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Abstract: Prostate cancer (PCa) accounts for a high number of deaths in males with no available
curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack
of symptoms in the early stages. Recently, the research focus was directed toward gene editing in
cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for
gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy
is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation
and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents.
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However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date,
various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are
of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in
the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for
the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa
cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to
direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and
perhaps other cancer types.

Keywords: small interfering RNA (siRNA); prostate cancer; gene therapy; nanoparticle; delivery systems;
cancer therapy

1. Introduction

Prostate cancer (PCa) is one of the leading causes of death in men worldwide and takes the second
place for incidence and fifth place among cancer-related deaths in men [1]. Annually, 1.3 million
new cases are diagnosed with PCa, out of which 359,000 cases result in death [2]. In the United
States of America, approximately 174,650 new cases were diagnosed in 2019 alone [3,4]. PCa affects
30% of men over 50 years of age with only 10% of cases showing clinically significant symptoms [5].
Surgery, radiotherapy, chemotherapy, and hormone therapy are common therapeutic strategies in
PCa therapy [6]. When PCa recurrence occurs or when patients with PCa are diagnosed with
advanced stages, main therapy becomes androgen ablation using luteinizing hormone releasing
hormone (LHRH) agonists and antagonists and/or anti-androgen receptors (ARs) [7,8]. It is noteworthy
that patients with PCa typically develop metastatic castration-resistant prostate cancer (mCRPC) [9].
Although patients with mCRPC can be treated with chemotherapeutic agents such as taxanes,
immunotherapy, radiotherapy, or hormone therapy, these treatments can only improve the survival
rate of patients by 2–4 months [10,11]. In addition to the aforementioned issues, PCa cells develop
resistance to radiotherapy and chemotherapy, causing a clinical relapse [12–15].

This calls for extensive research into PCa to shed light on the number of strategies that can target
PCa more effectively. The positive aspects are that the prostate is a nonvital organ and amenable to the
use of tissue-specific antigens. Due to the fact that PCa is small in size and not very deep in the body,
it provides excellent antibody access and penetration. mCRPC clinically manifests in lymph nodes and
bones with high levels of circulating antibodies, making its detection easy. Finally, the prostate-specific
antigen (PSA) serum marker allows the early detection of metastatic PCa [16]. Since PCa lacks clinical
symptoms in early stages, its definitive detection depends on prostate biopsy, alterations in PSA
levels, and/or digital rectal examinations (DRE) [17]. Research so far shows that cell-surface proteins,
glycoproteins, receptors, enzymes, and peptides are considered as targets in PCa therapy [18–20].

Understanding molecular pathways involved in PCa malignancy is key to effective treatment
and targeting. Studies published in recent years focused on revealing identified molecular signaling
pathways. The common theme in these studies is that tumorigenesis emanates from an alteration in
the normal expression of onco-suppressor or oncogene factors [21,22]. Regardless of how we deal with
gene expression changes, expanding our knowledge of upstream and downstream genetic mediators
can pave the way in cancer therapy [23,24]. Effective cancer therapy not only depends on finding the
specific biomarkers, but also understanding intermediary regulators [25–27]. Such understanding can
facilitate the process of cancer therapy and finding novel cures. As evidenced by most current research
findings, PCa cells show malignant properties at advanced stages and metastasize. Accumulating
data demonstrate that the Wnt signaling pathway partially participates in metastasis. In eradication
of metastatic PCa, Wnt5A ligand or its downstream targets such as Frizzled (FZD) receptors (FZD4
and FZD8) and c-Jun N-terminal kinase (JNK) pathway may be targeted [28]. Notably, there are
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factors that can function as upstream mediators of Wnt in PCa. Activation of keratin 5 (KRT5)
can inhibit the Wnt signaling pathway, resulting in inhibition of growth and invasion of PCa cells.
The KRT5 gene is a downstream target of onco-suppressor microRNA (miR)-601, suggesting that the
miR-601/KRT5/Wnt axis can be targeted in future studies for inhibition of PCa [29]. More importantly,
miRs can be considered as downstream targets of long non-coding RNAs (lncRNAs) in PCa. For instance,
lncRNA LINC00665 and PROX1-AS1 can respectively target miR-1224-5p and miR-647 in enhancing
the malignant tendencies of PCa cells [30,31]. These studies are in line with the fact that dynamic and
complex molecular pathways are involved in Pca malignancy [32]. Some of them are oncogene factors
participating in increasing progression and malignancy of cancer cells, while others are onco-suppressor
factors that can be regulated in the treatment of PCa [33–36]. The result of revealing the role of these
pathways is an opportunity for the development of anti-tumor compounds in PCa therapy as confirmed
by onco-suppressor studies [37]. For instance, ursolic acid can limit the progression and proliferation of
PCa cells via upregulation of onco-suppressor gene PTEN, while quercetin suppresses the malignancy
of PCa cells through downregulation of oncogene PI3K/Akt [38,39]. Despite these developments,
PCa treatment remains increasingly challenging for clinicians, suggesting the need for further research.
In the current review, we discusse one of the major efforts in PCa treatment using small interfering
RNA (siRNA) tools. We then expand our discussion toward using nanoparticles for targeted delivery
of siRNA in PCa therapy and suggest the exploration of their potential in other cancer types.

2. siRNA Structure and Function: A Brief Overview

Over the past decades, we witnessed a close relationship between the field of molecular biology
and medicine, with molecular biologists having interests in developing novel strategies in the treatment,
prevention, and management of cancer (Figure 1) [40–50]. One of the most important discoveries
made by molecular biologists is the introduction of RNA interference (RNAi), enabling the targeting of
certain genes in the treatment of cancer [51]. Among the various kinds of RNAi tools, miRs and siRNAs
are of importance in cancer therapy [52]. There are a number of differences between miRs and siRNAs.
The first difference is that miRs are formed endogenously from non-coding RNAs, while siRNAs are
produced by exogenous long double-stranded RNAs (dsRNAs) [53,54]. The transportation of miRs
during their biogenesis on the route of the nucleus to the cytoplasm is performed via importin 8 (IPO-8).
Using siRNA-IPO8 enables us to suppress miR activation via inhibiting its translocation [55]. It is
worth mentioning that a characteristic cellular machinery is involved in the formation of siRNAs from
exogenous short hairpin RNA precursors. These kinds of siRNAs are able to effectively silence target
genes [56]. Structurally, an siRNA is a double-stranded RNA molecule with 21–23 nucleotides in each
strand [57]. After binding to the RNA-induced silencing complex (RISC) in the cytoplasm, the sense
strand of siRNA undergoes cleavage and ejection, while the antisense strand of siRNA targets the
complimentary messenger RNA (mRNA) thermodynamically. From this point, two distinct events
occur. The partial hybridization of antisense strand of siRNA with the target mRNA leads to inhibition
of translation, while perfect complementary hybridization results in mRNA degradation [58–61].
This demonstrates that siRNA exerts an inhibitory effect on the expression of the target gene.
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Figure 1. The biogenesis of some types of non-coding RNA. (a) Biogenesis of microRNA with at least 
one hairpin. (b) The biogenesis of small interfering RNA (siRNA) derived from short hairpin RNA 
(shRNA). (c) Biogenesis of long non-coding RNAs (LncRNAs) transcribed in the genome. (d) 
Biogenesis of circular RNA (circRNA) mostly derived from pre-messenger RNAs (mRNAs). miRNA, 
micro RNA; pri-miRNA, primary micro RNA; pre-miRNA, precursor-miRNA; shRNA, small hairpin 
RNA; siRNA, small interfering RNA; LncRNA, long non-coding RNA; CircRNA, circular RNA [62]. 

