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Magnetic resonance molecular imaging can provide anatomic, functional and molecular
information. However, because of the intrinsically low sensitivity of magnetic resonance
imaging (MRI), high-performance MRI contrast agents are required to generate powerful
image information for image diagnosis. Herein, we describe a novel T1 contrast agent with
magnetic-imaging properties facilitated by the gadolinium oxide (Gd2O3) doping of
mesoporous silica nanoparticles (MSN). The size, morphology, composition, MRI
relaxivity (r1), surface area and pore size of these nanoparticles were evaluated
following their conjugation with Gd2O3 to produce Gd2O3@MSN. This unique structure
led to a significant enhancement in T1 contrast with longitudinal relaxivity (r1) as high as
51.85 ± 1.38mM−1s−1. Gd2O3@MSN has a larger T1 relaxivity than commercial gadolinium
diethylene triamine pentaacetate (Gd-DTPA), likely due to the geometrical confinement
effect of silica nanoparticles. These results suggest that we could successfully prepare a
novel high-performance T1 contrast agent, which may be a potential candidate for in-
vivo MRI.
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agent

1 INTRODUCTION

Magnetic resonance imaging (MRI) is non-invasive and produces high-resolution morphological
and innate three-dimensional image resolution without the risk of radiation damage, making it a
critical clinical diagnostic tool. MRI contrast agents are a specific substrate used in these technologies
to help improve the contrast between normal and abnormal tissues. Gadolinium diethylene triamine
pentaacetate (Gd-DTPA) remains the most common MRI contrast agent as it can enhance the
brightness of the region of interest (ROI; positive contrast) (Shin et al., 2015; Ni et al., 2017; Shen
et al., 2017). However,Gd-DTPA is a small-molecule contrast agent and suffers from relatively low
sensitivity, specificity, and relaxivity, which limits its applications in more complex diagnostic
settings (Fraum et al., 2017; Vikas et al., 2017). This implies that alternative contrast agents,
specifically those commonly referred to as gadolinium-based T1 contrast materials have begun to
attract more attention.

In addition, nano-drug delivery systems (NDDS) are currently amongst the most evaluated drug
delivery systems in the world. These NDDS combine a therapeutic payload with nano-sized carriers
(such as liposomes, gold nanoparticles, polymeric micelles, and mesoporous silica) to reduce side
effects and prolong circulation time (Mikada et al., 2017; Layek et al., 2020). Thus, the introduction of
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MRI contrast agents into an NDDS may both extend blood
circulation time and improve MRI performance (because of
the shortened longitudinal proton relaxation time of the
surrounding water molecules for T1-type contrast agents) (Lin
et al., 2004; Parvesh et al., 2012; Li et al., 2014; Hu et al., 2015;
Deng et al., 2016; Wang and Sun, 2020). Of the common NDDS
carriers mesoporous silica nanoparticles (MSNs) are widely used
in the carriers for drug delivery and biosensing and are likely to be
the most appropriate carrier for gadolinium owing to their high
surface area, ease of preparation, good biocompatibility, and
mesoporous structure (Lin et al., 2004; Taylor et al., 2008; Xia
et al., 2019). Additionally, the overall structure is composed of
silica and Si-OH groups. Si-O-Si frameworks are quitestable and
silica degradation is relatively difficult under physiological
conditions, which means that these particles are likely to
facilitate good loading of Gd2O3 but inhibit the release of free
Gd3+ reducing its toxic effects.

Herein, we report a novel synthesis system for producing
Gd3+-incorporated MSN (Gd2O3@MSN), which are
characterised by a mesoporous structure, higher surface area
and high T1 relaxivity. These nanoparticles (NPs) are easy to
prepare and modify, present with low-cost, and possess desirable
MRI contrast-enhancement properties, thus making them
suitable for the creation of more specific, and possibly even
targeted, contrast agents for molecular MRI and could help
provide real-time feedback for treatment outcomes (Scheme
1), potentially enhancing the clinical utility of MRI.

2 MATERIALS AND METHODS

2.1 Materials
Hexadecyl trimethyl ammonium bromide (CTAB, 99%) was
purchased from Coolaber Science & Technology.
Tetraethoxysilane (TEOS, 99%) was purchased from Fuchen
Chemical Reagents (Tianjin, China). 3-Aminopropyl-
triethoxysilane (99%) was purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China). Gadolinium (III) chloride hexahydrate
(GdCl3·6H2O, 99.9%) was purchased from Aladdin Biochemical
Technology Co., Ltd. (Shanghai China).

