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ABSTRACT

Objectives: Regulatory bodies, health technology assessment agencies, payers, physicians, and oth-
er decision-makers increasingly recognize the importance of real-world evidence (RWE) to provide 
important and relevant insights on treatment patterns, burden/cost of illness, product safety, and long-
term and comparative effectiveness. However, RWE generation requires a careful approach to ensure 
rigorous analysis and interpretation. There are limited examples of comprehensive methodology for 
the generation of RWE on patients who have undergone neuromodulation for drug-resistant epilepsy 
(DRE). This is likely due, at least in part, to the many challenges inherent in using real-world data 
to define DRE, neuromodulation (including type implanted), and related outcomes of interest. We 
sought to provide recommendations to enable generation of robust RWE that can increase knowledge 
of “real-world” patients with DRE and help inform the difficult decisions regarding treatment choices 
and reimbursement for this particularly vulnerable population.

Methods: We drew upon our collective decades of experience in RWE generation and relevant dis-
ciplines (epidemiology, health economics, and biostatistics) to describe challenges inherent to this 
therapeutic area and to provide potential solutions thereto within healthcare claims databases. Several 
examples were provided from our experiences in DRE to further illustrate our recommendations for 
generation of robust RWE in this therapeutic area.

Results: Our recommendations focus on considerations for the selection of an appropriate data source, 
development of a study timeline, exposure allotment (specifically, neuromodulation implantation for 
patients with DRE), and ascertainment of relevant outcomes. 

Conclusions: The need for RWE to inform healthcare decisions has never been greater and contin-
ues to grow in importance to regulators, payers, physicians, and other key stakeholders. However, as 
real-world data sources used to generate RWE are typically generated for reasons other than research, 
rigorous methodology is required to minimize bias and fully unlock their value.

BACKGROUND

The US Food and Drug Administration (FDA) defines real-world data 
(RWD) as "data relating to patient health status and/or delivery of 
healthcare routinely collected from a variety of sources.”1 RWD include 
electronic medical records (EMR), administrative claims and billing 
data, product and disease registries, surveys, social media, mobile de-
vices, and wearables. The FDA describes real-world evidence (RWE) as 
information obtained from analyses of RWD that can inform clinical 
practice, healthcare policy, and manufacturers’ strategies.1 Regulatory 
agencies from several countries now recognize the usefulness of RWE,1-5 

as do health technology assessment (HTA) agencies, payers, physicians, 
and other key decision makers.6-9 While the increasing importance of 
RWD is clear, the challenges associated with its use to generate robust 
and rigorous RWE are less well understood.

For many reasons, epilepsy is an ideal condition to demonstrate 
challenges inherent in RWE generation. Epilepsy is a heterogeneous 
condition, with each type (eg, generalized, focal) characterized with 
specific diagnosis codes, although clinicians and billing specialists may 
differ on the diagnoses they select. Epilepsy has multiple stages and se-
verity levels based on type(s) experienced and patient response to treat-
ment, none of which are directly captured in secondary databases.10 
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It also is a prevalent condition, affecting approximately 2.3 million 
adults and 450,000 children in the United States11; roughly one-third 
of adults and one-quarter of children with epilepsy have drug-resistant 
epilepsy (DRE),12 which is defined by the International League Against 
Epilepsy as “failure of adequate trials of two tolerated and appropriately 
chosen anti-seizure medication (ASM) schedules (whether as mono-
therapies or in combination) to achieve sustained seizure freedom.”13 
Neuromodulation (NM)–based interventions represent an evolving 
treatment alternative for patients with DRE. Three devices have been 
approved by the US FDA for patients with partial-onset seizures refrac-
tory to treatment by ASMs: vagus nerve stimulation (VNS), responsive 
neurostimulation (RNS), and deep brain stimulation (DBS).14-16 With-
in RWD, NM modalities are difficult to differentiate,12 as relevant pro-
cedure codes have varying levels of sensitivity and specificity. Important 
epilepsy-related variables, including seizure frequency and severity, are 
not recorded consistently or comprehensively, nor are decision-making 
processes (patient or clinician) related to therapy choice, severity of 
adverse events, impacts to family members and caregivers (especially in 
relation to indirect costs), or measures related to quality of life. Several 
algorithms have been developed to identify patients with epilepsy using 
data available in healthcare claims, although these still include biases 
due to the limitations of RWD.10,17-21

We identify and describe some challenges associated with RWE 
generation in epilepsy based on healthcare claims and offer potential 
solutions with illustrative examples based on our recent experience 
focused on patients who received NM for DRE.22-24 Our goal was to 
provide researchers with a holistic view of designing an RWE genera-
tion study (eg, allocation of exposure[s] and assessment of outcomes), 
specific to patients who underwent NM for DRE, using healthcare 
claims data. 