Due to the capability of siRNA in reducing the expression of target genes, studies focused on 
using siRNA in the downregulation of oncogene pathways in cancer therapy. As an example, 
pyruvate kinase is a rate-limiting enzyme participating in glycolysis for the conversion of 
phosphoenopyruvate (PEP) and ADP to pyruvate and ATP. Four isoforms of pyruvate kinase exist 
and, among them, PKM2 is of interest in effective cancer therapy because of its critical role in 
enhancing the proliferation and invasion of cancer cells [63–66]. Recently (2020), an effort was made 
to knock down PKM2 using siRNA. The results are in agreement with the reduced growth of cancer 
cells due to downward regulation of oncogene factor PKM2 [67]. The nuclear factor kappa B (NF-κB) 

Figure 1. The biogenesis of some types of non-coding RNA. (a) Biogenesis of microRNA with at least
one hairpin. (b) The biogenesis of small interfering RNA (siRNA) derived from short hairpin RNA
(shRNA). (c) Biogenesis of long non-coding RNAs (LncRNAs) transcribed in the genome. (d) Biogenesis
of circular RNA (circRNA) mostly derived from pre-messenger RNAs (mRNAs). miRNA, micro RNA;
pri-miRNA, primary micro RNA; pre-miRNA, precursor-miRNA; shRNA, small hairpin RNA; siRNA,
small interfering RNA; LncRNA, long non-coding RNA; CircRNA, circular RNA [62].

Due to the capability of siRNA in reducing the expression of target genes, studies focused on using
siRNA in the downregulation of oncogene pathways in cancer therapy. As an example, pyruvate kinase
is a rate-limiting enzyme participating in glycolysis for the conversion of phosphoenopyruvate (PEP)
and ADP to pyruvate and ATP. Four isoforms of pyruvate kinase exist and, among them, PKM2 is
of interest in effective cancer therapy because of its critical role in enhancing the proliferation and
invasion of cancer cells [63–66]. Recently (2020), an effort was made to knock down PKM2 using siRNA.
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The results are in agreement with the reduced growth of cancer cells due to downward regulation
of oncogene factor PKM2 [67]. The nuclear factor kappa B (NF-κB) is another oncogene signaling
pathway involved in the growth and invasion of cancer cells [68]. It appears that downregulation
of NF-κB using siRNA can pave the way to the eradication of melanoma cancer cells, while also
suppressing their metastasis [69]. In addition to the NF-κB signaling pathway, Aurora-A can be targeted
in restricting the metastasis of cancer cells. The inhibition of Aurora-A using siRNA is correlated with
a decrease in migration and invasion of cancer cells [70]. B-cell lymphoma 2 (Bcl-2) is a key protein of
apoptosis with pro-survival roles. The upregulation of Bcl-2 in cancer cells occurs via the inhibition of
apoptosis [23]. Silencing of Bcl-2 using siRNA induces apoptosis in cancer cells and diminishes their
proliferation [71]. Thus, we are increasingly witnessing the potential of siRNA in cancer therapy and
how siRNA treatment can be used as a tool to accelerate our pace in the treatment and eradication of
cancer(s) [72]. A study was conducted on using siRNA tools in the treatment of cancer patients. In this
study, CALAA-01 was administered to 24 patients. CALAA-01 is a polymer-based nanoparticle having
siRNA. It was found that elimination of CALAA-01 from the body depends on weight. Notably, it was
well tolerated in humans, and there was no associated toxicity [73]. This study confirmed that (1) siRNA
and its encapsulation by nanoparticles can be applied in clinical trials, (2) nanoscale-mediated siRNA
delivery is biocompatible, and (3) animal models can predict the behavior of siRNA-based technologies
in human. In the next section, we specifically discuss the efficacy of siRNAs in the treatment of PCa
and in improving the prognosis of patients with this disease.

3. siRNA Targets Signaling Pathways: Focus on PCa Therapy

Apart from gene expression dysregulation, mutations in genes can also result in the development
and progression of PCa. In this way, siRNA can be beneficial via targeting signaling pathways
involved in the malignancy of PCa cells. As a transcription factor, special AT-rich sequence-binding
protein 1 (SATB1) functions in histone modification regulation and modulation of gene expression
(Figure 2) [74]. A variety of studies demonstrated that SATB1 undergoes upregulation in various
cancers, and it is correlated with migration, proliferation, and unfavorable prognosis [75,76]. Thus,
targeting SATB1 is of importance in PCa therapy. It was shown that downregulation of SATB1 using
siRNA can pave the way for a reduction in growth, proliferation, and metastasis of PCa cells [77].
The siRNA-mediated Bcl-xL downregulation potentiates the inhibitory effect on the malignancy
and growth of PCa cells [78]. Another example of successful siRNA treatment is the tripartite
motif-containing protein 24 (TRIM24), a carcinogenesis factor capable of enhancing progression and
viability of different cancers [79,80]. The strategy is based on suppressing TRIM24 in cancer therapy [81].
The treatment is based on in vitro and in vivo experiments showing that TRIM24-siRNA is effective in
the eradication of PCa cells. This is because, upon downregulation of TRIM24, a decrease is observed in
the proliferation, colony formation, and invasion of PCa cells [82]. Protein phosphatase 2A (CIP2A) is
another oncogene factor participating in the malignancy of cancer cells and enhancing their growth and
proliferation [83,84]. It was demonstrated that PCa cells elevate the expression of CIP2A to ensure their
proliferation and malignancy [85,86]. It is worth mentioning that the overexpression of CIP2A mediates
chemoresistance [87,88]. Thus, suppressing CIP2A expression not only reduces the proliferation of
cancer cells, but also sensitizes them to chemotherapy. It was in fact shown that siRNA-mediated CIP2A
knockdown diminishes the resistance of PCa cells to docetaxel-induced apoptosis [89]. With respect to
the uncontrolled growth and proliferation of PCa cells, the identification of biomarkers involved in
proliferation is key in targeting them for therapy. Poly(ADP-ribose) polymerase-1 (PARP1) attaches to
DNA strand breaks to form long branched polymers of poly(ADP-ribose) using NAD+. PARP1 plays
a significant role in preserving genome stability and performing DNA repair [90,91], ensuring the
growth and proliferation of cancer cells. The downregulation of PARP1 using siRNA dually affects
both the metastasis and the proliferation of PCa cells. In suppressing the invasion of cancer cells,
siRNA-mediated PARP1 inhibition leads to a reduction in epithelial-to-mesenchymal transition (EMT)
via upregulation of E-cadherin and downregulation of vimentin. In suppressing the growth of PCa
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cells, downregulation of PARP1 results in inhibition of PI3K/Akt genes [92]. These studies highlight the
fact that using siRNA is advantageous in suppressing PCa malignancy via negatively targeting both
the migration and the proliferation of cancer cells.
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Figure 2. Molecular functions of lncRNAs at various steps of prostate cancer (PCa): (A) prostate
adenocarcinoma; (B) castration resistance; (C) castration-resistant state. LncRNAs are colored in red,
angular shaped boxes. Genes and proteins are colored in white boxes with blunt edges. Reprinted with
permission from Reference [93].

In addition to the inhibition of chemoresistance, siRNA can be applied to enhancing the anti-tumor
activity of chemotherapeutic agents. Hypoxia-inducible factor-1 alpha (HIF-1α) is a cancer-related
transcription factor capable of the stimulation of enzymes involved in glycolysis. Accumulating data
demonstrate that HIF-1α enhances the metastasis and proliferation of cancer cells. Furthermore,
HIF-1α can trigger the chemoresistance of tumor cells [94–97]. This resulted in much attention toward
the inhibition of HIF-1α expression in suppressing chemoresistance, while elevating the anti-tumor
activity of chemotherapeutic agents. In PCa cells, siRNA-mediated HIF-1α downregulation results in a
reduction in glycolysis and mitochondrial oxidative phosphorylation, paving the way for the enhanced
production of reactive oxygen species (ROS) and the stimulation of cell death. Hence, siRNA can be
beneficial in enhancing the sensitivity of PCa cells to cisplatin chemotherapy [98].

