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Cancer-susceptibility genes

Classical epidemiological studies have identified populations
and families at increased cancer risk. Molecular epidemiology
has a more ambitious goal, i.e. the identification of
individuals at high cancer risk in these cancer-prone
populations and families. Achieving this goal is challenging
both current molecular technologies and epidemiological
designs, and exposing bioethical dilemmas.

The two facets of molecular epidemiology of human
cancer risk are assessment of carcinogen exposure and
inherited or acquired host cancer-susceptibility factors
(reviewed in Harris, 1991; Perera and Santella, 1993). The
interaction between these two facets determines an indivi-
dual's cancer risk. This paradigm can also improve cancer
risk assessment (Figure 1). When combined with carcinogen
bioassays in laboratory animals and classical epidemiology
molecular epidemiology can contribute to the four traditional
aspects of cancer risk assessment: hazard identification,
dose - response assessment, exposure assessment and risk
characterisation. Improved cancer risk assessment has broad
public health and economic implications (National Research
Council, 1994).

Weighty bioethical consequences follow the identification
of high-risk individuals (Li et al., 1992). The bioethical issues
include: autonomy, privacy, justice and equity (Figure 1).
One can argue that the knowledge of one's risk can be
beneficial. However, more encompassing bioethical issues
arise, such as an individual's responsibility to family members
and psychosocial concerns regarding the genetic testing of
children (Li et al., 1992). Therefore, the uncertainty of the
current individual risk assessments and the limited avail-
ability of genetic counselling services dictate caution and,
many argue, the restriction of genetic testing to those
conditions amenable to preventative or therapeutic interven-
tion.

This lecture will discuss cancer susceptibility genes as
inherited host factors and then focus on the mutational
spectrum of the p53 tumour-suppressor gene and the testing
of hypotheses generated by the analysis of this gene. The
discussion of the p53 gene will complement the excellent 1993
Walter Hubert Lecture presented by Arnold Levine (Levine
et al., 1994).
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The investigation of rare cancer-prone families has led to the
identification of germline mutations in genes that are
frequently somatically mutated in sporadic cancers. Exam-
ples of these syndromes are listed in Table I. The altered
genes encode proteins that perform diverse cellular processes,
including transcription, cell cycle control, xenobiotic meta-
bolism and DNA repair. The increased cancer risk of an
individual carrying one of these germline mutations can be
extraordinarily high, i.e. more than 1000-fold in xeroderma
pigmentosum (complementation groups A-G) (Figure 2).
However, high-risk inherited conditions are rare in the
general population and number only a few cases in 105 live
births. More common inherited cancer-susceptibility condi-
tions, e.g. deficiencies in the N-acetyltransferase (NAT) genes
or glutathione S-transferase genes, may contribute a more
substantial attributable risk in a carcinogen-exposed popula-
tion.

The recently identified cancer-susceptibility genes involved
in breast-ovarian cancer (BRCAI) and hereditary non-

polyposis colorectal cancer occur at an intermediate rate of
one in several hundred live births in the general population.
The frequency of these cancer-susceptibility genes and their
attributable cancer risk are important considerations in
developing public health policy for genetic screening of the
general population. Different public health and bioethical
considerations apply to the genetic screening of family
members of individuals carrying a high cancer risk allele in
their germ line (Li et al., 1992).

Mutational spectra of tumour-suppressor genes

Mutational spectrum analysis, the study of the types and
locations of DNA alterations, describes the often character-
istic patterns of DNA changes caused by endogenous and
exogenous mutagens. Alterations of cancer-related 'genes
found in tumours not only represent the interactions of
carcinogens with DNA and cellular DNA repair processes,
but also reflect the selection of those mutations that provide
premalignant and malignant cells with a clonal growth
advantage. Study of the frequency, timing, and mutational
spectra of p53 and other cancer-related genes provides
insights into the aetiology and molecular pathogenesis of
cancer and generates hypotheses for future investigations.
These include questions regarding carcinogen-DNA interac-
tions, functions of the affected gene products, mechanisms of
carcinogenesis in specific organs or tissues and features of
general cell biology, such as DNA replication and repair.