METHODOLOGIC RECOMMENDATIONS

Data Source
Several sources of RWD exist—including claims, electronic medical 
records (EMR), social media data, registries, and survey data. The re-
searcher should select the source that will enable examination of the 
research questions of interest. Healthcare claims data are a common 
RWD source from which RWE is generated because: (1) they are rela-
tively straightforward to analyze; (2) they are relatively inexpensive to 
acquire (at least compared with other options); and (3) they provide a 
comprehensive view of all care received (and medications dispensed) 
for which insurance reimbursement is obtained, thereby enabling as-
sessments of a broad number of outcomes relevant to payers—a key 
stakeholder in discussions related to the ability of patients to access 
appropriate care. 

Healthcare claims databases comprise administrative claims that 
are generated by healthcare providers and adjudicated by insurers, 
along with enrollment data, including dates of eligibility for medical 
and pharmacy insurance coverage. Their primary purpose is to facilitate 
billing and reimbursement for healthcare services rendered and med-
ications and durable medical equipment dispensed. Claims are ideal 
to assess patterns of use and cost of healthcare services and pharmaco-
therapies because they capture all care for which insurers provide reim-
bursement, including but not limited to information on services ren-
dered (eg, procedures, diagnostics, administered therapies, medications 
dispensed by pharmacies) and amounts reimbursed by insurer and 
patient. However, claims lack reasons for treatment selection (or even 
if a treatment was discussed/suggested but ultimately rejected), results 
of diagnostic testing, vital statistics and other anthropomorphic data, 
and symptomatology; they also lack information on non-reimbursed 
services, including use of over-the-counter therapies. When selecting a 

data source—claims or other—we recommend first assessing its ability 
to support the planned study across a number of criteria. For example, 
the data source should include a sufficient sample size of patients with 
the particular indication and/or treatment of interest. The outcomes 
and exposures of the study—or reasonable proxies if necessary—must 
also be reliably measurable within the data set. Other considerations 
include the cost of the data set, the time period over which data are 
required, the time to access the data, and whether the data can be ex-
tracted and sent to the researcher for analysis (in some instances, data 
holders do not allow their data to be extracted and instead either re-
quire researchers to work virtually in a secure data environment or to 
submit their protocol and statistical analysis plan to the data holder, 
who then conducts the analysis).

In our study of patients who underwent NM for DRE, we used 
the Merative (formerly IBM) MarketScan® Commercial Database be-
cause it (1) captured relevant care across all healthcare providers who 
treat patients with DRE (ie, optimal comprehensiveness, given that 
DRE-related care is typically rendered in multiple settings); (2) in-
cluded eligibility data, which allowed for the establishment of “time 
at risk” (ie, an enrolled day without claims can be assumed to indicate 
a day without utilization); and (3) included what is paid by insurers 
and patients for care (an important outcome in our study) (see Study 
Timeline below for more information on this topic). While US claims 
databases are broadly similar in terms of their composition and what 
is and is not available to researchers, the Merative database is relative-
ly large, including longitudinal patient-level data for more than 273 
million patients,25 including 28 218 patients who were deemed to have 
received a NM device within the time period of interest. 

Study Timeline
When conducting comparative effectiveness assessments using second-
ary data, an important initial step is defining periods of interest. This 
may include the period over which relevant exposures (such as NM 
implantation) will be identified, relevant outcomes will be assessed, and 
important covariates established. Defining these periods allow the re-
searcher to establish appropriate temporal relationships (ie, the relevant 
exposure[s] should occur before follow-up can begin; similarly, covari-
ates and “baseline” characteristics of the sample should be established 
prior to receipt of exposure[s]) (Figure 1). The exposure date, or index 
date, reflects the date of initial diagnosis or initiation/receipt of a rel-
evant treatment/procedure such as NM implantation; it also serves to 
demarcate patient time, with follow-up beginning on or after this date, 
and patient characteristics/covariates typically described using informa-
tion available before this date. 