Another usage of siRNAs in cancer therapy is through leveraging the molecular pathways that
are involved in angiogenesis. For instance, the c-Jun N-terminal kinase (JNK) pathway, a member
of the mitogen-activated protein kinase (MAPK), results in a reduction in DNA damage [99,100],
and the administration of cisplatin is corelated with stimulation of the JNK signaling pathway. It was
shown that siRNA-JNK can enhance the sensitivity of PCa cells to cisplatin chemotherapy via the
induction of DNA damage [101]. For instance, endothelial cell-specific molecule-1 (ESM-1) is an
oncogene factor that is upregulated in various cancers [102]. ESM-1 is able to induce angiogenesis by
functioning as an upstream mediator, targeting vascular endothelial growth factor (VEGF) [103,104].
Additionally, CXC chemokines can trigger angiogenesis [105]. The downregulation of ESM-1 via
siRNA diminishes the expression of CXCL3, leading to a decrease in the migration and metastasis of
PCa cells by suppressing angiogenesis [106].

Another example is Sal-like 4 (SALL4), an oncogene factor with stimulatory impacts on the
proliferation and metastasis of cancer cells [107,108]. Decreasing the expression of SALL4 using siRNA
stimulates apoptotic cell death in PCa cells via upward regulation of pro-apoptotic factor Bax and
downward regulation of anti-apoptotic factor Bcl-2 [109].
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Taking everything into account, these studies are in line with the fact that dynamic and complicated
molecular signaling pathways contribute to the malignant behavior of PCa cells [110,111]. The first step
is the recognition of these identified molecular pathways and the additional research being undertaken
to identify more molecular pathways involved in PCa malignancy [112–114]. The next step is designing
specific and efficacious siRNAs for targeting the identified molecular signaling pathways for PCa
therapy (Figure 3) [114,115]. Table 1 summarizes the efforts related to the knockdown of oncogene
molecular pathways that may be considered for PCa therapy.
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Figure 3. A schematic representation of using siRNA in PCa therapy. Oncogene molecular pathways
that are involved in proliferation and migration such as PARP/EMT, CIP2A, TRIM24, and so on can be
affected using siRNA. In addition, siRNA can be used in the induction of apoptosis (Bcl-2 downregulation
and Bax upregulation) and in suppressing the glycolysis (metabolism) of PCa cells.
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Table 1. The efficacy and specificity of siRNAs in targeting signaling pathways in PCa therapy.

Cell Line Target Gene Major Outcomes Refs

PCa cell line PC-3 (androgen-insensitive cells) MDM2
Enhancing cytotoxicity of cisplatin against cancer cells, and induction of
caspase-3 and -9 [116]

Human prostate cancer cell lines (PC3, LNCaP) IGHG1 Stimulation of apoptosis and inhibition of proliferation [117]

DU-145 (human prostate cancer cell line) VEGF Suppressing proliferation and angiogenesis [118]

PC-3M, LNcap and DU145 prostate cancer cell lines Neu3 Suppressing migration and metastasis of cancer cells via down-regulation
of MMP-2 and MMP-9 [119]

PC3 cells PARP1 Enhancing sensitivity of cancer cells into docetaxel chemotherapy via
downregulation of PARP1 and subsequent inhibition of EGF/Akt/FOXO1 [120]

PC3 cells HIF-1α Downregulation of HIF-1α is corelated with induction of apoptosis and
cell-cycle arrest at synthesis (S) and gap 2 (G2)/mitosis (M) phase [121]

LNCaP cells and LAPC4 cells (androgen-sensitive human PCa cell
lines), and C4-2 cells (androgen-independent human PCa cell line) Androgen receptor (AR) Suppressing metastasis of cancer cells [122]

Human prostate carcinoma cell lines LNCaP and PC-3 EGR-1 Enhancing p21 activity and stimulation of apoptosis [123]

PC3 cells ADAM17 Interfering with proliferation and DNA synthesis, and stimulation of cell
cycle arrest at S phase [124]

Human prostate cancer cell LNCaP and its sublines (C4, C42,
C4-2B), ARCaP cell lines IA-8, IF-11, and PC-3, DU-145, TSU-PR1 DNMT3 Induction of cell-cycle arrest and apoptosis [125]

Human prostate cell lines PNT2 (benign) and PC-3Mparental (highly
malignant) RPL19 Impairing proliferation and stimulation of apoptosis [126]

EnzR-PCa cell lines MALAT1 Sensitizing cancer cells to androgen therapy [127]

PC-3 and DU145 human prostate cancer cells GRP78 Stimulation of apoptosis and suppressing metastasis [128]

LNCaP cells AR Stimulation of apoptosis and sensitizing cancer cells to androgen therapy [129]

PC3 cells JNK-1 Stimulation of apoptosis, DNA fragmentation, and reducing viability of
cancer cells [130]

RWPE-1, DU145, PC-3, and LNCaP cell lines HMGN5 Triggering mitochondrial-mediated apoptosis via impairing mitochondrial
membrane integrity [131]

Human prostate cancer PC-3 cell lines, which express
prostate-specific antigens (PSAs), IGF-1R, and IRS1 (10–12) Cytohesin-1 Downregulation of cytohesin-1 is associated with inhibition of IGFR

signaling and desirable prognosis [132]

PC-3 and LNCaP prostate carcinoma cell lines EGR-1 Triggering apoptosis and inhibition of growth via downregulation of
EGR-1, and suppressing its downstream targets NF-κB and AP-1 [133]
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4. The Dark Side of siRNA Delivery System: Challenges and Opportunities

Although siRNAs show excellent efficiency in cancer therapy, there are still drawbacks to this
tool. Reaching the site of cancer in deep tissues while still maintaining their integrity is one challenge.
Nuclease activity can degrade siRNAs and reduce their efficiency in targeting genes. Furthermore,
siRNAs have non-specific off-target side effects that may induce immune responses [134]. It was
suggested that certain sequences of siRNA can target Toll-like receptors (TLRs) such as TLR-7, TLR-8,
and TLR-9, as well as RIG1 [135,136], leading to immune response activation. Therefore, efforts were
made to modify siRNAs such as changing their backbone to inhibit immune responses and nuclease
degradation. It is said that substitutions on the 2′ carbon of ribose provides protection of siRNA
against degradation. Notably, modification of the 2′ O-methyl suppresses siRNA-mediated immune
stimulation [137]. The inverted abasic ribose at the end of the siRNA strand inhibits nuclease
degradation [137]. Abnormal structures at the end of each strand of the siRNA lead to challenges in
the incorporation of siRNA into RISC complexes. Modification of this structure overcomes the issues
in incorporating siRNAs into the RISC [138–140]. Even though these modifications greatly helped us
in improving the efficiency of siRNA in cancer therapy and the modulation of gene expression, there is
still need for further research.

In the case of PCa, same problems are observed. Firstly, siRNA should circulate in the bloodstream
and, in this way, it may undergo enzymatic degradation. Then, it should endure the mild acidic pH of the
tumor microenvironment and be capable of selectively targeting PCa cells. However, siRNA possesses
off-target features that should be considered during PCa therapy. Thus, protection against degradation
and internalization are challenges for the siRNA system in PCa cells, which can be solved using
nanoscale delivery systems [141].