The types of mutations in tumour-suppressor genes are
most frequently nonsense mutations, deletions and insertions
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Figure 1 Human cancer risk assessment and bioethical issues associated with molecular epidemiology and human cancer.

that produce either an assent or truncated protein product.
These mutations are clearly 'loss of function mutations.' The
p53 tumour suppressor has an unusual spectrum of mutations
when compared with other suppressor genes, e.g. APC,
BRCA-1 or p16"NK4 (Figure 3). Missense mutations in which
the encoded protein contains amino acid substitutions are

commonly found in the p53 tumour-suppressor gene. The
missense class of mutations can cause both a loss of tumour-
suppressor function and a gain of oncogenic function by
changing the repertoire of genes whose expression are
controlled by this transcription factor (Lane and Bench-
imol., 1990; Dittmer et al., 1993; Hsiao et al., 1994). The p53
gene was initially classified as an oncogene until it was
discovered in the late 1980s that the cDNAs cloned from
murine and human tumour cells contained missense
mutations; it was correctly classified when a true wild-type
p53 gene construct suppressed the growth of tumour cells
(Eliyahu et al., 1989; Finlay et al., 1989; Baker et al., 1990;
Diller et al., 1990; Mercer et al., 1990; Chen et al., 1991;
Cariello et al., 1994). This Dr Jekyll and Mr Hyde duality
may be one explanation of the remarkable frequency of p53
mutations in human cancer.

The p53 gene is well suited to mutational spectrum
analysis for several reasons. First, since p53 mutations are
common in many human cancers, a sizable database of about
5000 entries has accrued, the analysis of which can yield
statistically valid conclusions (Hollstein et al., 1994). The
modest size of the p53 gene (11 exons, 393 amino acids)
permits study of the entire coding region, and it is highly
conserved in vertebrates, allowing extrapolation of data from

animal models (Soussi et al., 1990). Point mutations that alter
p53 function are distributed over a large region of the
molecule, especially in the hydrophobic midportion (Hollstein
et al., 1991; Levine et al., 1991; Greenblatt et al., 1994),
where many base substitutions alter p53 conformation and
sequence-specific transactivation activity; thus, correlations
between distinct mutants and functional changes are possible.
Frameshift and nonsense mutations that truncate the protein
can be located outside of these regions, so evaluation of the
entire DNA sequence yields relevant data. This situation
differs from the ras oncogenes whose transforming mutations
occur primarily in three codons, a few sequence motifs and a
critical functional domain (Park and Vande Woude., 1989).
The diversity of p53 mutational events permits more
extensive inferences regarding mechanisms of DNA damage
and mutation.

Molecular archaeology of p53 mutations

Mutations can arise by either endogenous mutagenic
mechanisms or exogenous mutagenic agents and are
archived in the spectrum of p53 mutations found in human
cancer (Hollstein et al., 1991; Levine et al., 1991; Harris,
1993; Greenblatt et al., 1994; Soussi et al., 1994). Errors
introduced during DNA replication, RNA splicing, DNA
repair and DNA deamination are examples of endogenous
mutagenic mechanisms. The DNA sequence context is an
important factor determining these events. Almost all short
deletions and insertions occur at monotonic runs of two or

Molecular dosimetry of carcinogen exposure

Carcinogen-macromolecular adducts

Cytogenetic end points

Mutational spectra and frequency

Internal exposure assessment

Inherited cancer predisposition
Genetic polymorphism of enzymes involved
in activation and detoxification of carcinogens
Genomic instability and DNA repair
deficient conditions

- Germline mutations in tumour-suppressor genes
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more identical bases or at repeats of 2- to 8-base pair DNA
motifs, either in tandem or separated by a short intervening
sequence. Several mechanisms are probably involved (Ripley,
1990). The mechanism that has been most studied is called
slipped mispairing, a misalignment of the template DNA
strands during replication that leads to either deletion, if the
nucleotides excluded from pairing are on the template strand,
or insertion, if they are on the primer strand. When direct
repeat sequences mispair with a complementary motif nearby,
the intervening oligonucleotide sequence may form a loop
between the two repeat motifs and be deleted (Jego et al.,
1993; Krawczak and Cooper, 1991). More lengthy runs and
sequence repeats are more likely to generate frameshift
mutations. The detection of errors in replication of reporter
genes has helped quantify this phenomenon (Kunkel, 1993).
The deletions and insertions in the p53 gene found in human
tumours also may be biologically selected from the broad
array of such mutations occurring in human cells. When
compared with the distribution of missense mutations, these
types of mutations occur more frequently in exons 2-4
(54%) and 9-11 (77%) than in exons 5-8 (20%) (Figure 4).
The N-terminus of the p53 protein (encoded by exons 2-4)
(reviewed in Vogelstein and Kinzler, 1992a; Liu et al., 1993;
Lu and Levine, 1995; Thut et al., 1995) has an abundance of
acidic amino acids that are involved in transcriptional
function of p53 (Fields and Jang, 1990; Raycroft et al.,
1990), binds to transcription factors such as tata box binding
protein (TBP) in transcription factor complex IID (TFIID)
(Seto et al., 1992; Liu et al., 1993; Mack et al., 1993; Martin
et al., 1993; Truant et al., 1993), and experimental studies
have shown that multiple point mutations are required to
inactivate its transcriptional transactivation function (Lin et
al., 1994). The carboxy terminus (encoded by exons 9- 11) of
the p53 protein is enriched in basic amino acids that are
important in the oligomerisation and nuclear localisation of
the p53 protein (reviewed in Clore et al., 1994; Lee et al.,
1994; Hupp and Lane, 1995; Jeffrey et al., 1995), recognition
of DNA damage (Bakalkin et al., 1994; Jayaraman et al.,
1995) and induction of apoptosis (XW Wang and CC Harris,
unpublished results). Multiple point mutations are infre-
quently found in the p53 gene, which is consistent with the
target theory, i.e. exogenous mutagens target the p53 gene
within the context of the entire human genome. Therefore,
deletions and insertions would be a more efficient mutagenic
mechanism than single point mutations in disrupting these N-
terminal and C-terminal functional domains.

