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Abstract

Umbrella trials are an innovative trial design where different treatments are matched with subtypes 

of a disease, with the matching typically based on a set of biomarkers. Consequently, when 

patients can be positive for more than one biomarker, they may be eligible for multiple treatment 

arms. In practice, different approaches could be applied to allocate patients who are positive 

for multiple biomarkers to treatments. However, to date there has been little exploration of how 

these approaches compare statistically. We conduct a simulation study to compare five approaches 

to handling treatment allocation in the presence of multiple biomarkers – equal randomisation; 

randomisation with fixed probability of allocation to control; Bayesian adaptive randomisation 

(BAR); constrained randomisation; and hierarchy of biomarkers. We evaluate these approaches 

under different scenarios in the context of a hypothetical phase II biomarker-guided umbrella 

trial. We define the pairings representing the pre-trial expectations on efficacy as linked pairs, 

and the other biomarker-treatment pairings as unlinked. The hierarchy and BAR approaches have 

the highest power to detect a treatment-biomarker linked interaction. However, the hierarchy 

procedure performs poorly if the pre-specified treatment-biomarker pairings are incorrect. The 

BAR method allocates a higher proportion of patients who are positive for multiple biomarkers to 

promising treatments when an unlinked interaction is present. In most scenarios, the constrained 

randomisation approach best balances allocation to all treatment arms. Pre-specification of an 

approach to deal with treatment allocation in the presence of multiple biomarkers is important, 

especially when overlapping subgroups are likely.
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1 Introduction

Recent years have seen an increasing interest in the development of targeted therapies that 

may provide substantial clinical benefit in specific patient subgroups (e.g., higher response 

rates, longer progression free survival, or improved overall survival). Consequently, the early 

phases of drug development are now more commonly being designed to efficiently learn 

about the utility of experimental therapies for specific patient subgroups. In such precision 

medicine trials, the principal idea is to tailor treatment strategies according to individual 

patient characteristics; often predictive biomarkers. 1,2 In oncology, for example, epidermal 

growth factor receptor (EGFR) and ALK alterations as well as BRAF and HER2 mutations 

are known biomarkers, used to guide the development of targeted treatments in recent and 

ongoing cancer trials. 3–5 These precision medicine trials are commonly implemented using 

an innovative single trial infrastructure and protocol, 6 where multiple sub-studies in a single 

trial can: (a) evaluate multiple treatments within a single disease context (so-called umbrella 

and platform trials); or (b) evaluate a treatment simultaneously in different patient subgroups 

(so-called basket trials).

Our focus here will be on one of these novel approaches: the umbrella trial design. Umbrella 

trials, as noted above, are designed to evaluate multiple interventions (single agent or drug 

combinations) matched with the subtypes of a single disease population. 6,7 For example, 

in the ALCHEMIST umbrella trial of NSCLC patients, two candidate biomarkers define 

the sub-studies: (a) anaplastic lymphoma kinase (ALK) translocations and (b) EGFR. Only 

patients positive for one of the targeted biomarkers received the biomarker linked treatments; 

crizotinib and erlotinib. 3 To date, most umbrella trials have been implemented to investigate 

cancer therapies, 8 owing to significant progress in the identification of tumour genomic 

drivers and the development of molecularly targeted agents. Nonetheless, they have utility 

outside of oncology in settings like rheumatology where subtypes of a chronic disease can 

be targeted by biomarker-guided treatments. 9 

However, one potential concern in the design of umbrella trials is that patients may test 

positive for more than one biomarker that guides which targeted therapy should be received. 

For instance, in attention deficit hyperactivity disorder and autism spectrum disorder, 

multiple biomarkers have been identified with potential to guide treatment, most of which 

co-occur within the same patient. 10 Furthermore, in oncology umbrella trials, multiple 

tumour mutations can co-occur; meaning patients could test positive for more than one 

biomarker that defines the treatment arms. In line with standard enrolment criteria to an 

umbrella trial, such patients are eligible for multiple sub-studies, hence treatment allocation 

for such individuals is not obvious.