Enrollment data, which are available in many claims databases, 
are important to establish “at risk” time, as a day enrolled where no 
utilization occurs can be considered a day without receipt of health-
care; conversely, as the database is developed from the perspective of 
health insurers who must reimburse care rendered on their members, 
no information on healthcare utilization is available for a day where the 
patient is not enrolled in the plan (for any reason). Compounding this 
problem is the fact that in the US, gaps in healthcare coverage due to 
changes in employment and/or insurance provider are frequent, result-
ing in periods of incomplete data within healthcare claims. Changing 
insurers is also relatively common—up to 22% of patients enrolled 
in US commercial (ie, private) health plans disenroll annually.26 Ac-
cordingly, one must balance the duration of a baseline period (with 
a continuous enrollment requirement to ensure maximal capture of 
relevant data) with the need to have sufficient patients for analysis. 
Depending on the data source and research question(s), the researcher 
may want to allow some maximum gap in coverage (eg, ≤14 days) to 
maximize the study sample while minimizing the likelihood of missing 
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data. The US Centers for Medicare & Medicaid Services define a “short 
gap” in healthcare coverage as fewer than 3 consecutive months during 
the year without insurance coverage27; however, any allowed gaps in-
troduce the possibility of missing data. We recommend conducting a 
preliminary assessment of the data to determine enrollment durations 
among patients, and to use that information (including the impact of 
continuous enrollment on potential sample size), coupled with what is 
known about the disease area and the research question(s) of interest, 
to inform decisions on whether gaps in coverage should be allowed and 
if so, how to define the maximum duration and number of such gaps. 

However, there are several databases (including some claims da-
tabases) that do not include enrollment data. In such databases, re-
searchers may impose a utilization-based “active” patient criterion in 
which patients are required to have a healthcare encounter documented 
within some time period prior to exposure assessment. The implicit 
assumption is that this patient would likely return to the same place 
for care, and therefore utilization serves as a proxy for active enroll-
ment. However, the more stringent the utilization-based requirement 
imposed, the less generalizable the sample population becomes to the 
overall population of interest. Unfortunately, without additional (and 
likely time-consuming and expensive) validation efforts, there is no 
way to know either the amount of missing data that may fall into “gap 
days” or the degree to which any “active” patient criteria minimize the 
risk of missing data. 

In our study, we defined the study period as spanning January 1, 
2012, through December 31, 2019, which represented the most recent 
period for which data were available at the time the study was initiated. 
We identified all patients who underwent NM implantation (the expo-
sure of interest) during this period. The earliest date on which NM im-
plantation was identified was designated the index date. The 2-year pe-
riod prior to the index date was designated the baseline period. Because 
many years may elapse between initial implantation and the need for 
device change/repair, we opted for a 2-year baseline period in our study 
and excluded all patients with any evidence of NM during baseline 
(ie, we believed some indicator of prevalent NM would be identifiable 
over a 2-year period but potentially not with a shorter period). De-
spite the negative impact on overall sample size—the required 2 years 
of continuous enrollment prior to the index date resulted in the loss 
of 58% of patients who underwent NM implantation—the relatively 
long baseline period maximized the likelihood that the identified in-
dex date represented incident NM implantation. Further, the relatively 
long baseline period also allowed for a more comprehensive capture of 
patient demographic and clinical characteristics, along with patterns of 
use and cost of healthcare services and pharmacotherapy prior to NM 
implantation. This helped shed light on overall patient burden prior to 

NM implantation, which in and of itself has increased knowledge on 
this particularly vulnerable population.28 Patients were required to be 
continuously enrolled over the entire 2-year baseline period (no gaps in 
enrollment were allowed to ensure complete data capture for selected 
patients). Patients were followed for a maximum of 2 years following 
NM implantation, or until death, disenrollment (any reason), or end 
of study database (whichever occurred first).

Ascertainment of Exposures and Outcomes
Exposure assessment: Constitution of study measures should be in-
formed by the type of RWD source(s) used, along with prior research 
(within the same or a similar source) where possible. We encourage a 
review of existing publications to inform indication-related operational 
definitions, including identification of methodologies that have been 
validated and/or implemented within the same RWD source (or type 
of RWD source) used for the study in question.14,29-32 Where possi-
ble, operational definitions should be reviewed by relevant experts to 
further ensure accuracy and appropriateness. In the context of RWE, 
“experts” refers to clinicians experienced in the relevant therapeutic 
area, as well as coding specialists (where applicable). To mitigate is-
sues related to misclassification, researchers may require multiple in-
stances of relevant codes on different days; they may also consider use 
of procedures, medications, and/or visit type as further evidence (our 
study required codes for NM, epilepsy, and ASMs—all of which are 
expected in DRE).33-35 Prior work has found that definitions that in-
corporate diagnoses and medications (at least medications specific to 
the disease in question) perform better than those limited to diagnoses 
alone.20 If needed, proxies should be used when relevant information 
is unavailable; as relevant, operational definitions should account for 
coding practices and/or differences in available codes over time. Should 
detailed clinical data be available, we encourage its use to further in-
crease specificity of case definitions and reduce risk of misclassification. 
Definitions may include information that can illustrate disease sever-
ity (eg, hospitalizations, with corresponding relevant diagnosis codes, 
or even total healthcare costs [when available] as a proxy for overall 
levels of morbidity), antecedent therapies (eg, numbers and types of 
prescription dispenses, potentially establishing lines of therapy), and 
other disease-specific aspects. We also recommend performing sensitiv-
ity analyses where possible, to allow for more insight into possible vari-
ations in the estimates for outcome measures, especially for estimates 
that involve proxy measures or variations on case definitions. 

