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Abstract

Background: Medication errors are common, life threatening, costly but preventable. Information technology and
automated systems are highly efficient for preventing medication errors and therefore widely employed in hospital settings.
The aim of this study was to construct a probabilistic model that can reduce medication errors by identifying uncommon or
rare associations between medications and diseases.

Methods and Finding(s): Association rules of mining techniques are utilized for 103.5 million prescriptions from Taiwan’s
National Health Insurance database. The dataset included 204.5 million diagnoses with ICD9-CM codes and 347.7 million
medications by using ATC codes. Disease-Medication (DM) and Medication-Medication (MM) associations were computed
by their co-occurrence and associations’ strength were measured by the interestingness or lift values which were being
referred as Q values. The DMQs and MMQs were used to develop the AOP model to predict the appropriateness of a given
prescription. Validation of this model was done by comparing the results of evaluation performed by the AOP model and
verified by human experts. The results showed 96% accuracy for appropriate and 45% accuracy for inappropriate
prescriptions, with a sensitivity and specificity of 75.9% and 89.5%, respectively.

Conclusions: We successfully developed the AOP model as an efficient tool for automatic identification of uncommon or
rare associations between disease-medication and medication-medication in prescriptions. The AOP model helps to reduce
medication errors by alerting physicians, improving the patients’ safety and the overall quality of care.
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Introduction

Medications are one of the most powerful tools in modern

medicine used for the treatment of diseases. Unfortunately,

sometimes instead of providing treatment, they can cause

considerable harm and even death, especially if prescribing

physicians fail to consider relevant patient data and characteristics

[1–3]. Barach et al. reported that nearly 100,000 individuals die

per year in the United States due to preventable medical errors,

most of which are medication errors [4,5]. Studies on medication

errors during drug administration in surgical units [3,6], the

incidence of medication errors in intensive care units [7,8], and in

pediatric units [2,9] reveal that in most cases, preventable

medication errors cross barriers and reach to patients [2,7,9].

Reducing medication errors to increase patient’s safety is crucial

to evaluating hospital performance and improving patient

outcomes. Wyatt J.C. et al. reveals that information technology

(IT) boosts clinical leadership for development and procurement in

healthcare [10,11] by improving reliability, quality, medication

safety [12,13], and most importantly reducing prescription errors

[3,5,13–20]. Information Technology also saves hundreds of

billions in annual costs by providing automation for ordering, a

key process in modern health care. Such processes include CPOE

[15] with clinical decision support (CDS), bar-coded medication

administration [21], automated dispensing systems (ADS) [8], and

dose drug distribution [22]. Bates D.W. et al. claims that the key

tools for reducing this gap would be information systems which

provide decision support to users during decision making, resulting

in improved quality of care [23]. Thus, the knowledge-based CDS

review can assure that those orders are safe and comply with

guidelines [20,23].

Most knowledge-based systems were implemented for automat-

ed methods, statistically developed by experts at a significant cost

to maintain assurance and evidence [24–26]. In our study, in

order to improve the efficiency of detecting medication errors, we

used a set of data mining techniques such as frequent item set

mining and association rule mining [27]. Being used in a variety of

other fields [28–30], data mining techniques are also successfully
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employed in medical informatics applications such as screening

tests for preventive care decision support, to locate potentially

unknown adverse effects of drugs [31], as well as identifying

disease-drug associations in biomedical literature and clinical texts

[32]. Wright A. et al. used association rule mining to identify

clinically accurate associations between medications, laboratory

problems [33], and other related studies [34–38].

The aim of this study focuses on medication-disease relation-

ships by applying the association rule mining, and using statistical

methods to detect medication errors in the computerized physician

order entry (CPOE) systems in order to improve patient’s safety.

Methods

In this study, we developed a model to detect uncommon or

rare medication for a given disease when ordering prescriptions

based on disease-medication associations. The steps involved in

methods are described below (see Figure 1):

(I). Gathering and cleaning data from the Taiwan National

Health Insurance (NHI) database.

(II). Quantifying Disease-Medication (DM), Medication-Med-

ication (MM) co-occurrences and computing associations’

strength (Q values) of all the associations present in

103,485,067 prescriptions.

(III). Developing a model that can automatically evaluate the

Appropriateness of a Prescription (AOP).