2.2 Preparation of Gd2O3@MSN
Briefly, NaOH (140 mg) and CTAB (500 mg) were dissolved in
220 ml of deionised water and stirred (300 rpm) at 80°C for 1 h.

Next, we slowly added TEOS (1.8 ml) in a dropwise manner to
this suspension while maintaining the stirring (250 rpm) of the
recipient solution. This mixture was then stirred for another 2 h
and then 20 ml of GdCl3·6H2O aqueous solution (5 mg/ml) was
quickly added into the mixture. One hour later, an additional
0.7 ml of TEOS was added to these samples, left for an additional
2 h, centrifuged, washed with ethanol and deionised water, and
then dried in an oven at 50°C for 24 h. The resulting Gd2O3@
MSN were collected and calcined at 600°C for 6 h to remove
CTAB surfactants.

2.3 Characterizations
Gd2O3@MSN (1 mg/ml) particle size and zeta potential was
confirmed by dynamic light scattering (Malvern Zetasizer
Nano ZS system, Malvern, Worcestershire,
United Kingdom). We then performed transmission electron
microscopy (TEM) (FEI Talos F200S, United States) to
examine the surface morphology of the Gd2O3@MSN
particles. Their composition was evaluated by energy
dispersive X-ray spectroscopy (EDS). Scanning transmission
electron microscopy high-angle annular dark-field (STEM-
HAADF) images and energy-dispersive X-ray (EDX) element
mapping images were obtained using an FEI Talos F200S
microscope at an accelerating voltage of 300 kV. The
analysis of the N2-adsorption isotherms was performed using
Barrett–Joyner–Halenda (BJH) analysis (Micromeritics ASAP-
2460, Norcross, GA, United States). The surface area, total pore
volume, and average pore distribution curves for the MSNs
were determined using the Brunauer–Emmett–Teller (BET)
method. Fourier transform infrared refraction (FT-IR, RF-
5301PC, Shimadzu, Japan) analyses of the Gd2O3@MSN
particles were performed in the range of 400–4,000 cm−1 or
structural characterization.

2.4 T1 Relaxivity and in-vitro Magnetic
Resonance Imaging of as-prepared NPs
The Gd3+ concentration of the doped MSNs was proved using
Inductively-coupled plasma mass spectrometry (ICP-MS, Agilent
720 ES, United States), and ICP-MS was also used to detect
whether free Gd elements were dissociated from Gd2O3@MSNs
when immersed in phosphate-buffered saline (PBS) at different
pH (7.4, 5.5 and 4.5) for 48 h. Next we evaluated the T1 relaxivity
of Gd2O3@MSN and Gd-DTPA with different molar

SCHEME 1 | Illustration of the preparation of Gd3+-incorporated mesoporous silica nanoparticles (MSN) (Gd2O3@MSN) particles for magnetic resonance imaging.
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concentrations of gadolinium when kept in 1% agarose solution
using a 0.5 T NMI20 Analyst NMR system (Niumag Analytical
Instrument Corporation, Sunzhou, China) (Repeat three times
for each sample) set to apply the following parameters:SW:
100 kHz, TW: 3,000 ms, RFD: 0.08 ms, NS: 8, TE: 1 ms and
NTI: 25 (in pure water, 37°C), and the T1 graph was obtained
using the inversion recovery (T1-TSE) sequence: TR/TI: 3,000/
20 ms, TE: 20 ms, matrix: 256 × 192, layer thickness: 3 mm, FOV:
90 × 120 mm.

2.5 In-Vitro Evaluations
2.5.1 Cell Culture
The human pancreatic cancer cell line AsPC-1, PaCa-2 and 4T1
breast cancer line were purchased from the Shanghai Cell Bank of
the Chinese Academy of Sciences and cultured in Roswell Park
Memorial Institute 1,640 (RPMI 1640) medium containing 10%
(v/v) foetal bovine serum (FBS) and 1% penicillin/streptomycin.
The cell lines were cultured using regular cell culture conditions
(37°C with 5% CO2).

SCHEME 2 | The removal of hexadecyl trimethyl ammonium bromide and the formation of Gd2O3.