Deamination of DNA is a spontaneous chemical process
(Figure 5). For example, 5-methylcytosine comprises about 3%
of the deoxynucleotides, occurs primarily at CpG dinuileo-
tides, and can deaminate to form thymidine. If this G-T
mismatch is not repaired, C to T transitions arise. Deamination
of cytosine can also generate C to T transitions if uracil
glycosylase and G -T mismatch repair are inefficient. Oxy-
radicals can enhance the rate of the deamination reaction
(Wink et al., 1991; Nguyen et al., 1992) so that the production
of nitric oxide by inducible nitric oxide synthase could
contribute to this endogenous mechanism of mutagenesis.

The missense mutations in the p53 gene are non-random.
Five of the six mutational hotspots in the p53 gene occur at
CpG dinucleotides in codons encoding the basic amino acid,
arginine (Figure 6). These mutational hotspots are at sites
that are essential for maintaining the interface between the
p53 protein and its DNA consensus site responsible for DNA
binding and transcriptional activity. This structure - function
relationship became readily apparent when the crystal
structure of the p53 protein was compared with the p53
mutation spectrum (Cho et al., 1994; Prives, 1994).

The narrow mutational spectra exhibited by some
mutagens has popularised the idea that each agent might
leave a specific identifying 'fingerprint' of site and type of
DNA damage (Vogelstein and Kinzler., 1992b). It is probably
more realistic to expect that carcinogens will produce
mutation patterns that are characteristic and instructive but
not as unique as fingerprints. Examples of associations
between exposure to carcinomas and p53 mutational spectra
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* CYP2D6 Carcinogen metabolism
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Figure 2 Examples of cancer-susceptibility genes and cancer risk.
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Figure 3 Classes of mutations found in tumour-suppressor genes.

in human cancer are shown in Table II. The induction of skin
carcinoma by ultraviolet light is indicated by the occurrence
of p53 mutations at dipyrimidine sites including CC to TT
double base changes (Brash et al., 1991; Ziegler et al., 1994).
The high frequency of CC to TT transitions in the non-

transcribed DNA strand is a reflection of strand-specific
repair of the p53 gene (Evans et al., 1993). Since patients with
xeroderma pigmentosum group C have a severe deficiency in
nucleotide excision repair of the non-transcribed strand of
DNA, one would expect a higher frequency of CC to TT
transitions with a coding strand bias in skin carcinomas from
these individuals (Evans et al., 1993). This prediction has
proven to be correct (Figure 7) (Dumaz et al., 1994).
Mutations of dipyrimidine sites in skin carcinomas also
show a non-random distribution among sites within the p53

gene. Recent studies have shown that rates of cyclobutane
dimer repair very among codons within p53 (Tornaletti and
Pfeifer, 1994). Therefore, preferential strand repair and
preferential sequence repair of the actively transcribing p53
gene influence the p53 mutational spectrum of UV-induced
skin carcinomas.