In brief, the strategy of using nanoparticles for the delivery of siRNA significantly improved the
potential of siRNA in cancer therapy [142].These nanostructures were in fact applied in clinical trials for
the delivery of siRNA with high efficiency [143,144]. To date, various nanoparticles such as polymeric
nanoparticles, lipid nanoparticles, carbon nanotubes, and gold nanoparticles were designed for the
delivery of siRNA [51,88,145–148]. These nano-vehicles provide protection for the siRNA against
degradation and a reduction of the off-target effects via delivery to targeted sites [149,150]. In the next
section, we comprehensively discuss the efficiency of different kinds of nanoparticles for the delivery
of siRNA with potential in PCa therapy.

5. Nano-Vehicles

In the previous sections, we demonstrated that siRNAs represent an emerging strategy for cancer
therapy. However, one of the difficulties is the limitation of targeted delivery to the site of cancer,
including PCa [151–155]. To date, various carriers were designed for the delivery of siRNA for
PCa, such as polymeric nanoparticles, lipid nanoparticles, nanobubbles, and cyclodextrins [156,157].
These vehicles are able to deliver siRNAs into the tumor site and reduce the proliferation and malignancy
of PCa cells [73,158,159]. Moreover, they provide a platform for the co-delivery of siRNA and other
chemotherapeutic agents that may be beneficial for effective PCa therapy [160,161]. These vehicles
are discussed in this section and summarized in Table 2. Figure 4 shows the different nanocarriers
employed for the delivery of siRNA in prostate cancer therapy.
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5.1. Polymeric Nanoparticles

Dendrimers are members of dendritic polymers with a variety of features such as well-defined
and controlled structures, monodispersity, and multivalent properties [162–165]. Despite having these
properties, amino acids can be used as branching units that form peptide dendrimers and improve their
adhesive properties. It was demonstrated that peptide dendrimers have high biocompatibility and
are resistant to proteolytic digestion [166–168]. This resulted in the application of peptide dendrimers
for the delivery of drug and gene materials [169]. An effort was made for delivery of HSP27-siRNA
using peptide dendrimers in the treatment of PCa. The peptide dendrimers can protect siRNAs against
enzymatic degradation, leading to their enhanced efficacy in gene silencing. The increased potential
of siRNAs by peptide dendrimers is not only due to their protection against enzymatic degradation,
but also to the fact that siRNA-loaded peptide dendrimers demonstrate high cellular uptake and
release siRNA in an endosome-release manner. The siRNA-loaded peptide dendrimers are capable of
effectively silencing the HSP27 gene, an oncogene involved in the survival and proliferation of PCa
cells, with more than 60% leading to high anti-tumor activity [170]. Although polymeric nanoparticles
have great potential in gene delivery, surface modification can enhance their benefits in cancer therapy.

Another example is the use of arginine–glycine–aspartic acid (RGD) for specific targeting of PCa
cells, as cancer cells are abundant in neovascular vessels and avb3 integrin is upregulated in these
tumors [171,172]. Surface modification of polymeric nanoparticles with RGD enhances their efficacy in
targeting PCa cells. The stability of RGD-modified polymeric nanoparticles leads to effective targeting.
In this example, siRNA with an entrapment efficiency of about 83.8% ± 5.71% led to downregulation
of GRP78, an oncogene that suppresses the malignant behavior of PCa cells, such that the expression of
this gene was less than 34% while free siRNA showed gene expression of about 83% [173].
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Multifunctional polymeric nanoparticles can be considered as ideal candidates in PCa therapy.
For instance, pH-responsive nanoparticles can release drugs or genes at the mildly acidic pH of the tumor
microenvironment (pH 6 to 6.5). The immediate disassembly of multifunctional nanoparticles at this
pH provides the targeted delivery of drugs or genes at tumor sites [174,175]. Notably, the disassembled
components can penetrate the endosomal membrane of cancer cells, releasing the drugs or genes
into the cytoplasm [176,177]. Multifunctional polymeric nanoparticles are used for the delivery of
siRNA-prohibitin-1 (PHB1) in PCa cells. PHB1 is a 32-kDa protein capable of regulating various
cellular pathways such as apoptosis, proliferation, and transcription [178,179]. The expression of PHB1
shows an increase in cancer cells [180,181], making it a suitable target in cancer therapy. In order
to enhance the capability of these nanoparticles in targeting PCa cells, multifunctional polymeric
nanoparticles were modified by ACUPA, which targets and identifies the prostate-specific membrane
antigen (PSMA). The cytoplasmic delivery of siRNA-PHB1 with these nanoparticles (with different
entrapment efficiencies from 51.8–92.1%) led to downregulation of this oncogene to about 60–90%,
as well as a decrease in the malignancy of PCa cells [182].

5.2. Lipid Nanostructures

Micelles are core–shell nanoparticles produced by spontaneous self-assembly of individual
amphiphilic (hydrophobic/hydrophilic) molecules in water or other aqueous solutions [183].
Micellar nanoparticles can protect hydrophobic drugs and genes in their micelle core and, because of
their small size (less than 100 nm), they are extensively applied to gene or drug delivery
(Figure 5, [184]) [185,186]. Notably, micelles were used for the delivery of siRNA in cancer therapy
with success [187,188]. For instance, an experiment used micelles for delivery of siRNA-SREBP1 to PCa
cells. SREBP1 (sterol regulatory element-binding protein) is an oncogene in PCa, and its interaction
with PKD3 enhances the proliferation of PCa cells [189]. It was observed that micelles can successfully
co-deliver docetaxel and siRNA-SREBP1 to Pca cells. Downregulation of SREBP1 led to a diminution
in the invasion, metastasis, and growth of PCa cells, while sensitizing them to docetaxel chemotherapy
such that cells exposed to both siRNA and docetaxel showed 4.9-fold toxicity in comparison to cells
exposed to docetaxel alone. Protection of siRNA-SREBP1 against degradation increased its efficacy
(Figure 6) [190]. Notably, intravenous (i.v.) administration of lipid nanoparticles containing siRNA-AR
suppressed PCa cell viability and reduced serum levels of PSA to about 40% in comparison to a control
mouse model [191]. The inhibitory effect on the malignancy of PCa cells was further improved by
blocking PSMA and extinguishing the expression of AR, leading to complete AR silencing and about a
50% reduction in the growth and malignancy of cancer cells [151].
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Figure 6. (A) The preparation of co-loading nanoparticles LC/D/siR. (B) The fusion and coating of PBm.
(C) The schematic illustration of PB@LC/D/siR targeting the microenvironment of BmCRPC based
on the fundamental bone homing and homotypic targeting ability of PBm. (D) The mechanism of
PB@LC/D/siR. (E) The representative small animal living images of each group of the BmCRPC-bearing
mice at 0–24 h post injection (yellow circle: tumor area). (F) The qualified distribution in major organs
of each group. DTX, docetaxel; LA, lipoic acid. Reprinted with permission from Reference [190].
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In addition to micelles, there exist other types of lipid-based nanoparticles used as carriers for
drug and gene delivery in cancer treatment, such as liposomes, solid lipid nanoparticles, noisomes,
etc. Liposomes are bilayer vesicles consisting of different types of phospholipids and cholesterol,
which are arranged together so that they can be used as a carrier for both hydrophobic and hydrophilic
components. They can also be engineered with several functionalizing agents that prepare them for
use as targeted smart delivery systems (Figure 7) [192].
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There are several studies in which functionalized liposomes were used for treating prostate cancer
via applying siRNA. In one study, a type of multifunctional liposome was prepared via applying
stealth liposomes (liposomes coated with polyethylene glycol) which were used for the encapsulation
of siRNA and protecting it from lysosomal digestion. These liposomes were functionalized by two
types of components: folate as the targeting agent, which showed a high affinity for the attachment
to the prostate-specific membrane antigen (PSMA), and a prostate-specific antigen (PSA)-sensitive
peptide. The PSA-sensitive peptide consisted of three parts including the cell penetration segment
(polyarginine), which was a type of cell-penetrating peptide (CPP) with positive charge that enhanced
the intracellular delivery of liposomes, the PSA-sensitive cleavable peptide (HSSKYQ), which was
responsible for the amount of PSA and donated the smart ability to this type of liposome, and the
polyanionic inhibitory peptide (DGGDGGDGGDGG), which was a negatively charged domain used
as shielding to protect the positively charged domain. The performance of this type of liposome
was dependent on the amount of PSA, which is found at a high level in the microenvironment of
prostate cancer. In the extracellular microenvironment of prostate cancer, PSA acted as an enzyme and
cleaved the PSA-sensitive peptide, which led to the appearance of the CPP domain that promoted
the cellular uptake of liposomes (Figure 8). This liposome showed a significant effect on cell uptake,
increasing apoptosis in prostatic cancer cells via preserving the siRNA that reduced polo-like kinase 1
(PLK-1) expression by 22–75% (based on the type of synthesized liposome) [193].
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Figure 8. Smart multifunctional liposome-siRNA containing folate and activatable cell-penetrating
peptide (ACPP) targeting moieties against prostate-specific membrane antigen (PSMA) and
glycosaminoglycans on the cell surface. Abbreviations; DSPE-mPEG2000: 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-methoxy (polyethylene glycol), DSPE-PEG2000- ACPP: 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N-maleimide(polyethylene glycol)–activatable cell-penetrating peptide,
PSA: prostate-specific antigen, PSMA: prostate-specific membrane antigen. Reprinted with permission
from Reference [193].