In recent umbrella trials, different approaches have been taken to allocating treatments 

to patients with multiple biomarkers. In the Lung-MAP trial, patients eligible for more 

than one subgroup have higher chance to be randomised between eligible sub-studies 

with lower biomarker prevalence (i.e., probability of assignment to a specific sub-study 

is inversely proportional to biomarker prevalence). 11 Precisely, the frequency of overlaps 

between biomarkers is updated during the trial for the different biomarkers and a predefined 

algorithm facilitates enrolment of such patients to trial arms. 12 In the FOCUS-4 trial, the 
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molecular cohorts (BRAF, PIK3CA or PTEN loss, KRAS or NRAS and all wild type) are 

arranged in a hierarchy, such that for example a patient with both a BRAF mutation and a 

KRAS mutation will always be classified into the BRAF mutation cohort. 13 Finally, should 

multiple targeted molecular aberrations be present in the recently proposed PANGEA trial, 

a 9-point pre-specified prioritisation algorithm will be used to allocate these patients, with 

priority given to higher allele frequency (for mutations) or higher gene copy/expression. 4 

Finally, the ISPY2 trial 14 uses a Bayesian adaptive randomisation (BAR) procedure to 

assign patients to treatments. This approach naturally deals with the problem of multiple 

biomarkers as patients are assigned to treatments for which they are most likely to respond.

However, it is noteworthy that in several ongoing or recently published umbrella trials, 

there is limited information on how patients would be allocated to treatments when they are 

positive for multiple biomarkers. This may be attributable to: (a) the fact that no patients 

may have tested positive thus far for multiple biomarkers (see, e.g., the ALCHEMIST 

trial 3 ); (b) there is no knowledge of the best approach to guide the chosen allocation rule; or 

(c) such treatment decisions are left to the trial physician/clinician.

In this work, we seek to address point (2); the fact that it is currently unclear how the 

method used to account for multiple biomarkers will affect the statistical properties of the 

trial. Specifically, in exploring this issue we hope to investigate whether there is a method 

that generally works well in most plausible scenarios. To do this, we conduct a simulation 

study to compare five different possible approaches that have been or could be implemented 

to guide the allocation of patients to treatments in the presence of multiple biomarkers in an 

umbrella trial. We evaluate the operational characteristics of each of these approaches and 

their respective limitations.

2 Methods

2.1 Trial design and allocation strategies

An illustration of the motivating umbrella design for this simulation study is presented in 

Figure 1. For this paper we restrict our focus to a design setting in which there are four 

biomarkers (B 1, B 2, B 3, B 4), four experimental treatments (T 1, T 2, T 3 and T 4), and 

a single control (T 0). Each experimental treatment is linked to a specific biomarker. The 

pairings representing the pre-trial expectations on efficacy are referred to as linked pairs, and 

we suppose that treatment Ti and biomarker Bi are a linked pair for i = 1, …, 4. We refer to 

the other biomarker-treatment pairings as unlinked.

At the start of the trial, patients are screened for each of the four biomarkers. Patients who 

test positive for only one of the biomarkers are eligible for control and the biomarker-linked 

treatment. For patients with multiple biomarkers of interest, one of the different treatment 

allocation strategies explained in detail below is used to allocate them to a treatment arm.

We suppose a maximum of 400 patients are to be recruited over the trial′s duration. The 

primary endpoint in each sub-study is assumed to be common and binary, to reflect the 

typical use of objective tumour response by RECIST in phase II oncology trials. 15 

Ouma et al. Page 3

Pharm Stat. Author manuscript; available in PMC 2022 April 11.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We stipulate that patients who are negative for all the targeted biomarkers are eligible for 

all experimental treatments (plus control), as in a recently proposed adaptive design for 

biomarker trials with linked treatments. 16 Note that this is in contrast to the Lung-MAP trial 

where patients with no targeted biomarker are assigned to a ‘no-match’ sub-group. 11 It is 

further assumed that the prevalence of the biomarkers is well understood, herein assumed 

to be 0.3 for B 1 and B 3 and 0.25 for B 2 and B 4, with positivity for Bi independent of 

positivity for Bj , j ≠ i.

We note that this motivating trial design is a subset of pragmatic umbrella designs that 

could be used in practice, which could either comprise single-arm sub-trials or even where 

biomarker negative patients comprise their own non-match subgroup.