The p53 mutational spectrum of hepatocellular carcinoma
is a second example of a molecular linkage between
carcinogen exposure and cancer. In liver tumours from
persons living in geographic areas in which aflatoxin B, and
hepatitis B virus (HBV) are cancer risk factors most p53
mutations are at the third nucleotide pair of codon 249
(Bressac et al., 1991; Hsu et al., 1991; Scorsone et al., 1992;
Li et al., 1993). A dose-dependent relationship between
dietary aflatoxin B, intake and codon 249ler p53 mutations is

Low
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Splice site I

Deletions +
^ftf%,

ense
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sense

Frameshift 71

BRCA1 (n=80)
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Splice site 6%
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Figure 4 Mutational spectrum found in different functional regions of the p53 gene.
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Figure 5 Deamination of cytosine and 5-methylcytosine is an example of endogenous mutagenesis.

observed in hepatocellular carcinoma from Asia, Africa and
North America (Figure 8). The mutation load of 249ser
mutant cells in non-tumorous liver also is positively
correlated with dietary aflatoxin B1 (AFB1) exposure
(Aguilar et al., 1994). Exposure of aflatoxin B1 to human
liver cells in vitro produces 249Ser (AGG to AGT) p53
mutants (Aguilar et al., 1993; K Mace, F Aguilar, CC Harris
and GP Pfeifer, unpublished results). These results indicate
that expression of the 249Ser mutant p53 protein provides a
specific growth and/or survival advantage to liver cells and
are consistent with the hypothesis that p53 mutations can
occur early in liver carcinogenesis.

Since cellular context may influence the pathobiological
effects of specific mutants of p53, the 249Ser mutant may be
especially potent in hepatocytes. The enhanced growth rate of
p53-null HEP-3B cells by transfected 2495er mutant p53
indicates a gain of oncogenic function and is consistent with
this hypothesis (Ponchel et al., 1994). The 249Ser mutant p53
also is more effective than other p53 mutants (143Aa, 175His,

248TrP and 282His) in inhibiting wild-type p53 transcriptional
transactivation activity in human liver cells (Forrester et al.,
1995) (Figure 9). One hypothesis concerning generation of
liver cancers with 249ler mutation is: (a) aflatoxin B1 is
metabolically activated to form the promutagenic N7dG
adduct; and (b) enhanced cell proliferation due to chronic
active viral hepatitis allows both fixation of the G:C to T:A
transversion in codon 249 of the p53 gene and selective clonal
expansion of the cells containing this mutant p53 gene. In
addition to producing chronic active hepatitis, HBV also has
other important pathobiological effects. For example,
hepatitis B viral gene products may form complexes with
cellular transcription factors, e.g. ATF2 (Maguire et al.,
1991), up-regulate transcription of cellular and viral genes
(Twu and Schlozmer, 1987; Spandau and Lee, 1988;
Shirakata et al., 1989; Caselmann et al., 1990; Kekule et
al., 1990) or activate the ras-raf-MAP kinase signalling
cascade (Benn and Schneider, 1994).

Inactivation of p53 tumour-suppressor gene functions

p53 mutations
in exons 2-4

(n=1 14)
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giycosyiase
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Transactivation : Mutations and Oligomerization and

C

Non-missense 213
293

20567 TBP
13E19 HSP70

1 123 ElI
1 117 RPA

13_41 MDM2

SV40 LARGE T-Ag TBI

B55K
RPA 21

Figure 6 Schematic representation of the p53 molecule. The p53 protein consists of 393 amino acids with functional domains,
evolutionarily conserved domains and regions designated as mutational hotspots. Functional domains include the transactivation
region (amino acids 20-42; gold block), the sequence-specific DNA-binding region (amino acids 100-293), the nuclear localisation
sequence (amino acids 316-325; dark green block) and the oligomerisation region (amino acids 319-360; green block). Cellular or

oncoviral proteins bind to specific areas of the p53 protein. Evolutionarily conserved domains (amino acids 17-29, 97-292 and
324- 352; magenta areas) were determined using the MACAW program. Seven mutational hotspot regions within the large
conserved domain are also identified (amino acids 130 - 142, 151 - 164, 171 - 181, 193 - 200, 213 - 223, 234 - 258 and 270 - 286; violet
blocks). Functional domains and protein binding sites (aqua bars underneath) were compiled from references. Vertical lines above
the schematic missense mutations; lines below schematic, non-missense mutations. The majority of missense mutations are in the
conserved hydrophobic mid-region, whereas non-missense (nonsense, frameshift, splicing and silent mutations) are distributed
throughout the protein, determined primarily by sequence context. Courtesy of Dr Curtis C Harris; Artwork by Dorothea Dudek.