FIGURE 1 | Structural evaluation of Gd2O3@mesoporous silica nanoparticles by (A–C) transmission electron microscopy; (D) dynamic light scattering; and (E) zeta
potential evaluation.
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2.5.2 Cytotoxicity Assay
AsPC-1, PaCa-2 and 4T1 cells were separately plated in 96-well
plates (5 × 103cells/well) with 100 μL of medium and
incubated for 24 h before the culture medium was replaced
with 100 μL of RPMI 1640 supplemented with different
concentrations of Gd2O3@MSN (5, 25, 50, 100, 150 and
200 μg/ml) and incubated for an additional 24 h. The drug-
containing culture medium was then removed and replaced
with 100 μL of fresh medium and 10 μL of CCK-8 and
incubated for 2 h before measuring the absorbance at
490 nm using a plate reader (SAFIRE2, TECAN,
Switzerland). Cell viability was then calculated using the
following equation: Cell viability (%) = (Atreated–Ablank)/
(Acontrol–Ablank) × 100%. where Atreated, Acontrol and Ablank

represent the absorbance of the treated, control and blank
wells, respectively.

2.6 In-Vivo Evaluations
2.6.1 Experimental Animals
Male SPF-grade Sprague–Dawley (SD) rats (180 ± 10 g) were
purchased from Liaoning Changsheng biotechnology Co., Ltd.
(SXK2020-0001) and housed as prescribed. The animal
experiments were approved by the Animal Ethics Committee
of Qiqihar Medical University (No. QMU-AECC-2021-168).

2.6.2 In-Vivo Toxicity Studies
Ten healthy SD rats (180 ± 10 g) were randomly divided into
two groups (five rats in each). The rats were then injected

with 100 mg/kg Gd2O3@MSN or saline. After 7 days, all the
rats were sacrificed and approximately 3 ml of blood was
collected from each rat for blood chemistry evaluations
immediately before being euthanised. Then, the major
organs, namely the heart, liver, spleen, lung, and kidneys,
were harvested from those rats for H&E staining and
histopathological examination (Leica-DM4B digital
microscope, Germany).

2.6.3 In-Vivo Magnetic Resonance Imaging Studies
These experiments were performed using a Philips (Achieva 3.0
T) MRI scanner with 8-channel carotid wall imaging special
phased array coil. Male SD rats were selected for T1-weighted
MRI from each group (n = 3) and injected with Gd2O3@MSN or
Gd-DTPA at 0.5 mg of Gd3+ per kg of body weight. The images
were then produced using a T1 sequence with the following
parameters: TR/TE = 650/10 ms, thickness = 3 mm, 192 × 192
matrices, FOV = 130 × 130 mm and flip angle = 90°. The signal-
to-noise ratio (SNR) for each image was then calculated by
analysing each ROI (in each image). Contrast enhancement
was defined as an increase in SNR after injection using the
following equation:

ΔSNR � (SNRpost − SNRpre)/SNRpre

All image data were transferred to a remote computer for
analysis.

2.7 Statistical Analysis
Nanoparticle size was analysed using the Nano Measure 1.2
software, and SPSS 20.0 (SPSS Inc., Chicago, United States)
was used for data management and statistical analysis
(Student’s t-test for unpaired data). The data are expressed as
the mean ± standard deviation. A p-value of <0.05 is considered
statistically significant and the SNR values were determined using
ImageJ.

FIGURE 2 | (A) Transmission electron microscopy images and (B) Energy dispersive spectrometer spectra of the Gd2O3@mesoporous silica nanoparticles (MSN)
particles; (C) the Gd content in Gd2O3@MSN as determined by Inductively-coupled plasma mass spectrometry.

TABLE 1 | Results of energy dispersive X-ray spectroscopy analysis of the
Gd2O3@mesoporous silica nanoparticles particles.

Location Si (atom.%) O (atom.%) Gd (atom.%)

Red circle 30.53 68.56 0.91
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3 RESULTS AND DISCUSSION

3.1 Preparation and Characterization of
Gd2O3@MSN
Our preparation used CTAB as the template and TEOS as the
main silica source. First, solid silica nanospheres containing the
CTAB template were prepared and then Gd3+ was converted to

Gd(OH)3 in alkaline solution (pH = 9), before being used to coat
the surface of the SiO2 nanospheres. Once the mesoporous silica
shell successfully coated the solid core, the final product was
calcined at 600°C for 6 h to remove the CTAB template and
dehydrate Gd(OH)3 to Gd2O3 (Scheme 2).