Using prodrugs is a promising approach to enhance the selectivity and efficacy of chemotherapeutic
drugs. Having this in mind, an amphiphilic cationic prodrug based on lipids was employed to load
RNA therapeutics for co-delivery (Figure 9) [194]. The amphiphilic lipids formed nanoparticles in
aqueous conditions and simultaneously encapsulated siRNA with an entrapment efficiency of about
35.1–68.9% (for different nanoparticles). Subsequently, the surface of the nanosized particles was
decorated with polymers to enhance the hydrophilicity of the nanohybrid particles which, accordingly,
prolonged the blood circulation and tumor accumulation. In addition, the polymer turned the particles
into stimuli-responsive vehicles to respond to pH as a trigger. The findings showed that esterase (as
overexpressed in the tumor microenvironment) led to cleavage of the prodrug, allowing the siRNA
and anticancer drug to be efficiently liberated in the cytoplasm. These types of nanocarriers showed
about 70% knockdown in the expression of PLK1 [194].
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Figure 9. (A) Chemical structure of the amphiphilic cationic prodrug siRNA amphiphilic cationic
mitoxantrone (SA-MTO) and TME pH-responsive polymer methoxyl-poly (ethylene glycol)-b-poly
(2-(pentamethyleneimino) ethyl methacrylate (Meo-PEG-b-PPMEMA). (B) Schematic illustration
of the TME pH-responsive polymer–prodrug hybrid nanoplatform for multistage siRNA delivery
and combination cancer therapy. Tumor size (C) and weight (D) of the MDA-MB-231 xenograft
tumor-bearing nude mice treated with phosphate-buffered saline (PBS), naked siPKK1, free MTO,
and siLuc- and siPLK1-loaded NP15. (E) Representative photograph of the MDA-MB-231 xenograft
tumor-bearing nude mice in each group at day 18. Meo-PEG-b-PPMEMA, methoxyl-poly (ethylene
glycol)-b-poly (2-(pentamethyleneimino) ethyl methacrylate); SA-MTO, siRNA amphiphilic cationic
mitoxantrone. Reprinted with permission from Reference [194].

5.3. Peptides

Over the past few decades, we witnessed special attention toward peptides for their use as
platforms for the delivery of genes and drugs. Peptides have a number of beneficial features including
biocompatibility, biodegradability, minimal toxicity, and ease of synthesis [195,196], making them
suitable options for the delivery of genes and drugs. To date, different peptides were designed for
delivery, and the findings were satisfactory [197,198]. Notably, the potential of peptides in delivery
can be improved by using a combination of phospholipids (lipoplex) and polymers (polyplex),
which results in an improvement in the transfection efficiency of peptides [199–202]. In one study,
hybrid peptides/phospholipids were used for delivery of siRNA-EGFP in PCa cells. Surface modification
of these peptides using gastrin-releasing peptide receptor (GRPR) enhanced their cellular uptake
through endocytosis. They had superior biocompatibility and delivered siRNA into PCa cells, which led
to effective downregulation of EGFP (between 50% and 10% for different formulations) [203]. This study
demonstrated that peptides are ideal candidates in siRNA delivery for reducing the viability of PCa
cells, and their surface modification by receptors can improve their proficiency in cancer therapy.

Cell division cycle-associated protein 1 (CDCA1) is an element of the kinetochore complex that is
important for the stability of the kinetochore and microtubule [204]. CDCA1 plays a considerable role
in mitosis. The silencing of CDCA1 inhibits kinetochore–microtubule attachment, leading to death of
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mitotic cells [205]. It was reported that CDCA1 is upregulated in various cancers [206–209], and its
downregulation is implicated in cancer therapy. In PCa cells, the cytoplasmic release of siRNA-CDCA1
via peptides led to inhibition of CDCA1 and stimulation of apoptotic cell death by about four-fold.
An in vivo experiment also revealed that siRNA-CDCA1-loaded peptide diminished the tumor growth
and volume, suggesting their efficacy and promise [210].

Self-assembly is a promising approach to prepare nanosized particles and simultaneously entrap
RNA therapeutics. Having this in mind, Lang et al. used peptide self-assembly nanoplatforms to
deliver siRNA for the treatment of prostate cancer (Figure 10) [211]. In this study, siRNAs against the
cancer-associated fibroblasts (CAFs) were loaded inside a type of cell-penetrating peptide (CPP)-based
nanoparticle. This siRNA could specifically downregulate the C–X–C motif chemokine ligand 12
(CXCL12) of CAFs. According to findings, the cell invasion, migration, and angiogenesis of the tumor
were considerably inhibited via silencing the expression of CAFs to about 88.7%, leading to a reduction
in the prostate tumor size [211].
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Figure 10. (A) Construction of the peptide nanoparticle (PNP)/siRNA/mouse antibody (mAb)
nanosystem through a self-assembly process. (B) Proposed mechanism of PNP/siRNA-C–X–C motif
chemokine ligand 12 (CXCL12)/mAb-mediated metastasis inhibition and cell-penetrating peptide
(CPP)-mediated transfection of CXCL12 siRNA in cancer-associated fibroblasts (CAFs). (C) Tumor
progression curves determined by quantification analysis of the in vivo bioluminescence signal.
(D) Images of prostate tumors with testicles. Yellow dashed lines represent the locations of the primary
tumor. (E) Weight of isolated tumors (without prostate and testicles) in each group. CPP, cell-penetrating
peptide; CXCL12, C–X–C motif chemokine ligand 12; mAb, mouse antibody; PNP, peptide nanoparticle.
Reprinted with permission from Reference [211].
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5.4. Cyclodextrin

Cyclodextrins are a family of cyclic oligosaccharides that are extensively applied in the
pharmaceutical industry [212]. Although cyclodextrins are excellent solubilizers and stabilizers,
their modification is of interest for providing promising nanocarriers to deliver molecules such as
proteins and nucleic acids [213]. The first delivery of siRNA in cancer therapy was provided by
cyclodextrin-containing polymers [214], while further studies focused on using cyclodextrin-modified
nanoparticles in the delivery of siRNA.