In the simulation study, we evaluate five different approaches to treatment allocation for 

the patients who test positive for multiple biomarkers. Patients who test positive for one 

biomarker are allocated to treatment in the same way across all five methods. Specifically, 

they are equally randomised between the two treatments they are eligible for: the biomarker-

linked treatment and control.

2.1.1 Equal randomisation—In this approach, patients who are positive for multiple 

biomarkers, say Bi and Bj (j ≠ i), have equal probability to be randomised between all 

experimental treatments for which they are eligible, and the control treatment (i.e., Ti , Tj , 
and T 0). This is an easy-to-use approach when the prevalence of patients with multiple 

biomarkers is fairly low and when the relative importance of biomarkers is relatively 

unknown.

2.1.2 Randomisation with fixed probability of allocation to control—This is a 

slightly different version of the equal randomisation procedure. For patients positive for 

multiple biomarkers, the probability of allocation to the control is fixed at θ (0 < θ < 1), and 

the rest of the probability is equally split between experimental treatments for which they are 

eligible. The operational characteristics of this approach are assessed for different values of 

the fixed probability θ.

2.1.3 Hierarchy of biomarkers—In this case, biomarkers are ordered by their relative 

importance. Without loss of generality, we assume that the hierarchy is B 1, B 2, B 3 and 

B 4 where B 1 is anticipated to be the most predictive of treatment response. If a patient 

is positive for two biomarkers, say Bi and Bj (i < j), with a probability ρ (0.5 ≤ ρ ≤ 1) 

such patients would be randomised equally between Ti and T 0, and with probability 1 – ρ 
they are randomised equally between Tj and T 0. If a patient is positive for more than two 

biomarkers, say Bi , Bj , and Bk (i < j < k), with probability ρ they are randomised equally 

between Ti and T 0, and with probability 1 – ρ they are randomised equally between Tj , 
Tk , and T 0. A similar statement holds for those patients positive for all four biomarkers. 

Here, the choice of ρ indicates the level of confidence in the pre-specified hierarchy. The 

special case when ρ = 1 corresponds to complete belief; this has been used in practice in the 

FOCUS-4 trial. A hierarchy approach may be particularly useful when the hierarchy reliably 

reflects the predictability of such biomarkers. However, this procedure can only be employed 

when a plausible hierarchy of biomarkers has been set up by the trial investigators.
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2.1.4 Constrained randomisation—This approach prioritises the allocation to a 

treatment arm with a lower patient accrual (with probability 0.5 ≤ ϕ ≤ 1), when patients 

are positive for more than one biomarker and thus eligible for multiple biomarker-linked 

treatments. That is, if a patient is positive for two biomarkers, say Bi and Bj (j ≠ i), and 

ni and nj patients have been allocated thus far to the respective treatment arms Ti and Tj , 
then with probability ϕ such a patient would be randomised equally between control and 

treatment Ti (Tj ) for ni < nj (nj < ni ). When ϕ = 1, if ni and nj patients have been allocated 

to treatment subgroups Ti and Tj respectively, a patient positive for biomarkers Ti and Tj is 

always allocated to subgroup Tj if nj < ni at that allocation time point. This approach is likely 

to be advantageous in scenarios when accrual to certain arms may be low during the trial.

2.1.5 Bayesian adaptive randomisation—BAR assigns patients to the most 

promising treatment (or combination of treatments) on the basis of accumulating data as 

the trial proceeds. We base our considered BAR procedure on that previously proposed by 

Wason et al 16 modifying this method in two ways: (a) in the first stage, our method initiates 

with the equal randomisation procedure described above; (b) allocation probabilities are 

updated at interim analyses to guide treatment allocation in later stages for patients with 

multiple biomarkers only. Patients with a single biomarker are eligible only for the linked 

experimental treatment or control throughout the trial.