Figure 1 described the structural characteristics of the
prepared Gd2O3@MSN. TEM (Figures 1A–C) revealed that

FIGURE 3 | (A) Scanning transmission electron microscopy high-angle annular dark-field images of Gd2O3@MSN nanocomposites and (B–E) Elemental mapping
images of Gd2O3@MSN nanocomposites, confirming that Gd3+ elements were evenly distributed across MSN structure.

FIGURE 4 | (A) Nitrogen adsorption–desorption isotherms. (B) Pore size distribution curves, indicating an average pore size of about 3.49 nm for these Gd2O3@
mesoporous silica nanoparticles.
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these NPs were spherical or ellipsoid in shape and of uniform size
and distribution, and the mean diameter of these NPs was
determined to be 86.85 ± 10.44 nm. Dynamic light scattering
(DLS) curves (Figure 1D) revealed that the average diameter of
the NPs was 162.50 nm, suggesting that the DLS measured these
NPs as slightly larger than the TEM, which might be the result of
the rehydration of the NPs in the aqueous solution used for the
DLS evaluation. As expected, the zeta potential of the MSN was
negative (Figure 1E), whereas the moderate size of these particles
should help avoid renal clearance and uptake to the
reticuloendothelial system (RES) in the liver, which were both
essential for increasing circulation time (Phillps et al., 2010; Koo
et al., 2011; Shao et al., 2011; O’Connell et al., 2017; Jiang et al.,
2019).

The EDS (Figure 2B) spectrum confirmed that the red circle
appearing in Figure 2A indicates Gd-existence with an atomic
fraction of 0.91% (atom.%) Gd (Table 1). ICP-MS (Figure 2C)
determined the overall Gd concentration to be 1.01 (atom. %).
We then investigated the structure of NPs in detail. STEM-

HAADF images (Figure 3A) and EDX elemental mapping
images showed the significant and homogeneous signal of Gd
in MSNs (Figures 3B–E), indicating the Gd3+ elements were
evenly distributed across MSN structure.

Both surface area and pore distribution are critical for
evaluating mesoporous materials; thus, all of the N2

adsorption–desorption isotherms of Gd2O3@MSN using
BJH (Figures 4A,B) were evaluated. The samples exhibit
typical type IV curves with an evident hysteresis loop,
confirming its mesoporous nature (López et al., 2006; Liu
et al., 2015; Philippart et al., 2017; Francesca et al., 2018;
Naseem et al., 2020; Zhou et al., 2020). The BET test results
also suggest that the surface area of the MSN was around
822.96 m2/g, making them much larger than previous versions
of similar compounds (Shao et al., 2011). The average pore size
of these MSN was 3.49 nm and BJH revealed that they
exhibited increased pore volume, 0.72 cm3g−1 compared to
seminal MSN materials.

These structures were then validated using an FT-IR
spectrometer. The FT-IR spectra for these NPs produced
peaks at 801 cm−1 and 455 cm−1 corresponding to Si-OH

FIGURE 5 | Fourier transform infrared refraction spectroscopy of
Gd2O3@mesoporous silica nanoparticles.

FIGURE 6 | Magnetic resonance contrast enhancement analysis of Gd2O3@mesoporous silica nanoparticles (MSN) and Gd-gadolinium diethylene triamine
pentaacetate (DTPA). Analysis of the relaxation rate r1 versus gadolinium ion concentration for Gd2O3@MSN and Gd-DTPA in a 0.5T magnetic field (A); T1-weighted
phantom images produced from Gd2O3@MSN and Gd-DTPA under a 3T field (B); (C) signal-to-noise ratios of Gd2O3@MSN and Gd-DTPA at varying Gd
concentrations.

FIGURE 7 |Cell viability of AsPC-1, PaCa-2 and 4T1 cells as determined
by CCK-8 assay after treatment with Gd2O3@mesoporous silica nanoparticles
(5, 25, 50, 100, 150 and 200 μg/ml).
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stretching, a peak at 1,080 cm−1 corresponding to Si-O-Si
stretching vibration, and a peak at 3,433 cm−1 corresponding
to the absorption bands of the hydroxyl group on MSN surface.
These spectra also included a peak at 1,636 cm−1, corresponding
to the bending vibration of -OH. Taken together, these patterns
were representative of the characteristic absorption peaks ofMSN
materials (Figure 5) (Ni et al., 2016; He et al., 2019; Jiang et al.,
2019; Cai et al., 2020).

