiers have shown promis-
ing results in other radiomic studies.27,33 Parameters of
the RF model include 100 classification trees; hyperpa-
rameter optimization of minimum leaf size, number of
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predictors to sample, and maximum number of splits;
and a 5:2 (false negative/false positive) cost matrix to
penalize the network for false-negative predictions, or
misclassifying a rejection image. The LR model was
a multivariate logistic binomial regression with a logit
link function. After training, the models were applied
to the validation fold of images. After 120 models were
generated (10 iterations of three folds trained on four
feature sets of a different number of features) and
performed well across the cross-validation folds, the
final top 3, 5, 7, and 10 features were selected based on a
rank sum (i.e., features selected most frequently across
the 10 iterations). The four final models (RF and LR
models trained on the top 3, 5, 7, and 10 features) were
trained on their corresponding final feature selections
extracted from all images in the training data set. Then,
the performance of the trained models was evaluated
on the held-out test sets. For the final prediction for
an eye, predictions were averaged across the three to
four images from the eye. If the probability of rejec-
tion is ≥0.5, the eye was deemed a future rejection eye.
Accuracy was deemed an appropriate metric since the

data were equally split between rejection and control
cases. Confusion matrix metrics were also computed.

Results

To train and meaningfully interpret the machine
learning classifiers, the number of features was reduced
to a maximum of 10. After removing highly corre-
lated features, the initial 432 features were reduced
by approximately 50%. The resulting Spearman corre-
lation matrix is shown in Supplementary 2. Cox
regression model and RF out-of-bag feature reduc-
tion methods identified the top 10 features within each
fold of the 10 iterations of three-fold cross-validation.
Across the 30 folds, the top 10 features were deter-
mined by rank sum (features selected the greatest
number of times across all folds). The Spearman corre-
lation matrix between the top 10 features selected from
each data set, along with the traditional morphomet-
rics, is shown in Figure 4. All novel features exhib-
ited low correlation with ECD, CV, and HEX features,

Figure 4. Correlationmatrices of the traditional metrics (ECD, CV, and HEX) and the top 10 features determined by data sets collected from
(a) the second-to-last imaging time point prior to rejection (T1), (b) the last imaging time point prior to rejection (T2), and (c) delta-radiomics.
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Table 1. Prediction Accuracy of 10 Iterations of Threefold Cross-Validation Training on Post-DMEK Eyes

Cross-Validation Training

Time Point 1 Time Point 2 Delta-Radiomics

Features RF LR RF LR RF LR

3 features 0.64 ± 0.05 0.63 ± 0.07 0.58 ± 0.07 0.61 ± 0.1 0.61 ± 0.07 0.45 ± 0.02
5 features 0.61 ± 0.08 0.63 ± 0.1 0.58 ± 0.09 0.61 ± 0.09 0.65 ± 0.05 0.43 ± 0.03
7 features 0.63 ± 0.08 0.59 ± 0.09 0.59 ± 0.06 0.62 ± 0.07 0.66 ± 0.07 0.41 ± 0.03
10 features 0.66 ± 0.06a 0.61 ± 0.08 0.59 ± 0.05 0.63 ± 0.07a 0.65 ± 0.09 0.41 ± 0.03
Traditional 0.45 ± 0.07 0.51 ± 0.07 0.53 ± 0.06 0.56 ± 0.06 0.64 ± 0.04 0.48 ± 0.02

aPerformance was significantly different (P < 0.05) from the corresponding traditional morphometrics model of the same
classifier and time-related data set.

indicating they can enhance the predictability of a
model trained to determine postkeratoplasty patient
outcomes. Furthermore, shared intensity, shape, and
cell-graph features (e.g., image pixel intensities between
163.2 and 173.4, average cell circularity, and minimum
spanning tree [MST] edge length standard deviation)
were selected in the final top 10 feature set for both the
second-to-last and last imaging data sets.