One instance of use was in the delivery of neuropilin-1 (NRP-1), a transmembrane glycoprotein
involved in the induction of angiogenesis via interacting with members of the VEGF family [215].
NRP-1 undergoes upregulation in PCa cells, resulting in proliferation and malignancy (Figure 11) [216,217].
Additionally, zinc finger E-box binding homeobox 1 (ZEB1) is an upstream mediator of EMT and contributes
to the metastasis and invasion of cancer cells via the induction of EMT [218,219]. Accumulating data
demonstrate that ZEB1 has high expression in PCa cancer cells and is correlated with the progression
and metastasis of these cancer cells [220,221]. Cyclodextrin nanoparticles were designed for the delivery
of siRNA-ZEB1 and siRNA-NRP-1 in PCa therapy. In order to maximize the targeted delivery and
capability of cyclodextrin nanoparticles, their surface was modified with folate to selectively target PCa
cells. These nanocarriers are capable of protecting siRNAs against degradation by serum nucleases.
The expressions of ZEB1 and NRP-1 showed a decrease with siRNA-ZEB1- and siRNA-NRP-1-loaded
cyclodextrin nanoparticles in PCa cells, suggesting the capability of these nanocarriers for the delivery of
siRNAs and the effective treatment of prostate cancer via knocking down the level of expression to about
76.99% ± 10.89% [222].
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Figure 11. Overexpression of NRP1 as a prognostic of metastatic progression and cancer-specific
mortality in cancer patients. Waterfall plots indicating in the overexpression of NRP1 in JHMI patients:
(a) post-RP and (b) post-BCR samples. ECE, extra-capsular extension; LNI, lymph node invasion;
MET, metastasis; SM, surgical margin; SVI, seminal vesicle invasion. Boxplots showing NRP1 expression
in patients positive and negative for METS (a) and PCSM (b). Kaplan–Meier curves indicating MET-free
(a) and PCSM-free (b) survival for NRP1 high- and low-expression groups. Reprinted with permission
from Reference [216].
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The majority of studies are using cell lines for research, and additional research is required to
understand the efficacy and specificity of siRNAs in animal models and eventually humans.

In one study, two types of siRNA (against prostatic cancer cells with overexpression of PLK-1 and
luciferase genes) were conjugated to the cyclodextrin to prepare cyclodextrin-based delivery systems,
in which the conjugation was done based on applying two types of non-cleavable and cleavable linkers.
The as-fabricated conjugates were used in three different forms to obtain to the best system for siRNA
delivery, including polycationic cyclodextrin, the complex of cyclodextrins with lipofectamine 2000,
and a targeted cyclodextrin–siRNA–polymer complex (which was composed of cationic chitosan
in the core covered by siRNA–cyclodextrin and targeted by adamantyl-polyethylene glycol (PEG)
ligands). In this study, the effectiveness of cyclodextrin as a delivering agent for the siRNA was
confirmed. Moreover, it was observed that the cleavable types of delivery systems showed a higher
ability to knock down genes (about 57% expression) in comparison to the non-cleavable ones (about
73% expression). The superior performance was conducted from the targeted formulation which used
a receptor-mediated endocytosis method to deliver the siRNA into the cells (Figure 12) [223].
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5.5. Magnetic Nanoparticles

Magnetic nano-vectors are a class of carriers which were used in a study for the delivery of siRNA
to pancreatic cancer cells. These magnetic nano-vectors were fabricated via coating the iron oxide
nanoparticles with two polymeric layers of siloxane and polyethylene glycol (PEG) at first, which were
then functionalized with positively charged polymers (poly-arginine (pArg), polylysine (pLys), and
polyethylenimine (PEI)) that led to the preparation of three different formulations. The siRNA
components (labeled by the DY-547 fluorescence tag) against the green fluorescence protein (GFP)
transgene cells were loaded on the nano-vector. Different positively charged polymeric layers were
used to assess which was more biocompatible and more efficient for siRNA delivering. The result
of the study revealed that the pLys-coated nano-formulation was more efficient and safer for siRNA
delivery to cancer cells and improved gene silencing ability (about 24%). Indeed, it was observed that



Bioengineering 2020, 7, 91 19 of 40

this formulation used a different method for cell penetration, allowing escape from lysosomal enzymes,
thus enhancing its performance (Figure 13) [224].
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Figure 13. Chemical scheme for synthesis of magnetic nanovectors. (a) The amidated PEG-passivated
iron oxide NPs used as the base NP for construction of transfection vectors in this study.
(b) Chemical structures of the cationic polymers used to functionalize the NPs. (c) Covalent
attachment of cationic polymers to NPs. (d) Covalent attachment of Cy5 modified siRNA to
NPs. 2IT, 2-iminothiolane; pArg, poly-arginine; PEG, polyethylene glycol; PEI, polyethylenimine;
pLys, polylysine; NP, nanoparticle; SIA, succinimidyl iodoacetate. Reprinted with permission from
Reference [224].

In another study, magnetic nanoparticles were used as targeting agents for efficient siRNA
delivery to the prostate cancer cells. This was done based on a phenomenon known as transfection, in
which an external magnetic force was applied to enhance the delivery of genes to the targeted
site. To achieve this aim, nanoclusters of oleic acid–magnetic nanoparticles in a polymeric
solution of 3,4-dihydroxy-l-phenylalanine (DOPA)-PEI were prepared via an oil-in-water method.
Surface functionalization of the nanoparticles was done via applying PEG, which led to stable
hydrophilic particles. In the end, siRNA (designed against GFP) was loaded on the nanocluster to
attain the final nanosystem. The results of this study showed that nanocarriers containing magnetic
nanoparticles (PMNPs) could reduce the silencing of GFP expression by about 18%, while magnetic
nanoclusters containing the carrier (PMNCs) showed a 55% reduction in gene expression, in response
to the greater amount of magnetic agents present in their structure (Figure 14) [225].
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Figure 14. (A) Schematic for the polyethylene glycol magnetic nanocluster (PMNC)/siRNA
preparation. (B) Silencing effect of different concentrations of PMNP and PMNC GFP. (C) Effect
of magnetic targeting on the transfection of PC-3 cells. Abbreviations: MNC, magnetic nanocluster;
MNP, magnetic nanoparticles; O/W, oil in water; GFP, green fluorescence protein; PMNC/siRNA,
polyethylene glycol magnetic nanocluster/siRNA; PMNP, polyethylene glycol magnetic nanoparticle.
Reprinted with permission from Reference [225].

Accumulating data show that functionalized nanoparticles can provide targeted delivery of
genes and drugs, with low side effects and partial drug resistance [226–228]. As an example,
superparamagnetic iron oxide nanoparticles (SPIONs) were proven beneficial in therapeutic and
diagnostic imaging [229]. SPIONs can be used for concentrating active agents because they provide
enhanced permeability and retention (EPR) [230]. These properties make SPIONs promising candidates
in the delivery of genes and drugs and, in this way, they can be used for the delivery of siRNA.
A disintegrin and metalloproteinase 10 (ADAM10) is a novel target in cancer therapy [231,232], and it
was shown that loading siRNA-ADAM10 on SPIONs enhances their efficacy in reducing the expression
of ADAM10, resulting in a decrease in viability and proliferation of PCa cells by about 26% for 10 nM
of the complex after 120 h [233].