3.2 T1 Relaxivity and Gd Stability
The ability of pure Gd2O3@MSN was evaluated to enhance T1
contrast using a 0.5 T NMI20 Analyst NMR system. The mean r1
value (0.5 T) for Gd2O3@MSN was 51.85 ± 1.38 mM−1s−1, which
was much larger than that of Gd-DTPA (4.62 ± 0.43 mM−1s−1)
(Figure 6A). The geometrical confinement of these structures
resulted in an approximately 12-fold increase in the Gd2O3@
MSN r1 value when compared to that of the commercial Gd-
DTPA, which suggested that these MSN could potentially be used
as a T1 contrast agent. The stronger contrast effect may be
attributed to the tuneable pore structure which facilitates ready
access of the water molecules (Parvesh et al., 2012), allowing for
multiple water molecules to be coordinated with each Gd centre,
decreasing Gd rotation within the framework (Lin et al., 2004;
Jiang et al., 2019).

Figure 6B displayed the in-vitro T1-weighted images
obtained using Gd2O3@MSN samples (numbered B1–B11)
produced using different Gd concentrations, with these
images clearly demonstrating that increasing Gd3+

concentration facilitates increased image brightness.
Figure 5B describes similar in-vitro T1-weighted images
using Gd-DTPA (numbered A1–A11) at the same
concentrations (per Gd atom) as the Gd2O3@MSN images.
This data clearly shows a significant increase in brightness in
the Gd2O3@MSN images compared to the Gd-DTPA
(Supplementary Table S1) images at the same
concentration when captured at an MRI intensity of
1972.36 ± 5.57 a. u. (Supplementary Table S2). Next, the
signal-to-noise ratio (SNR) was calculated to evaluate the

contrast enhancement using finely tuned and broadly
representative ROIs within the transverse images. The SNR
for each image was then evaluated using the single image
method described by the American Association of Physicists
in Medicine (AAPM), using the following equation: SNR=
(Scentral–Sbackground)/SD (AAPM Quality, 1990). These
evaluations revealed that the SNR value of the Gd2O3@MSN
images was much higher than that of Gd-DTPA images
(Figure 6C).

Given the documented toxicity of free Gd3+ ions, its stability
was evaluated within these MSN constructs as the first step for
estimating its likely toxicity (Edyta et al., 2019; Lubinda et al.,
2018). This was completed by placing Gd2O3@MSN (Gd3+,
100 mg/L) into PBS at different pH values (7.4, 5.5, and 4.5)
and incubating these solutions for 48 h at 37°C, with both the
pH and temperature designed to emulate various physiological
conditions, including normal blood (pH 7.4), endosomes (pH
5.5) and lysosomes (pH 4.5) (Qi et al., 2019; Zhao et al., 2019).
ICP-MS was then used to detect any free Gd ions in these
solutions (Supplementary Figure S1). These evaluations
revealed that there were very few free Gd3+ ions in any of
these solutions (<1%) suggesting that Gd2O3@MSN was stable
in these simulated in-vitro environments.

3.3 In-Vitro Cytotoxicity Studies
The cytotoxicity of Gd2O3@MSN was estimated using an in-vitro
assay of AsPC-1, PaCa-2 and 4T1 cells (Figure 7). CCK-8 assay
revealed that there was no significant cytotoxicity following 24 h
of exposure to any of the NPs within the described concentration
range, suggesting that these NPs exhibit little toxicity toward
AsPC-1, PaCa-2 and 4T1 cells (p > 0.05).

3.4 In-Vivo Safety Evaluation
Healthy SD rats were treated with a high dose (100 mg/kg) of
Gd2O3@MSN solution via intravenous (i.v.) injection and then
monitored for up to 1 week to assess the in-vivo toxicity of
Gd2O3@MSN. Negligible systemic toxicity or side effects were
observed when using bodyweight measurement as a comparator
(Figure 8) for any of these treatments with all the rats surviving
the full-time course. Next, the main organs (heart, liver, spleen,
lung, kidney) were harvested from these animals 7 days post-
injection and were used to complete the histological assessment
of these tissues using haematoxylin and eosin (H&E) staining.
H&E evaluations revealed no clear changes in any of these
tissues indicating acute (7 days) toxicity in response to Gd2O3@
MSN exposure (Figure 9). A mini blood panel was also used to
evaluate the potential cytotoxic effects of these NPs with all of
the data suggesting the general health of these animals.
(Table 2). These biochemical parameters included glutamic
aspartate transaminase (AST), alanine aminotransferase
(ALT), total bilirubin (T-BIL), blood urea nitrogen (BUN)
and creatinine (Cr), all of which had no significant
differences when compared with the control group (Gd-
DTPA) on day 7 post-injection; thus, confirming that the
primary function of both the kidneys and liver was not
impaired post Gd2O3@MSN treatment. These results confirm
the earlier findings around toxicity and support our hypothesis