(IV). Testing the model for 100,000 randomly selected

prescriptions, and then validating the results using seven

human experts.

Phase (I): Data Gathering and Cleaning
The Taiwan’s NHI claims data from Jan 1, 2002 to Dec 31,

2002 with a total of 263.6 million prescriptions from outpatient

visits was employed. Each prescription consists of one to three

diagnostic codes and one to fifteen medication codes. We excluded

160.1 million prescriptions due to the following reasons: a) missing

or invalid disease codes or medication codes, and b) the use of

traditional Chinese medicine prescriptions. Thus, the remaining

103.5 million prescriptions with 204.5 million diagnosis ICD9-CM

(International Classification of Disease v.9-Clinical Modification)

codes and 347.7 million medications with the Taiwan NHI codes

were used in the analysis. These medication codes were mapped to

the ATC (Anatomical Therapeutic Chemical) classification code

system resulting in 13,070 unique ICD9-CM codes and 1,548

unique ATC codes.

Phase (II): Quantifying Disease-medication (DM),
Medication-medication (MM) Co-occurrences and
Computing Associations’ Strength (Q Values)

The co-occurrences of disease-medication and medication-

medication association were used in our analysis. The data mining

techniques used were: 1) Frequent (large) item-set mining and 2)

Association rule mining; both are closely related and complemen-

tary [33].

1. Frequent item-set mining is a technique for locating

common items’ co-occurrence in a transaction database [39]

and determining possible associations among them.

2. Association rule mining is an extension of frequent item-set

mining [28,40], which directs the association between two

items in addition to a simple co-occurrence.

Frequent item-set and association rule mining are practical

techniques for inferring relationships between disease and

medication; thus, many potential rules are often produced through

these techniques for filtering, such as a variety of measures for

‘‘interestingness’’ [41,42]. We termed interestingness or lift value

as Q value.

Q value is the ratio between the joint probability of disease-

medication and medication-medication with respect to their

expected probability under the independent assumption known

as lift (interest) and relative risk (RR) in similar studies dealing with

associations [33,41,43].

Furthermore, the disease and medication are considered to be

co-occurring if they appeared in the same prescription (see

Appendix S1). Based on this definition, each DM pair and MM

pair association’s strength was computed using a 262 table

(Figure 2). Figure 2 shows the equation used to compute the Q

value in this study. Q is defined as [0, +‘]; Q = 1 indicates no

association between disease and medication, Q ,1 indicates that

disease and medication are negatively associated (i.e. negative

DMQs), and Q .1 indicates that disease and medication are

positively associated (i.e. positive DMQs - the prescriptions with

disease X containing medication Y occur more often than other

medications).

A total of 1.34 million DM and 0.65 million MM pairs with

their Q values were computed from 103.5 million prescriptions.

The DM and MM associations with less than 5 co-occurrences, by

default were considered as ‘‘uncommon or rare associations’’ and

were not included in developing the model.

Phase (III): Developing the Appropriateness of a
Prescription (AOP) Model

In this phase, the values of DMQs and MMQs computed in

phase (II) are used in developing the AOP model. The

Appropriateness of a Prescription (AOP) model is developed

based upon following rules:

1. The number of positive DMQs and positive MMQs should be

greater than or equal to the number of medications.

2. All diagnoses should have at least one positive DMQ.

3. Each medication should have at least one positive DMQ or

positive MMQ.

The AOP model is expressed mathematically as:
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: QDiMj
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§1

VM :
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where n is the number of diagnoses; m is the number of

medications; QDiMj
is a DMQ; QMjMk

is a MMQ in the same

prescription.

The AOP model was built to evaluate associations (DM and

MM) present in each prescription and to make a decision whether

the overall prescription is appropriate or not. In other words, the

model will consider a prescription as appropriate if and only if it

has at least one positive DM association present.

Improve Medication Errors Detection

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e82401



Phase (IV): To Test and Evaluate the AOP Model
Two steps are involved in this phase. First, to test the model

based on the verifying dataset and subsequently, evaluating the

results by the human experts including four physicians and three

clinical pharmacists to measure the accuracy of the AOP model.