Performance of RF and LR classifiers in the cross-
validation study is shown in Table 1. It compares
the mean and standard deviation accuracy values per
patient-eye from the cross-validation training of both
RF and LR models when applied to the validation
sets across the 10 iterations. A paired t-test deter-
mined the significance of each optimal novel feature-
trained machine learning classifier as compared to
the traditional morphometrics-trained classifier for the
three time-related data sets. For T1 (second-to-last
imaging time point), the RF classifier trained on 10
features demonstrated the best prediction performance
across the 10 iterations of threefold cross-validation.
Its prediction accuracies were significantly different (P
< 0.001) from those from the RF classifier trained on
traditional morphometrics of the same data set. For T2
(last imaging time point), the prediction accuracies of
the logistic regression classifier trained on 10 features
were significantly different (P < 0.05) from those from
the T2 traditional morphometrics classifier.

Table 2 shows the accuracy values from the final
RF and LR models’ predictions on the held-out test
set of each data set. Overall, the cross-validation train-
ing and held-out test set performances were similar.
The held-out test set performances from the time
point 2 (last imaging time point) classifiers slightly
exceeded the cross-validation training performance.
The RF models trained on the top 5, 7, and 10 features
and the LR models trained on the top 3, 5, and 7
features performed well with a prediction accuracy
greater than 0.80 for last imaging time point data.

Table 2. PredictionAccuracy of Held-Out Test Set Post-
DMEK Eyes

Held-Out Test Set

Time Point
1

Time Point
2

Delta-
Radiomics

Features RF LR RF LR RF LR

3 features 0.71 0.50 0.67 0.85 0.69 0.46
5 features 0.71 0.64 0.83 0.85 0.77 0.46
7 features 0.64 0.57 0.83 0.85 0.69 0.46
10 features 0.64 0.64 0.83 0.79 0.62 0.46
Traditional 0.57 0.64 0.58 0.56 0.50 0.50

The bold values represent the best models with the
highest accuracy metrics.

RF models trained on second-to-last imaging time
point data performed better than LR models trained
on the same data, with the best requiring three and
five features to produce an accuracy of 0.71. The
RF models trained on delta-radiomics data performed
better than LR models on the same data. RF models
trained on the top five novel features demonstrated a
prediction accuracy above 0.77. Finally, all RF and LR
models trained on 3 to 10 novel features from last and
second-to-last imaging time points performed better
than models trained on traditional features from the
same images. Supplementary 3 and Supplementary 4
complement Table 2, displaying the confusion matrices
of held-out test predictions from the RF models and
LR models, respectively.

The performance of the models was attributed to
their predictive features, some of which are illustrated
in Figures 5 and 6. Violin and box plots show the differ-
ence in control and rejection distributions for “average
number of cell centroids in a 30-pixel radius” and
“mean cell circularity,” respectively. To enhance under-
standing, we now describe these features. The average
number of cell centroids in a 30-pixel (24-μm) radius
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Figure 5. Comparison of Delaunay triangulation feature between rejection (left) and control (right) patients. The two rejection images on
the leftwere taken fromapatient’s eye 30months and36months post-DMEK. The two control images on the rightwere taken fromapatient’s
eye 25 and 32months postkeratoplasty. The green graph arrangements overlaying each image is the corresponding Delaunay triangulation.
The violin and box plots compare the distribution of Delaunay triangulation side length average calculated from control and rejection eye
images.