FIGURE 8 |Weight changes in rats after 1 week of exposure to Gd2O3@
mesoporous silica nanoparticles. Data are expressed as the mean ± standard
deviation (n = 5).
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FIGURE 9 | Haematoxylin and eosin staining of the heart, liver, spleen, lung and kidneys from (A) Gd- gadolinium diethylene triamine pentaacetate treated
Sprague–Dawley rats, scale bar: 75 μm; (B,C) Gd2O3@MSN treated SD rats, scale bar: 75, 25 μm (7 days post-injection).

TABLE 2 | Blood chemistry results for Sprague–Dawley rats injected with Gd2O3@mesoporous silica nanoparticles (n = 5).

AST (U/L) ALT (U/L) T- BIL
(μmol/L)

BUN (mmol/L) Cr (μmol/L)

Gd2O3@MSN 151.08 ± 22.88 125.61 ± 17.46 0.68 ± 0.13 8.86 ± 1.65 31.32 ± 4.17
Gd-DTPA 142.65 ± 17.52 118.63 ± 16.42 0.72 ± 0.13 9.41 ± 2.01 29.42 ± 3.92

FIGURE 10 | (A) T1-weighted in-vivo magnetic resonance imaging of rats (coronal plane) collected before and 1 h after intravenous injection with Gd-gadolinium
diethylene triamine pentaacetate (DTPA) or Gd2O3@mesoporous silica nanoparticles (MSN) (at a dose of 0.5 mgGd per kg of body weight); (B) Signal-to-noise ratios 1 h
after intravenous injection of Gd-DTPA or Gd2O3@MSN.
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that this NP is well tolerated in living systems (Bong and Jaeyun,
2019; Yuan et al., 2020).

3.5 In Vivo Magnetic Resonance Imaging
Studies
As-prepared contrast materials were injected into healthy SD rats
for in-vivo imaging to evaluate Gd2O3@MSN as an in-vivo MRI
contrast agent. Previous studies have shown that MSN adsorbs
plasma proteins and interacts strongly with the tissue-resident
macrophages in the mononuclear phagocyte system (MPS),
leading to rapid blood clearance and accumulation in the liver
and spleen (Gao et al., 2011; Ekkapongpisit et al., 2012; Li et al.,
2016; Wang and Sun, 2020). Given this, we used the likely
accumulation of our NPs in the hepatic Kupffer cells to
determine our ROIs, focusing on the liver region. T1-weighted
images were collected before and 1 h after injection using a 3.0 T
clinical MRI scanner. Our evaluations revealed that the liver
region exhibited a significantly increased signal in animals treated
with Gd-DTPA and Gd2O3@MSN (Figure 10A) when compared
to the control. However, a comparison of the Gd-DTPA and
Gd2O3@MSN images revealed a distinct increase in the liver
signal from the novel contrast agent group, likely as a result of its
higher r1 value and increased accumulation in the liver due to its
larger size. Next, the signal intensity (SI) was calculated to
evaluate the contrast enhancement via the comprehensive
evaluation of the ROIs in each of the transverse images
(Figure 10B). The ΔSNR value for Gd2O3@MSN was (57.54 ±
6.10)%, which was much higher than that of Gd-DTPA (18.98 ±
1.96)%, confirming the significant improvement in MRI T1
contrast when using Gd2O3@MSN for evaluating the liver.

4 CONCLUSION

To summarize, we successfully designed and fabricated a novel
Gd2O3@MSN contrast reagent by one-step synthesis that
produced a significant improvement in T1 contrast capacity
primarily mediated by the increased geometrical confinement
effect of this product. The one-step synthesis method is easy
and cost-effective, which would be beneficial for the
development of novel MRI contrast agents and for
expanding the potential use of high-performance contrast
agents for MRI and diagnosis.
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