Step 1: To test AOP model. In the first step, 100,000

prescriptions were randomly selected from the 2003 NHI claims

Figure 1. Overall of study design.
doi:10.1371/journal.pone.0082401.g001
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database. Then the AOP model was used to test the selected

prescriptions for appropriateness.

Step 2: The evaluation of AOP model by human

experts. In the second step, 400 prescriptions were randomly

selected out of the 100,000 prescriptions and were tested by our

AOP model. The 400 prescriptions selected to be evaluated by

experts contained 254 (63.5%) appropriate and 146 (36.5%)

inappropriate prescriptions. All experts were explained the

purpose of the study and were asked to mark whether they agree,

disagree or are unsure regarding the overall prescription data

provided to them (see Appendix S2). Next, the same prescriptions

were re-evaluated with and without the Q values for each DM

association present in the prescriptions. We administered the

questionnaires (see Appendix S3) to four physicians at their clinic

sites (two hundred prescriptions per each physician) and to three

clinical pharmacists (eight hundred prescriptions per each

pharmacist) at the hospital pharmacies. Overall, we administered

3,200 prescriptions (1,600 prescriptions without Q values and

1,600 with Q values). The average time spent to fill out both

questionnaires was about 45 minutes by each physician, and 150

minutes by each pharmacist.

The sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV) were computed from the results

obtained in order to compare the differences and the consensus

between the system and the experts.

Results

Results of Step 1
From a total 100,000 prescriptions 99,004 prescriptions

(99.004%) were evaluated as appropriate and 996 prescriptions

(0.996%) were evaluated as inappropriate by the AOP model.

Results of Step 2
When the Q values were not disclosed the experts responded to

1590 (99.3%) prescriptions of which 1,374 (85.9%) were appro-

priate and 216 (13.5%) were inappropriate prescriptions, leaving

10 prescriptions as ‘‘unknown’’. However, when the Q values were

shown in the prescriptions the experts responded only to 1,587

(99.2%) prescriptions of which 1,313 (82.1%) were appropriate,

274 (17.1%) were inappropriate prescriptions, and 13 prescriptions

were classified as ‘‘unknown’’ (see Figure 1).

The AOP model results were verified by the experts and the

sensitivity, specificity, positive (PPV), and negative predictive

values (NPV) were computed (see Table 1). While evaluating

prescriptions without Q values, we found that the average

sensitivity, specificity, PPV, and NPV of the experts were 71.5%,

Figure 2. Formulation of Q used in this study.
doi:10.1371/journal.pone.0082401.g002

Table 1. Performance analysis of the results AOP model Vs. human experts (Without and with Q values).

Without Q values With Q values

Human experts Sens Spec PPV NPV Sens Spec PPV NPV

Physicians 74.3 82.7 94.8 43.1 76.7 84.9 94.8 50.3

Pharmacists 68.8 75.0 95.6 24.6 74.3 94.2 98.7 40.6

Overall 71.5 78.9 95.2 33.9 75.5 89.5 96.7 45.5

Abbreviation: Sens, sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive value. Note: Confidence intervals (CIs) were small for each
parameter and are thus omitted from the reported results.
doi:10.1371/journal.pone.0082401.t001
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78.9%, 95.2%, and 33.9%, respectively. However, when Q values

were disclosed the average sensitivity, specificity, PPV, and NPV,

they were 75.5%, 89.5%, 96.7%, and 45.5%, respectively. A

detailed analysis of the results for physicians and clinical

pharmacologists versus the AOP model are presented in Table 1.

A few examples of the appropriate and inappropriate prescriptions

evaluated by both the AOP model and human experts are shown

in Figure 3.

Discussion

In this study, we successfully developed, tested, and validated

the AOP model, which is able to predict and identify the

appropriateness of the prescriptions. The model reveals a high

sensitivity and specificity as well as a high positive predictive value,

with a negative predictive value around 50%. This AOP model is

built on a simple assumption that commonly prescribed medica-

tions to a given diseases (DM) are appropriate, and uncommon or

rare combinations of disease and medication that might not be

appropriate. For example, Sodium Valproate is one of the most

effective antiepileptic drugs for suppressing seizure activity;

however, it is now well established that Valproate has major

teratogenic properties, and when taken during pregnancy can

result in more than a 15-fold increased risk of having children with

birth defects [44,45]. Despite Valproate is regarded as one of the

commonly used antiepileptic drugs, whenever it is prescribed to

the pregnant woman, the AOP will show alert stating it is

uncommonly prescribed drug. In addition, we could manually

update the software if any new or novel drugs have been added to

the hospital formulary. Therefore, the novel therapies that had

little or no prior prescribing history would not be further flagged as

rare associations.