Figure 6. Comparison of a cell-cluster graph feature between rejection (left) and control (right) patients. The two rejection images on
the left were taken from the same patient’s eye 16 months and 24 months post-DMEK. The two images on the right were taken from the
same patient’s eye 13 and 24 months post-DMEK. The images are overlaid with cell-cluster graphs. The violin and box plots compare the
distribution of number of connected components in a cell-cluster graph calculated from control and rejection eye images.

was calculated from a Voronoi tessellation. It is repre-
sented by centering a 30-pixel radius circle at a cell’s
centroid (marked by a red square) and counting the
number of red squares within the circle. This step is
repeated for each cell before averaging the count for
a given image. The size of the 30-pixel radius circle is
represented by the yellow and blue circles in Figure 5.
In Figure 5, the two rejection eye images are associ-
ated with fewer average number of cell centroids in a
30-pixel radius (0.03 and 0 average nearest neighbors),
as compared to the two control eye images at similar
time points (3.34 and 3.06 average nearest neighbors).
A two-sample t-test indicated a significant difference (P
< 0.01) between the control and rejection distribution

of the average number of cell centroids in a 30-pixel
radius.

Continuing with the description of important
features in Figure 6, post-DMEK rejection and
control EC images are overlaid with green automatic
cell border segmentations to showcase more cells
contributing to a uniform circularity in the control
images than in the rejection images. Circularity is the
ratio of a shape’s squared perimeter to area. The circu-
larity is 1 for a perfect circle, 1.10 for a hexagon, and
>1 for irregular or noncircular shapes. The rejection
eye images in Figure 6 are associated with a greater
mean cell circularity (1.13 and 1.14) than control eye
images from similar time points (1.08 and 1.08). A
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Figure 7. Limitations of HEX as a distinguishing feature between rejection and control patients. Both rejection and control eye images
showcase the same percent hexagonality. A scatterplot compares two features, Voronoi tessellation area of polygons and cell-cluster graph
number of components. The two data points corresponding to the two images are labeled in the scatterplot.

Figure 8. Limitations of ECD as a distinguishing feature between rejection and control patients. Both rejection and control eye images
showcase the same endothelial cell density. A scatterplot compares two features, Delaunay triangulation average triangle area and cell-
cluster graph maximum eccentricity. The two data points corresponding to the two images are labeled in the scatterplot.

two-sample t-test indicated a significant difference (P
< 0.01) between control and rejection distribution of
mean cell circularity. Supplementary 5 displays another
predictive feature distinguishing control and rejection
eye images.

Figures 7 and 8 illustrate how four novel-to-this-
application features are more predictive than tradi-
tional ECD and HEX features. Figure 7 shows control
and rejection images from the last imaging time point
data set that have a similar ECD value. The scatter-
plot demonstrates how two novel features (MST edge
length disorder and the number of image pixel intensi-
ties between 163.2 and 173.4) cluster results in feature

space. An MST is created by connected cell centroids
(blue circles in Figure 7) with edges (blue lines) in such
a way that the sum of the Euclidian edge lengths in an
image is minimal. Equation (2) calculates the disorder
of edge lengths.

Disorder = 1 − 1
1 + σedge

/
μedge

(2)

Here, σ edge is the standard deviation of all edge lengths
in an image, and μedge is the mean of an image’s edge
lengths. A larger σ edge for a given image will increase
theMST edge length disorder. Rejection images tended
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to have higher MST edge length disorder than control
images, as indicated by the scatterplot. The intensity
feature, also referenced in Supplementary 5, counts
how many pixels in the cellular region have a value
between 163.2 and 173.4. From the scatterplot, it is
evident that rejection images tend to have fewer pixels
in this region than control images. The intensity range
(163.2, 173.4) is slightly brighter than the middle of the
8-bit grayscale intensity range (0, 255), indicating that
rejection eyes tend to have darker images than control
eyes. Both features were in the top seven most predic-
tive features for images taken at the last imaging time
point prior to rejection.