including DNA repair and apoptosis may be another
consequence of cellular protein-HBV oncoprotein complex
formation. Since the HBVX gene is frequently integrated and
expressed in human hepatocellular carcinomas from high-risk
geographic areas (Unsal et al., 1994; Paterlini et al., 1995), we

have focused our attention on the X protein, which binds to
p53 (Feitelson et al., 1993; Wang et al., 1994; Ueda et al.,
1995) and inhibits its sequence-specific DNA binding and
transcriptional activity (Wang et al., 1994). HBV protein also

Table II Mutational spectra of p53 in human cancers'
Carcinogen
exposure Type of neoplasm Type of mutation

Aflatoxin B1 Hepatocellular Codon 249Ser
carcinoma mutations

Sunlight Skin carcinoma Dipyrimidine mutations
on nontranscribed
DNA strand

Cigarette smoke Lung carcinoma G:C to T:A mutations
on non-transcribed
DNA strand

Tobacco and Head and neck Increase the frequency
alcohol carcinoma of p53 mutations
Vinyl chloride Hepatic A:T to T:A

angiosarcomas transversions
aReviewed in Greenblatt et al., 1994; Brennan et al., 1995.

inhibits p53-dependent apoptosis (Wang et al., 1995). Based
on the above results, we have speculated that HBV protein
may modulate p53 function in nucleotide excision DNA
repair (Wang et al., 1995), including repair of AFBI-DNA
adducts, and are currently testing this hypothesis. HBV
integration also could increase genomic instability, including
abnormal chromosomal segregation and increase rates of
DNA recombination (Hino et al., 1989, 1991). Therefore, a

second hypothesis of liver carcinogenesis emerges in which
integration of the HBV gene is the initial event in these high
cancer risk geographic areas and AFB,-mediated 249Ser p53
mutation is the second genetic lesion that leads to further
genomic instability.

Conclusions

Cancer risk assessment, a highly visible discipline in public
health, has relied historically on classical epidemiology,
including chronic exposure of rodents to potential carcino-
gens, and the mathematical modelling of these findings. The
field has been forced to steer a prudent course of conservative
risk assessment because of limited knowledge of the complex
pathobiological processes during carcinogenesis: differences in
the metabolism of carcinogens, different DNA repair
capacities, variable genomic stability among animal species
and variation among individuals with inherited cancer
predisposition have made definitive analysis of cancer risk
almost impossible (Harris, 1991; Barrett and Wiseman, 1992).
Because regulatory decisions based on cancer risk assessments
have significant public health and economic consequences,

393
393
393
393
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Figure 7 A comparison of the p53 mutational spectrum in skin carcinomas from normal vs xeroderma pigmentosum group C
donors.

* Senegal (n=15)

+ Mozambique (n=15)
Qidong and Quanxi,
PRC (n=98)

* Monterey, Mexico (n=1 4)
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Figure 8 Correlation of aflatoxin B1 dietary exposure and frequency of codon 249Ser p53 mutation in hepatocellular carcinomas.
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Figure 9 Dominant negative effects of p53 mutants on the
transcription of wild-type p53 in a p53-null human liver cell line
(HEP-3B).

the scientific basis of risk assessment continues to be, and
should continue to be, actively investigated (National
Research Council, 1994).

The association of a suspected carcinogenic exposure and
cancer risk can be studied in populations with classic
epidemiological techniques. However, these techniques are
not applicable to the assessment of risk in individuals.
Molecular epidemiology, in contrast, is a field that integrates
molecular biology, in vitro and in vivo laboratory models,
biochemistry and epidemiology to infer individual cancer risk
(reviewed in Harris, 1991; Shields and Harris, 1991; Perera
and Santella, 1993) (Figure 1). Carcinogen-macromolecular
adduct levels, and somatic cell mutations can be measured to
determine the biologically effective dose of carcinogen.
Molecular epidemiology also explores host cancer suscept-
ibilities, such as carcinogen metabolic activation, DNA
repair, endogenous mutation rates and inheritance of
tumour-suppressor genes. Substantial interindividual varia-
tion for each of these biological end points has been shown
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(Harris, 1991) and, therefore, highlights the need for assessing
cancer risk on an individual basis. Investigations of the p53
tumour-suppressor gene are an example of the recent
progress in molecular aspects of cancer research. A better
understanding of molecular carcinogenesis and molecular
epidemiology will eventually decrease the qualitative and
quantitative uncertainties associated with the current state of
cancer risk assessment and improve public health decisions
concerning cancer hazards. Indeed, determination of the type

and number of mutations in p53 and other cancer-related
genes in tissues from 'healthy' people may allow the
identification of those at increased cancer. risk and their
consequent protection by preventative and therapeutic
measures (Figure 1).
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