In this study, we could observe some unexpected strong

associations between apparently unrelated disease-medications

that we believe were attributable to co-occurrence. For example,

let us consider Hypertension as a disease and Insulin as a

medication, although Insulin is not directly related with Hyper-

tension; in most prescriptions both hypertension and insulin

happen to be present. This is because hypertension has strong

association with diabetes. Therefore, Fisher’s exact test with p-

value was used to find the significant associations [32,33]. This

additional rule was applied to the AOP model to re-evaluate the

400 prescriptions. An increase in the sensitivity and PPV was

observed, however, NPV remained the same. This suggests there is

no clear ‘‘best’’ statistical method; instead, selection of the

statistical method is dependent on researchers’ preferences and

the parameters used for analysis [42,46–48]. In addition, in order

to improve the NPV, the cut-off value in the model has to be

selected carefully. In this study, the cut-off value for Q is 1. For any

association (DM or MM) having Q value less than 1 is regarded as

a negative association or uncommon association. The cut-off value

can be adjusted to improve NPV.

The AOP model is based only on DMQs and MMQs without

having any references or guidelines such as drug-drug interactions,

adverse drug events and dose guidance. The validation results of

both physicians and pharmacists (PPV) were nearly 96% accurate

for appropriate prescriptions and only 45% accurate for inappro-

priate prescriptions. Van.D.S.H et al. and Taylor.L.K et al.

studied the overridden rate to alerts reported from 49% to 96%

causing alert fatigue to the Electronic Medical Records (EMR)

users [49–51]. Compared to their findings, we observed our results

show an improved accuracy with a low alert rate given by AOP

model, in which only 50% were inappropriate. Thus, if the results

were extrapolated to the 0.996% (996) inappropriate prescriptions

predicted by this model, the human experts would have considered

half of them inaccurate. In this study, we noticed that showing Q

valve had no effect on the physicians’ decisions (see Figure S1).

The utilization of association rule mining was reported in

several studies such as for relating chief complains and lab results

Figure 3. Few examples of the appropriate and inappropriate
prescriptions.
doi:10.1371/journal.pone.0082401.g003

Improve Medication Errors Detection

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e82401



with disorders [33,52,53]. To our knowledge, this is the first study

using association rule mining techniques to identify the uncom-

mon DM and MM combinations. Based upon it, we developed a

model that would able to detect and alert the gaps or medication

errors in prescriptions. Thus, our model can significantly help to

improve patients’ safety and quality of care in the hospitals.

In summary, the AOP model has a variety of applications. It

can be used to alert physicians if medication errors are detected

while prescribing medications using the CPOE system. Addition-

ally, the model could be used to reduce the size of medication list

in the CPOE for a given diagnosis. An automated medication

listing systems and clinical decision support system (CDSS) can

also be developed by using the AOP model.

Limitations
This study has some limitations. We used only 103 million

prescriptions to construct our model. It is possible if we analyze

300 or 500 million prescriptions, however, it might affect the

association strengths which we obtained by using the original data.

Second, only two variables are used, diagnostic code and

medication codes in the analysis, however, in the real world the

prescription of medications depend on various factors like

physician behavior, chief-complains, lab results, and age and

gender of patient etc. Third, the seven human experts analyzed

only 400 prescriptions in order to evaluate the results we got from

our AOP model.

Conclusion
The AOP model developed in this study is able to detect

accurately the inappropriate medications prescribed via COPE

system. Thus, the PPV of the validation results from both

physicians and pharmacists were accurate for the appropriate

prescriptions. Moreover, this model could be applied in clinical

practice to aid in improving prescription appropriateness, accu-

racy, patient safety, and patient care.

Supporting Information

Figure S1 Performance statistics for evaluating system
by all experts.
(TIF)

Appendix S1 An example of prescriptions in raw data.
(DOCX)
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evaluate the AOP model.
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