The BAR procedure is embedded with four interim analyses, to allow adaptations that utilise 

accruing information to allocate patients with multiple biomarkers to appropriate treatment 

arms. We allow no interim analysis for the other four approaches as those do not involve 

any adaptation. More precisely, the BAR design is implemented with interim analyses after 

100, 175, 250 and 325 patients have been recruited, as previous work has shown that 

there is diminishing returns for a higher number of interim analysis. 17 At each interim 

analysis, a Bayesian equivalent of the logistic regression model below is fitted to estimate 

the probability of response. The final analysis is still performed in a frequentist framework.

For all of the parameters of the Bayesian model, we specify uninformative uniform prior 

distributions U(−10, 10). While it is theoretically possible to use informative priors for 

linked biomarker-treatment interaction parameters, we do not focus on this here so as to 

provide a more broadly applicable perspective.

2.2 Hypothesis testing

Denoting the treatment response of patient i by Yi , we assume Yi ~Bern(pi ). A logistic 

regression model is fitted to evaluate pi , the probability of response, as a function of the 

treatment effects, biomarker effects, and interactions between biomarkers and treatments:

log pi
1 − pi

= α + ∑
k = 1

K
Tikβk + ∑

l = 1

K
χilγl + ∑

k = 1

K
∑

l = 1

K
Tikχilδkl . (1)

Here K = 4 is the number of experimental treatments; α is an intercept term (i.e., the 

log-odds of treatment response for a patient positive for no biomarkers allocated to control); 

Tik takes the value 0 or 1 representing whether patient i is allocated to treatment k; βk 
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represents the main effect of treatment k; xil takes the value 0 or 1 representing whether 

patient i is positive for biomarker l; γl represents the main effect of biomarker l; and δkl is 

the interaction effect between treatment k and biomarker l.

A total of K(K + 1) = 20 hypotheses are to be tested; of interest is whether an experimental 

treatment provides benefit over control among patients positive for a given biomarker. 

Thus, we perform a one-sided test (at 5% significance level) of the null hypothesis that 

experimental treatment k provides no benefit over control in patients positive for biomarker l 
for all k and l:

H0
k, l :

βk + δkl ≤ 0 if l > 0,
βk ≤ 0 if l = 0.

For identifiability of the model we specify δkk = 0.

The probability of treatment k being identified as better than control in biomarker population 

l is referred to in general as ‘statistical power’ (i.e., the probability H0
k, l

 is rejected is the 

statistical power for treatment k in biomarker group l). When we refer to a type I error, this 

corresponds to the probability of a treatment being determined to be better than control in 

a particular biomarker population when in fact this is not the case (i.e., the probability a 

particular H0
k, l

 is rejected when this hypothesis is true). We do not consider the family-wise 

error-rate.

The code to implement this simulation study (using R version 3.6.3 and JAGS) is available 

on GitHub (https://github.com/oondijo/multipleBiomarkers).

3 Results

We simulated 10,000 virtual trials for each of the five treatment allocation approaches 

under 12 different simulation scenarios (see Supporting Information). As shown in Table 

S1, these simulation scenarios are for various configurations of values for βk and δkl , 
that is, the treatments being (in)effective and whether there exists a treatment-biomarker 

interaction. More specifically, they include cases where the biomarker-linked treatments 

work as expected, and where the anticipated biomarker-treatment interactions are incorrect 

but instead an unanticipated unlinked treatment works. The true parameter values were 

chosen to guarantee at least 80% power for all the treatment allocation approaches when a 

true treatment-biomarker interaction exists.

For the hierarchy, constrained randomisation, and randomisation with fixed allocation 

probability to control approaches, we additionally examined the operational characteristics 

by varying the allocation probabilities ρ, ϕ and θ; specifically, we considered ρ = 

0.5,0.75,0.9, ϕ = 0.5,0.75,0.9, and θ = 0.2,0.25,0.3. The simulation study evaluated various 

operating characteristics of the different approaches, including: statistical power and the 

average number and proportion of (a) patients on an experimental treatment; (b) patients on 
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the best treatment available to them; (c) patient responses; (d) patients on each treatment; 

and (e) bias and mean squared error (MSE).