Figure 8 displays a rejection and control image
from the second-to-last time point data set with similar
HEX (i.e., the proportion of cells with six sides).
The scatterplot clusters rejection and control images
from the same data set in the feature space created
by two novel-to-this-application features (average path
length from cell-cluster graphs and MST edge length
standard deviation). This feature space better predicts
the correct class for the two images in Figure 8; see
patients C and D). Cell-cluster graphs are overlaid
on these two images and are composed of blue cell
centroids connected with yellow edges. Following Ali
et al.,32 the threshold for connectivity was determined
by first introducing a kernel that relates the distance
between two cell centroids and the probability they
are connected. Specifically, the probability two cells
are connected is set equal to the Euclidean distance
between them, raised to a negative α term (0.43). An
edge is introduced between cell centroids with connec-
tion probability greater than 0.2. Path length is defined
as the sum of the Euclidean length of all edges in
a path. The distance between two cells is the length
of the shortest path between them, provided they are
connected by some path. From here, the average path
length of a given image is the average distance between
all centroids connected by some path. From the
scatterplot, rejection images tend to have shorter path
lengths than rejection images. In summary, novel graph
features capture the consequences of the gradual rejec-
tion mechanism by analyzing the distances between
cells in local and global regions, the areas of polygons
derived from centroid connections, and the change of
these features over time.

Discussion

Using endothelial cell images, we investigated the
ability of machine learning to predict future graft rejec-
tion following DMEK. We determined that novel-to-

this-application features led to more accurate predic-
tions than the traditional morphometrics (e.g., ECD,
CV, and HEX), as shown by Table 2 and Figures 7
and 8. These features also showed predictive ability
across three time point data sets: last imaging time
point, second-to-last imaging time point, and the
feature changes between these two points per Table 2
and Figures 5 and 6. Some of the novel features are
based upon graphs, which provide more information
about the spatial relationship of cells that is disrupted
during the process of graft rejection as cells die and
remaining healthy cells migrate to heal the defect. For
example, due to diseased endothelial cells causing the
distortion of surrounding cells’ shapes and forcing their
enlargement to maintain the loose junctions within the
endothelium, the distance between cell centroids will
lengthen, thus decreasing the “average number of cell
centroids in a 30-pixel radius” of a rejection image.
A similar physiologic reasoning is followed by “cell-
cluster graph average path length” and explains the
increase in “MST edge length disorder,” “MST edge
length standard deviation,” and “cell circularity.”

Cell-cluster graphs, Voronoi tessellations, and MST
illustrate cell arrangement differently than traditional
morphometrics such as ECD and HEX. In compar-
ison to traditional morphometrics, which provide an
average-like metric based on surrounding proximal
cells, cell-graph features provide both a global assess-
ment of cell arrangement and local compactness across
the entire image. Figures 7 and 8 clearly show that
these novel features are better than HEX and ECD,
respectively, for prediction of graft rejection. Images
of the corneal endothelium en route to a future graft
rejection episode exemplify reduced local compact-
ness of the endothelium, resulting in fewer cell-graph
connections (yellow edges), fewer nearest neighbors
(red cell centroid squares in each space), and longer
MST edges (blue connections) due to increased cell
death and cell arrangement distortion. Thus, the value
of features such as “average path length” and “average
number of cell centroids in a 30-pixel radius” is lower
for images from a graft rejection eye than a control
eye. Additionally, the value of “edge length disor-
der” feature will be higher for rejection endothelial
images than for control endothelial images. Healthy
and compact corneal endothelia sawmore proximal cell
centroids connected in cell-cluster graphs and shorter
connecting edges in MSTs, enabling the most distant
cell centroids to be connected by smaller edges through-
out a given image. The reduction of cell-cluster graph
connections and lengthening of MST edges in an
unhealthy and less compact corneal endothelium limit
the average path length and increase edge length disor-
der, respectively, between centroids.
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Intensity and shape features also proved to be more
predictive than ECD and HEX for identifying future
graft rejection cases. It was noted that specular images
from graft rejection eyes tended to have darker cells
than specular images from control eyes. It is hypothe-
sized that this darker intensity is the result of under-
lying physiologic changes in the graft, starting with
subclinical inflammation. The subclinical inflamma-
tion could then lead to morphologic changes in corneal
endothelial cells identifiable by certain shape features
such as cell area and circularity. These morphologic
changes could be indicative of endothelial dysfunction,
leading to subclinical increased stromal thickness. It is
this subclinical stromal thickening that could manifest
itself as darker cellular intensities on specular micro-
scopic imaging.