5.6. Gold Nanoparticles

Gold nanoparticles (NPs) with size- and shape-dependent optical properties generated by surface
plasmon resonance (SPR) are extensively applied in biomedicine as contrast agents, photothermal
agents, and radiosensitizers [234–237]. The affinity of gold nanoparticles for biomolecules makes them
appropriate options for gene and drug delivery [238]. As an example, the folate receptor is upregulated
in PCa cells, and surface modification of nanocarriers with folic acid was shown to enhance the
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capability of nanoparticles in targeting PCa cells [239]. siRNA-RelA-loaded gold nanoparticles were
able to diminish the survival of PCa cells via selective targeting of folate receptors, with diminishment
of proliferation and survival of cancer cells resulting from the improved gene silencing (up to 35%) in
comparison to control and free siRNA [240]. Functionalization of gold NPs with polymers enhances the
drug loading capacity of gold to deliver siRNA. For instance, polyethylenimine (PEI) and PEGylated
anisamide, a ligand targeting the sigma receptor, were used to modify the surface of Au NPs (Figure 15).
In vivo results showed the sustained release of siRNA was achieved, exhibiting substantial proliferation
inhibition (more than 60%) in a PC3 xenograft mouse model without an enhancement in toxicity.
This carrier also showed about 40% gene knockdown [241].
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Figure 15. (A) Schematic illustration on functionalized gold nanoparticles (NPs) for prostate cancer
therapy. (B) SEM image of functionalized Au NPs. (C) PC-3 xenograft tumor growth reduction
following treatment with anti-RelA siRNA (~1 mg/kg) in different formulations (WR40) with or without
paclitaxel on days 1, 3, and 5. PTX, paclitaxel; PEG-AA, anisamide-targeted polyethylene glycol.
Reprinted with permission from Reference [241].

Another example is polo-like kinase 1 (PLK1), a member of the serine/threonine protein kinase
family, which contributes to a number of biological processes such as mitosis, meiosis, spindle assembly,
and centrosome maturation [242,243]. PLK1 is an oncogene and can enhance the malignancy and
proliferation of cancer cells [244–246]. Multifunctional gold nanorods are able to effectively deliver
siRNA-PLK1 to PCa cells and diminish their viability and survival [247]. In previous sections,
we demonstrated that the surface modification of nanoparticles by PSMA increases their capability
in targeting PC cells. It is worth mentioning that transferrin (Tf) ligands can be implemented for
selectively targeting PCa cells, as they are upregulated in PCa cells [248–250]. Gold nanoparticles can
target the Tf receptors on PCa cells to deliver siRNA to PCa cells, resulting in an inhibition of RelA (up
to 35%) and a diminution in the growth and survival of cancer cells [251].
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Table 2. siRNA-loaded nanocarriers with implications in PCa therapy.

Vehicle Target Gene In Vitro/In
Vivo Animal Model Cell Line Zeta Potential

(mV) Size (nm)
Entrapment
Efficiency
(EE) (%)

Results References

Lipid
nanoparticle

Androgen
receptor
(AR)

In vitro
In vivo

Mice bearing
LNCaP tumors

LNCaP and PC-3
human PCa cell lines - Up to 84.5 -

Downregulation of androgen
receptor and interfering with
proliferation

[151]

Peptide
dendrimer HSP27 In vitro

In vivo

5.0-week-old male
BALB/c nude mice
bearing PC3 cells

PC3 cells +18.5 to +22.3 50–70 -

High cellular uptake,
effective gene silencing, and
reducing proliferation and
viability of cancer cells

[170]

Polymeric
nanoparticles GRP78 In vitro

In vivo
PC-3 prostate
cancer-bearing mice PC3 cells −23.8 to −24.2 36.4–39.7 82.4

Co-delivery of siRNA-GRP78
and docetaxel, and
suppressing invasion and
proliferation of cancer cells

[173]

Multifunctional
polymeric
nanoparticles

PHB1 In vitro
In vivo

LNCaP
tumor-bearing male
athymic nude mice

Luc-HeLa and PCa
cell lines (LNCaP,
PC3, DU145, 22RV1)

+14 56.6 90.6

Downregulation of PHB1,
endosomal penetration, and
inhibition of proliferation
and invasion of PCa cells

[182]

Micelle SREBP1 In vitro
In vivo Mouse model PC-3 and C4-2B cells +20.3 to +26.9 100 -

Co-delivery of
siRNA-SREBP1 and
docetaxel, deep tumor
penetration, protection of
siRNA, and suppressing
cancer malignancy

[190]

Peptide EGFP In vitro - PC3 cells +25.4 131.5 -

Targeted delivery, high
cellular uptake, excellent
biocompatibility, and
reducing malignancy of
cancer cells

[203]

Peptide CDCA1 In vitro
In vivo NOD/SCID mice

Human PCa cell line
DU145, PC3, LNCap,
and the human
prostate epithelial
RWPE-1 cells

- - -

Downregulation of CDCA1,
inhibition of mitosis, and
induction of apoptotic cell
death

[210]
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Table 2. Cont.

Vehicle Target Gene In Vitro/In
Vivo Animal Model Cell Line Zeta Potential

(mV) Size (nm)
Entrapment
Efficiency
(EE) (%)

Results References

Cyclodextrin
conjugate PLK1 In vitro - U87 and DU145 cells - - -

Downregulation of PLK1,
and reducing viability and
proliferation of cancer cells

[223]

Magnetic
nanoparticles ADAM10 In vitro - PC3 cells −17.9 219.5 -

Downregulation of ADAM10
and induction of apoptosis in
cancer cells

[233]

Gold
nanoparticles RelA In vitro - LNCaP cells +46 to +53 113–118 -

High internalization,
endo-lysosomal escape, and
reducing proliferation and
viability of cancer cells

[240]

Multifunctional
gold
nanorod

PLK1 In vitro
In vivo

PC-3 xenograft
tumor 143B cells +24.5 to +66.2 48.6–51.13 -

Providing combinational
photothermal therapy and
gene silencing

[247]

Gold
nanoparticle RelA In vitro - PC3 cells +46 118 -

Downregulation of RelA, and
suppressing viability and
proliferation of cancer cells

[251]

Nanobubble FoxM1 In vitro
In vivo

Mice bearing PC3
cells LNCaP cells +24.07 479.83 -

Improved transfection
efficiency, stimulation of
apoptosis and cell-cycle
arrest, and reducing tumor
growth (in vivo)

[252]

Chitosan
nanoparticles Snail In vitro -

PC-3 human
metastatic prostate
cancer cell line

+1.8 169 -

Inhibition of metastasis of
cancer cells via upregulation
of epithelial markers
E-cadherin and Claudin-1

[253]

Cyclodextrin
nanoparticles

ZEB1
NRP-1 In vitro - PC3 and LNCaP cells −9.07 to

+46.42
Less than
200 -

Downregulation of ZEB1 and
NRP-1, inhibition of
metastasis, and suppressing
angiogenesis

[222]

Polymeric
nanoparticle VEGF In vitro

In vivo
PC-3 xenograft
tumors PC3 cells +1.8 240 -

High cellular uptake through
endocytosis, targeted
delivery, and
downregulation of VEGF

[254]
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Table 2. Cont.