3.1 Patients on treatment

Table 1 shows the proportion of patients on an experimental treatment (i.e., not on the 

control) on average. The constrained randomisation approach allocates the highest number 

of patients to experimental treatments (at least 80%). This is unsurprising as this procedure 

mirrors the minimization approach where at any stage of the trial, patients are preferentially 

allocated to treatment arms that have accrued fewer number of patients. Only the approach 

of randomisation with fixed probability of allocation to the control (when θ = 0.2) posts 

similar results. Overall, the hierarchy approach allocates the smallest proportion of patients 

to experimental treatment on average, although this increases as the degree of belief on 

the validity of the hierarchy increases. This is reasonable: in a hierarchy approach, patients 

are increasingly randomised between the control and the biomarker-linked treatment that is 

most important (or most predictive of a good response) from the pool of biomarker-linked 

treatments that they are eligible for.

3.2 Patients on the best treatment available to them

In Table 2, we report the proportion of all patients on the best treatment available to them, 

whenever there is a biomarker-linked treatment superior to the rest; here, ‘superior’ means 

the treatment induces a higher pi . In scenario 1, all experimental treatments have the same 

effect as the control, hence none of the treatments is considered superior. In such a case, 

patients receiving an experimental treatment, or the control would have equal probability of 

a good outcome. In scenario 2, T1 induces the highest probability of response for biomarker 

profiles P9-P14, hence the best treatment among the pool of treatments they are eligible for 

(Figure S1).

For the BAR treatment allocation strategy, we evaluated this characteristic in a slightly 

different fashion, assessing the number of patients on the best treatment on average at each 

stage of the trial. We illustrate graphically in the Figure S1 what is meant by the best 

treatment for each biomarker profile and across all simulation scenarios.

When there is an interaction between a linked pair (scenario 2), the randomisation approach 

with fixed allocation probability to control (θ = 0.2) allocates the highest proportion of 

patients to the best treatment available to them. In other scenarios, such as when there 

is an interaction between an unlinked pair (scenario 3), all approaches perform poorly in 

assigning patients to the best treatment (approximately 2%).

The BAR method outperforms the alternative approaches whenever a linked treatment has 

a detrimental effect on patients, for whom a treatment benefit was anticipated. In scenario 

4, when T 1 has a detrimental effect on biomarker 1 positive patients, at least 90% of the 

patients are allocated to the best treatment that is available for them. This is because it makes 

use of accruing trial data to allocate patients to treatments that are better for them as the trial 

progresses.
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3.3 Statistical power

Table 3 provides a summary of how the statistical power varies across these treatment 

allocation approaches. When there is a positive interaction between a biomarker and its 

linked treatment (in scenarios 2, 8 and 12), the BAR and hierarchy approaches have the 

highest statistical power compared with the alternative allocation strategies. The allocation 

strategies of equal randomisation and randomisation with fixed allocation probability to the 

control have low absolute differences in power (between 2 and 4%) relative to the best 

two approaches in detecting a linked interaction. For the hierarchy procedure, this tends 

to be particularly advantageous when the specified hierarchy correctly reflects the validity 

of biomarkers. This is evidenced by results in scenarios 2, 8 and 12 where patients have 

high chance of being allocated to the most promising biomarker-linked treatment among 

all available ones (ρ = 0.9). When the probability of the specified hierarchy being correct 

reduces to 50%, we observe losses in power (around 3–5%) for the three scenarios above 

(see Table S6).

In scenario 3, when there is an unanticipated interaction between T 1 and B 2, the hierarchy 

approach still performs better than the alternative approaches. This is because patients who 

test positive for both B 1 and B 2 would be allocated to T 1 following the specified hierarchy. 

Nevertheless, we observe a considerable decrease in power, compared to scenarios with a 

linked pair where the specified hierarchy is plausible. By contrast, when it is the other way 

around and T 2 works in B 1 patients (scenario 10), the hierarchy procedure leads to the least 

satisfactory performance. In such a case, the constrained randomisation procedure seems to 

work better, although comparatively it has the lowest power for detecting a linked interaction 

(at least 72%, with differences in power of between 7 and 10% compared to the BAR and 

hierarchy procedures).