These features were used to build various machine
learning models trained to predict future graft rejec-
tion across three data sets: second-to-last and last
imaging time point images and delta-radiomics. The
RF model trained on the top three and five features
computed from second-to-last time point (T1) images
best predicted future graft rejection within 4 to 24
months. The LR model trained on the top three, five,
and seven features computed from last time point
(T2) images best predicted future graft rejection within
1 to 12 months. Finally, the RF model trained on
the top five delta-radiomic features best predicted
future graft rejection within 1 to 12 months. The T1
and T2 novel feature-trained classifiers significantly
(P < 0.05) outperformed corresponding traditional
morphometric-trained classifiers. The improvement in
prediction accuracy between the cross-validation train-
ing and held-out testing was due to the 50% increase
in training samples when the final four models were
trained using all training images for each data set.
When working with smaller data sets, increases in data
size can enhance model performance.

To understand the proposed model’s (LR model
trained on top three features from last imaging time
point data) evaluation on patient care, we extrapo-
late its performance on a hypothetical cohort of 1000
patients. If we assume the graft rejection case preva-
lence reported in Baydoun et al.21 is 2.5%, we expect
to correctly identify 21 of the 25 patients at risk for a
future graft rejection. On the other hand, if the preva-
lence is 4%, as reported in Vasiliauskaitė et al.,34 then
we expect to correctly identify 34 of the 40 patients
at risk for a future graft rejection. A larger number
of false positives are predicted (122 of 975 for 2.5%
prevalence and 120 of 960 for 4% prevalence), but the
actual penalty for this is minor as patients would just be
followed more closely with postoperative visits to the
ophthalmologist.

The importance of early graft rejection detection
is highlighted by the consequences of delayed diagno-
sis, delayed treatment, and the future risks follow-
ing a repeat keratoplasty.22,25,35 In PKP, DSAEK,
and DMEK cases, studies have shown that despite
survival of a rejection episode with intensive topical
corticosteroid therapy, patients may still go on to
experience marked damage to the corneal endothe-
lium and graft failure. Musch et al.35 reported in
a study that examined both control and rejection
patients via specular microscopy before and after a
rejection episode that patients with PKP who under-
went an allograft rejection episode saw a signifi-
cant decrease in ECD. Furthermore, severe allograft
rejection episodes caused EC loss or damage that
exceeded expectations compared to mild allograft
rejection consequences.35 The Cornea Preservation
Time Study found that patients with DSAEK grafts
that survived at least one rejection episode, remain-
ing clear for the following 3 years, showed signifi-
cantly lower ECD and a greater percentage of ECL
compared to patients with uncomplicated postkerato-
plasty follow-ups.22 Finally, a similar experience was
reported byMonnereau et al.25 for DMEK cases. Here,
despite the intensified topical corticosteroid treatment
following graft rejection, which resolved all rejec-
tion eyes in their study, the cell morphology did
not return to normal levels; notably, postrejection
diagnosis follow-up duration was 6 ± 6 months on
average.