Vehicle Target Gene In Vitro/In
Vivo Animal Model Cell Line Zeta Potential

(mV) Size (nm)
Entrapment
Efficiency
(EE) (%)

Results References

Layer-by-layer
nanoparticle

P44/42
MAPK

In vitro
In vivo Mouse model CWR22R cells +30.5 170–179 56.7

Co-delivery of docetaxel and
siRNA-MAPK, leading to
suppressing invasion and
malignancy of cancer cells

[255]

Aptamer
chimera

EGFR
Survivin

In vitro
In vivo

Mouse model of
PCa

Cell lines including
PC3, BXPC3 and T-24 - - -

Selective targeting of
PSMA-overexpressing PCa
cells, downregulation of
EGFR and survivin, and
stimulation of apoptosis

[256]

Microbubble Survivin In vitro
In vivo

Xenograft mouse
tumor model

Human PCa cell lines
PC-3 and LNCaP - - -

Co-delivery of
siRNA-survivin and
doxorubicin, and
suppressing growth and
viability of cancer cells (both
in vitro and in vivo
experiments)

[257]

Peptide Survivin In vitro
In vivo

LNCaP xenografts
in nude mice PC3 cells - - -

Reducing the viability of
cancer cells, and induction of
apoptosis

[258]

Gold
nanoparticle RelA In vitro - PC3 cells +27.6 62.8 -

Targeting sigma receptor
using anisamide-modified
gold nanoparticles, silencing
RelA gene, and diminishing
viability and survival of
cancer cells

[259]

Cyclodextrin PLK1 In vitro - DU145 and PC3 cells +10.28 to
+27.8

Less than
300 nm -

Selective targeting PCa cells
by binding into sigma
receptors, downregulation of
PLK1 gene, and improving
prognosis

[260]
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Gold nanoparticles were also applied for theranostic applications including bioimaging of
genes, as well as delivery and photothermal therapy. In light of this, Au nanorods were used for
combination gene therapy (to deliver siRNA) and photothermal therapy along with photoacoustic
imaging applications. The nanodevices demonstrated a substantial anticancer effect in a PC-3 tumor
mouse model, along with an 85% reduction in the gene expression (Figure 16) [247].
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Schematic illustration of assembly of siRNA/ZD-GNRs with SEM image of the nanorods. Thermographic 
images (C) and temperature changes of the tumor area (D) of the mice treated with saline, ZD-GNRs, and 
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Figure 16. (A) Schematic illustration of specific interaction between the Zn (II)–dipicolylamine (Zn-DPA)
and phosphate groups of siRNAs and combined anti-PLK1 gene therapy/photothermal therapy upon
laser irradiation after the accumulation of siPLK/ZD–gold nanorods (GNRs) at the target tumor
tissues. (B) Schematic illustration of assembly of siRNA/ZD-GNRs with SEM image of the nanorods.
Thermographic images (C) and temperature changes of the tumor area (D) of the mice treated with
saline, ZD-GNRs, and siPLK/ZD-GNRs upon 10 min of laser exposure. Zn-DPA, Zn (II)–dipicolylamine;
ZD-GNR, Zn (II)–dipicolylamine–gold nanorod; PLK1, polo-like kinase 1. Reprinted with permission
from Reference [247].

6. Conclusions and Remarks

In this review, we evaluated the use, efficacy, and specificity of siRNA in PCa therapy. To date,
a high number of genes were targeted by siRNA for the treatment of PCa, including MDM2, IGHG1,
VEGF, Neu3, PARP1, and HIF-1α. The goal of targeting these genes using siRNA is to suppress the
growth, metastasis, and angiogenesis of PCa cells. Additionally, siRNAs can provide conditions for
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the enhanced anti-tumor activity of chemotherapeutic agents such as cisplatin. A caveat of siRNA
use is its off-target effect. For targeted siRNA delivery, there were efforts to apply siRNAs to tumors
using various vehicles, such as dendrimers, magnetic nanoparticles, polymeric nanoparticles, micelles,
gold nanoparticles, and nanobubbles. These nanoplatforms considerably enhance the efficacy of siRNA
in silencing, as well as its specificity in targeting genes and its half-life, protecting it from degradation.
Here, we cite the work of researchers who successfully showed the use of chemotherapeutic agents
such as docetaxel co-delivered with siRNAs to provide more effective PCa therapy. Noteworthy,
groove modification [261], caging siRNA [262], cholesterol modification for nuclease protection [263]
of clinical trials investigating the use of siRNA-loaded nanocarriers is perhaps due to safety concerns.
As we described in Section 1, there was a clinical trial using siRNA-loaded nanoparticles with excellent
biocompatibility and no toxicity. Furthermore, in vivo and in vitro experiments demonstrated the high
efficiency of nanocarriers in the delivery of siRNA in PCa therapy. Thus, these results can be translated
into the clinic. Another problem associated with siRNA therapies is the transient effect of siRNAs that
need frequent administration. Nanoparticles can provide prolonged release of siRNA, enhancing its
efficacy and providing longer gene silencing.
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Abbreviations

PCa prostate cancer
LHRH luteinizing hormone releasing hormone
ARs androgen receptors
mCRPC metastasis castration-resistant prostate cancer
PSA prostate-specific antigen
DRE digital rectal examination
FZD Frizzled
KRT5 keratin 5
miR microRNA
lncRNAs long non-coding RNAs
siRNA small interfering RNA
RNAi RNA interference
RISC RNA-induced silencing complex
mRNA messenger RNA
PEP phosphoenopyruvate
NF-κB nuclear factor kappa B
Bcl-2 B-cell lymphoma 1
SATB1 special AT-rich sequence-binding protein 1
TRIM24 tripartite motif-containing protein 24
CIP2A cancerous inhibitor of protein phosphatase 2A
PARP1 poly(ADP-ribose) polymerase-1
EMT epithelial-to-mesenchymal transition
HIF-α hypoxia-inducible factor-1α
ROS reactive oxygen species
JNK c-Jun N-terminal kinase
MAPK mitogen-activated protein kinase
ESM-1 endothelial cell-specific molecule-1
VEGF vascular endothelial growth factor
SALL4 Sal-like 4
TLRs Toll-like receptors
RGD arginine–glycine–aspartic acid
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PHB1 prohibitin-1
PSMA prostate-specific membrane antigen
i.v. intravenous
SPIONs superparamagnetic iron oxide nanoparticles
EPR enhanced permeability and retention
ADAM10 a disintegrin and metalloproteinase 10
GRPR gastrin-releasing peptide receptor
CDCA1 cell division cycle-associated protein 1
SPR surface plasmon resonance
PLK1 polo-like kinase 1
Tf transferrin
ZEB1 zinc finger E-box binding homeobox 1
DANCR differentiation antagonizing non-protein coding RNA
MEG3 lncRNA maternally expressed gene 3
PCA3 prostate cancer antigen 3
DRAIC downregulated RNA in cancer
PCAT29 prostate cancer-associated transcript 29
GAS5 growth arrest-specific 5
CTBP1-AS C-terminal binding protein 1 antisense
PCGEM prostate cancer gene expression marker 1
MALAT-1 metastasis-associated lung adenocarcinoma transcript 1
NEAT1 nuclear-enriched abundant transcript 1
PCAT5 prostate cancer-associated transcript 5
SChLAP1 second chromosome locus associated with prostate 1
HOTAIR HOX transcript antisense RNA
SOCS2-AS1 cytokine signaling 2 antisense transcript 1
TIMP 2/3 tissue inhibitor of metalloproteinase
EZH2 enhancer of zeste homolog
ZNF217 zinc finger protein 217
ZEB1 zinc-finger E-box binding homeobox 1
PRUNE2 prune homolog 2
NKX3-1 homeobox protein Nkx 3.1
FOXA1 forkhead box protein A1
BCL4 B-cell lymphoma like-2 like protein 4
SMAD3 mothers against decapentaplegic homolog 3
CTBP1 C-terminal binding protein 1 antisense
HDAC-Sin3A histone decarboxylase paired amphipathic helix protein Sin3a complex
TMEM48 transmembrane protein 48
CKS2 cyclin-dependent kinase regulatory subunit 2
hnRNP A1 heterogeneous nuclear ribonucleoprotein A1
U2AF65 U2 small nuclear RNA auxiliary factor 2
DAB2IP disabled homolog 2-interacting protein
TMPRSS2 transmembrane protease, serine 2
ERG ETS (E-twenty-six)-related gene
SWI/SFN complex switch/sucrose non-fermentable complex
TNSF10 tumor necrosis factor superfamily member 10
MDM2 mouse double minute 2 homolog
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