We further examined how the statistical power of the five treatment allocation strategies to 

recommend T 1 in B 1 positive patients (scenario 2) varies as: (a) the prevalence of B 1 varies 

between 0.1 and 0.5 and (b) the overall sample size changes from 200 to 1000 in increments 

of 50. The results presented in Figure 2A, B indicate that the statistical power of all the 

five approaches strongly relies on both the sample size and the biomarker prevalence. All 

the treatment allocation strategies have less than 50% power when the prevalence of B 1 

is 0.1, but this increases to 80–90% as the prevalence approaches 0.5. Notably, the relative 

performance of each method to one another remains constant as we vary prevalence and 

sample size.

3.4 Patient response and treatment allocation

We provide in the Supporting Information results showing the overall patient allocation 

and patient response in each of the different treatment arms. The results show that the 

constrained randomisation procedure allocates on average a higher proportion of patients 

to experimental treatments. This is because this approach mirrors a minimization procedure 

where treatment arms that have accrued fewer patients are prioritised in the event a patient is 

eligible for multiple treatments.
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3.5 Bias and mean square error

We additionally compare the five treatment allocation approaches in terms of bias and MSE 

of their point estimators (posterior means) for the treatment effects. Figure 3 shows all 

approaches produce reasonable bias in all scenarios. The BAR approach produces larger bias 

and the smallest MSE across most scenarios. On the other hand, point estimators based on 

CR have slightly higher variability (and MSE in scenarios 1, 2 and 8) compared to Hier, ER, 

RFAC and BAR.

4 Discussion

Umbrella trials offer the promise of answering multiple treatment-related questions within 

a single disease setting, but are accosted by challenges that play an important role in their 

design. In this paper, we have compared five different approaches to allocate treatments to 

patients in an umbrella trial in the presence of multiple biomarkers. We have considered a 

trial design where the prevalence of each biomarker, and the overlaps, is known at the design 

stage, and that prior to trial initiation there is substantial evidence for experimental treatment 

benefit in biomarker linked subgroups.

Our simulation results show that the approaches of pre-specifying the hierarchy of 

biomarkers and BAR have the highest power to detect a linked interaction. The performance 

of the hierarchy approach is however dependent on the degree of belief on the validity of 

the pre-specified hierarchy of biomarkers. In practice, a hierarchy approach such as the one 

previously suggested in the FOCUS4 trial 18 assumes that the hierarchy of biomarkers is 

entirely correct, a special case of what we have evaluated in our study. We note, however, 

that there may be a degree of uncertainty in this pre-specified hierarchy. This uncertainty 

may increase when the hierarchy consists of several biomarkers and/or there is insufficient 

evidence to quantify the level of importance of a given set of biomarkers. The choice of the 

degree of belief on the hierarchy is information that could be elicited from experts prior to 

the design of a trial.

Although the BAR approach has been used in recent trials (e.g., in the recent BATTLE 

trials 19 ), it has not been explicitly used to guide treatment allocation for patients with 

multiple biomarkers only. The approach we use here is slightly different from a previously 

proposed linked-BAR approach 16 where BAR was used to guide treatment allocation for all 

patients. Unlike the hierarchy approach, the BAR method is more robust to the biomarker 

ordering being invalid. As expected, we note that the BAR approach yields comparatively 

larger bias in point estimators than non-adaptive randomisation approaches as shown in 

previous simulation studies. 20,21 Our simulation results show that BAR is a particularly 

beneficial approach when a treatment delivers an unanticipated detrimental effect, as it 

allows mid-trial modifications to enable more patients with multiple biomarkers to be 

allocated to promising treatments. Its limitation is that setting up a BAR approach requires 

prior knowledge about how this procedure works and specification of plausible parameter 

estimates.

The approaches of equal randomisation and randomisation with fixed allocation probability 

to the control are conceptually similar. They both have comparable power to BAR except 
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when there is an interaction between an unlinked pair. When recruitment to certain 

treatment(s) is low, the constrained randomisation approach shows the most promising 

results in balancing allocation to treatment arms. However, if low accrual is attributed to a 

lower than anticipated biomarker prevalence, this approach should be considered carefully.

Ultimately, none of the approaches we have considered is optimal in all settings. The choice 

of an approach may considerably influence the operational characteristics of a trial and 

should be considered carefully. For instance, the equal randomisation approach maintains 

reasonable statistical properties in most scenarios and is easy to use in practice, but when 

a substantial proportion of patients test positive for multiple biomarkers, it may not be 

the most reliable approach. In such cases, the hierarchy or BAR approaches often perform 

better, although for the former the biomarker hierarchy should be supported by reliable 

clinical evidence.