This study’s results are promising, but there are
limitations. One is the small data set and number
of rejection eyes used to develop machine learn-
ing models. A larger number of rejection eyes, a
more realistic ratio of control to rejection eyes that
accurately reflects the population ratio, and post-
DSAEK and post-PKP patient data would be neces-
sary to validate the robustness and generalizability of
this study. Additionally, this study did not include
other conditions not related to rejection that may have
an effect on endothelial morphology such as long-
term contact lens wear36–40 or diabetes.24,41–45 Inclu-
sion of other “abnormal” endothelium classes in future
studies could strengthen the precision of the proposed
machine learning classifiers and validate the sensitiv-
ity of the predictive features. Another limitation is
the varying frequency of specular imaging. In general,
specular microscopy imaging is seldom performed for
keratoplasty-monitoring purposes unless it is part of
a clinical study. While this study’s patients were more
frequently imaged compared to the standard practice
of care, even more frequent imaging after kerato-
plasty could enhance the training and performance
of machine learning classifiers. Additional corneal
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pachymetry measurements corresponding to imaging
time points would validate the hypothesis that subclin-
ical inflammation leads to endothelial dysfunction,
causing an increase in subclinical corneal thickness and
darker imaging intensities. Despite these limitations,
this study’s promising results provide a foundation for
future larger studies investigating early morphometric
changes by artificial intelligence (AI)–assisted endothe-
lial image analyses prior to clinical signs of graft rejec-
tion and future development of clinical graft rejection
and subsequent graft failure.

According to Evans et al.,46 transparency is one
of the biggest ethical issues with implementing AI
technologies at the clinical level. Transparency is one
of this study’s strengths due to the handcrafted novel
features utilized to develop the machine learning
models. Each feature in this studywasmanually derived
and created based on imaging principles and/or cellu-
lar physiology. Furthermore, the classifiers built in this
study were trained on at most 10 features, making the
trends between these handcrafted features and class
distinction more clinically and physiologically inter-
pretable than the “black box” models described by
Evans et al.46

Other fields of ophthalmology such as diabetic
retinopathy,47,48 retinopathy of prematurity,49
glaucoma,50 and age-related macular degeneration51,52
produce larger quantities of imaging data for the
training purposes of machine learning models, since
imaging is part of routine management of these
disorders. Multiple research studies have investigated
implementing AI methods into these fields of ophthal-
mology, including use in outcomes research.53–55
However, in the cornea field, most AI studies have
focused solely on developingmethodology for endothe-
lial image analysis.56–66 Few studies have trained AI
models for diagnosis or addressing treatment manage-
ment of corneal diseases (e.g., inflammatory and
infectious conditions, dystrophies), since imaging is
not routinely used to monitor them. One application,
however, is with data analysis. For example, O’Brien
et al.67 introduced machine learning application to the
field of graft failure prediction by utilizing random
survival forests. Their study found that intraopera-
tive complications were the most predictive feature
of DSAEK failure. Future applications could entail
clinical research such as evaluation of corneal health
after cataract or glaucoma surgery or intraocular
inflammatory diseases, such as herpes uveitis, early
diagnosis of patients with Fuch’s endothelial corneal
dystrophy, time to a postkeratoplasty rejection event,
or monitoring treatment of a rejection episode accord-
ing to the endothelial recovery. Our initial efforts in
this study will hopefully stimulate greater interest in

this diagnostic tool for outcomes research and guiding
therapies at an earlier stage of disease.

In summary, this study introduces the poten-
tial benefits of two alterations to the standard
practice of care for postkeratoplasty patients: consis-
tent and frequent specular microscopy imaging and
machine learning models trained on novel quanti-
tative features extracted from specular microscopic
imaging. Frequent imaging and AI approaches would
enable identification of postkeratoplasty patients at
risk of a future allograft rejection. As indicated by
Monnereau et al.,25 the early asymptomatic rejec-
tion mechanism can be qualitatively analyzed via
frequently specular microscopic imaging. The extrac-
tion of quantitative features from specular endothelial
images allows machine learning models to formulate
interpretable relationships between images, postkerato-
plasty endothelial physiology, and allograft rejection.
Early detection of subclinical rejection prior to a clini-
cally recognized rejection episode could alert clinicians
to administer the necessary treatment for reversing this
clinically asymptomatic event before clinical symptoms
and signs appear during an examination. Consequen-
tially, the proposed techniques could further reduce
graft failures, particularly in high-risk PKP, DSAEK,
and DMEK cases.
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