In practice, there may be uncertainty in the estimate of true prevalence of the overlaps when 

there are several biomarker-defined subgroups. This may warrant the use of an approach that 

accommodates use of accruing trial data to update the prevalence of overlaps, such as in 

the LUNG-MAP umbrella trial. 11 We further acknowledge that there could be variations to 

our motivating trial design. For example, biomarker negative patients may comprise either a 

non-match subgroup or could be entirely excluded from the trial. In certain disease settings 

such as oncology, the control treatment may even be different in the various subgroups.

Our findings are, however, readily applicable to settings where umbrella trial arms are not 

necessarily biomarker-defined, though the subgroup defining characteristic defines which 

treatment a patient receives. An example could be an umbrella trial in the neurological 

disorders setting, several of which such disorders can co-occur within the same patient and 

share common symptoms. Although we have only focused on binary biomarkers, our results 

may also be relevant in the context of continuous markers, which are often handled through 

dichotomisation.

Our comparison of methods is also constrained by non-statistical issues. Multiple 

biomarkers can occur at a high and low frequency respectively. In other contexts, two 

biomarkers may be mutually exclusive, or a particular biomarker may be present if and 

only if a certain other biomarker is present. Another potential concern is intra-patient 

heterogeneity, where a patient's biomarker profile may change over the trial duration. In such 

cases, some trials like the PANGEA-BBP trial 4 propose sequential biopsy and treatment 

reassignment, which ultimately may help deal with the problem of multiple biomarkers.

We conclude that in the design of an umbrella trial, when patients are likely to test positive 

for multiple biomarkers, it is important to pre-specify an approach that allows optimal 

treatment allocation. This needs to be considered in the context of the trial sample size, 

prevalence of the biomarkers, and prevalence of individual overlaps within the patient 

population.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustrative schema of the motivating umbrella design, wherein several treatment 
allocation strategies are assessed
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Figure 2. 
Statistical power of the five-treatment allocation approaches as (A) biomarker prevalence 

and (B) sample size varies under scenario 2
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Figure 3. Bias and mean squared error of the point estimate for δ11 based on the five treatment 
allocation approaches
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Table 1
Average proportion of patients on experimental treatment

Equal randomisation Proportion (range) 63.9% (52.7–72.5)

Randomisation with fixed allocation probability to control θ = 0.2 80.0% (71.2–87.5)

θ = 0.25 75.0% (66–83)

θ = 0.3 70.0% (60.5–78.8)

Hierarchy ρ = 0.5 64.5% (54.8–72.7)

ρ = 0.75 57.3% (47–66.3)

ρ = 0.9 52.9% (43.7–62.5)

Constrained randomisation ϕ = 0.5 79.0% (72–80.5)

ϕ = 0.75 79.8% (78.8–80.2)

ϕ = 0.9 79.9% (79.3–80.2)

BAR 62.6% (54-70.3)

Abbreviation: BAR, Bayesian adaptive randomisation.
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Table 2
Average proportion of patients on the best treatment available to them

RFAC Hierarchy CR

Scenario ER θ = 0.2 θ = 0.25 θ = 0.3 ρ = 0.5 ρ = 0.75 ρ = 0.9 ϕ = 0.5 ϕ = 0.75 ϕ = 0.9 BAR

Scenario 2 11.5 16.0 15.0 14.0 10.4 12.7 14.0 14.6 14.5 14.3 9.3

Scenario 3 2.1 2.5 2.3 2.2 1.9 2.7 3.3 2.2 2.3 2.4 3.2

Scenario 4 17.5 13.1 14.0 14.8 18.5 16.8 15.6 14.3 14.6 14.8 90.6

Scenario 8 9.3 13.5 12.7 11.8 8.6 9.9 10.7 12.4 12.1 11.9 9.4

Scenario 9 12.9 8.8 9.6 10.4 13.6 12.5 11.7 9.9 10.2 10.4 15.3

Scenario 10 15.4 11.6 12.3 12.9 16.8 14.7 13.9 12.9 13.3 13.5 52.3

Scenario 11 17.0 21.5 20.1 18.8 17.3 23.0 26.4 19.8 20.0 20.0 14.7

Scenario 12 17.0 21.5 20.1 18.8 17.3 23.0 26.4 19.8 20.0 20.0 9.4

Note: We exclude scenario 1 as there is no ‘best’ treatment in this case. All treatments induce equal probability of response as control.
Abbreviations: BAR, Bayesian adaptive randomisation; CR, constrained randomisation; ER, equal randomisation; RFAC, randomisation with fixed 
allocation probability to control.
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Table 3
Comparison of the statistical power for each of the simulation scenarios

Scenario

Treatment 
allocation 
approach

Recommend T1 
in B1+

Recommend T1 
in B2+

Recommend T2 
in B1+

Scenario 1: All Tx have same effect as control
ER a 5.24% 5.35% 5.22%

RFAC a 4.98% 4.95% 5.27%

Hierarchy a 5.07% 5.61% 1.51%

CR a 4.98% 4.98% 5.41%

BAR a 4.98% 4.22% 4.34%

Scenario 2: T1 works in B1+ only ER 79.31% 3.95% 5.22%

RFAC 78.0% 4.10% 5.27%

Hierarchy 82.57% 5.21% 1.51%

CR 72.78% 4.15% 5.41%

BAR 82.74% 5.18% 4.59%

Scenario 3: T1 works in B2+ only ER 5.24% 33.58% 5.22%

RFAC 4.92% 32.13% 5.27%

Hierarchy 5.12% 49.61% 1.51%

CR 4.66% 33.21% 5.41%

BAR 5.05% 41.09% 5.38%

Scenario 4: T1 has detrimental effect in B1+ ER 0.05% 3.78% 5.22%

RFAC 0.02% 4.38% 5.27%

Hierarchy 0.01% 4.40% 1.51%

CR 0.01% 4.56% 3.79%

BAR 0.00% 4.07% 4.50%

Scenario 8: T1 benefits B1+ and harm in B2+ ER 78.96% 0.16% 5.22%

RFAC 78.17% 0.27% 5.27%

Hierarchy 81.94% 0.09% 1.51%

CR 72.65% 0.17% 5.41%

BAR 81.44% 0.002% 3.86%

Scenario 9: T1 benefits B2+ and harm in B1+ ER 0.02% 24.15% 5.22%

RFAC 0.02% 26.02% 5.27%

Hierarchy 0.01% 34.74% 1.51%

CR 0.02% 26.43% 5.41%

BAR 0.00% 40.0% 3.43%

Scenario 10: T1 harms B1+, T2 provides benefit in B1 ER 0.05% 3.78% 33.1%

RFAC 0.02% 4.38% 32.34%

Hierarchy 0.01% 4.40% 3.90%

CR 0.01% 4.74% 39.77%

BAR 0.00% 5.69% 27.04%

Scenario 11: T1 provides some benefit for all ER 11.89% 8.06% 5.22%
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Scenario

Treatment 
allocation 
approach

Recommend T1 
in B1+

Recommend T1 
in B2+

Recommend T2 
in B1+

RFAC 10.74% 7.71% 5.27%

Hierarchy 11.80% 9.76% 1.51%

CR 10.25% 7.73% 5.41%

BAR 10.52% 4.11% 8.48%

Scenario 12: Same as 11, works for B1+ ER 89.97% 5.85% 5.22%

RFAC 89.30% 6.10% 5.27%

Hierarchy 92.32% 8.65% 1.51%

CR 85.20% 6.58% 5.41%

BAR 92.24% 4.38% 6.34%

Note: RFAC, Hierarchy and CR evaluated at θ = 0.3; ρ = 0.9; ϕ = 0.75 respectively (as defined in section 3.2). Simulations using different values of 
⊖, ρ and ϕ have been done but not presented here.
Abbreviations: BAR, Bayesian adaptive randomisation; CR, constrained randomisation; ER, equal randomisation; RFAC, randomisation with fixed 
allocation probability to control.

a
Type I error rate.
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