For measures related to devices, such as NM devices, we recom-
mend reviewing manufacturers’ billing guidance, as these presumably 
are used by providers to minimize the likelihood of provider under-
payment due to erroneous or incomplete coding; we also recommend 

Figure 1. Study Timeline
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verifying that multiple modalities are not identified on the same day 
(ie, coding inconsistencies), which we identified in a minority of pa-
tients in our sample (RWD are not always collected with the same 
rigor as data collected during the course of a clinical study). While the 
decision to include or exclude any particular patient is left to the re-
searcher, we recommend removing patients for whom exposure cannot 
be definitively ascertained.

It is also important to note that coding inconsistencies are fre-
quent within claims data, and that data not required to support reim-
bursement are not always entered with the same care as those that do. 
This is because claims information is used for billing purposes rather 
than clinical or research purposes. Accordingly, requiring multiple evi-
dentiary points to inform sample selection minimizes the impact of any 
such inconsistency or error.

As mentioned above, in our study we excluded all patients with-
out continuous enrollment over the baseline period to ensure com-
plete capture of all relevant information related to NM, epilepsy, and 
important covariates. Because our goal was to focus on a DRE cohort 
undergoing initial NM device implantation, we dropped all patients 
with evidence of (1) NM at any time during the baseline period (eg, 
procedure codes for neurostimulator removal, replacement, repair, 

analysis, programming, or complication); (2) multiple devices (ie, 
VNS, RNS, DBS) implanted on the index date; or (3) evidence of 
cranial epilepsy surgery (an alternative surgical intervention for DRE) 
at any time during baseline. We reviewed relevant product manuals36-38 
and published studies22-24 to define NM-related codes (implantation, 
revision, repair, device [re]programming, battery repair) (Table 1). As 
shown in Table 1, some billing codes were specific to individual de-
vices; some were insufficiently specific to differentiate between NM 
products; some covered implantation of any NM device; others could 
differentiate between implantation sites (eg, chest, cranium/skull); and 
others were insufficiently specific to identify insertion site or NM type. 
We decided to only use specific surgical codes that occurred prior to 
any other NM codes (eg, revision, programming) to identify the first 
date of implantation. 

The researcher also should know that codes may change over 
time. For example, procedure codes specific to VNS changed in 2019, 
when CPT-4 codes 95974 and 95975 were removed, and CPT-4 codes 
95976 and 95977 were added.37 Researchers should understand how 
treatments are billed over time, and develop operational definitions 
that ensure that these changes are considered, and are specific to the 
RWD source (including country), and year(s) of interest. 

Table 1. All NM-Related Procedure Codes Identified Among Patientsa During the Study Period, by Code Specificity and Billing Categorization

Code Type Code Code Description Specificity Categorization

CPT 64568 Incision for implantation of cranial nerve (eg, vagus nerve) neurostimulator 
electrode array and pulse generator

Specific VNS

CPT 64569 Revision or replacement of cranial nerve (eg, vagus nerve) neurostimulator 
electrode array, including connection to existing pulse generator

Specific VNS

CPT 64570 Removal of cranial nerve (eg, vagus nerve) neurostimulator electrode array and 
pulse generator

Specific VNS

CPT 95976 Electronic analysis of implanted neurostimulator pulse generator/transmitter 
(eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/
off cycling, burst, magnet mode, dose lockout, patient selectable parameters, 
responsive neuromodulation, detection algorithms, closed loop parameters, and 
passive parameters) by physician or other qualified healthcare professional; with 
simple cranial nerve neurostimulator pulse generator/transmitter programming by 
physician or other qualified healthcare professional

Specific VNS

CPT 95977 Electronic analysis of implanted neurostimulator pulse generator/transmitter 
(eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/
off cycling, burst, magnet mode, dose lockout, patient selectable parameters, 
responsive neuromodulation, detection algorithms, closed loop parameters, and 
passive parameters) by physician or other qualified healthcare professional; with 
complex cranial nerve neurostimulator pulse generator/transmitter programming 
by physician or other qualified healthcare professional

Specific VNS

CPT 61867 Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation 
of neurostimulator electrode array in subcortical site (eg, thalamus, globus 
pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of 
intraoperative microelectrode recording; first array

Specific DBS

CPT 61868 Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation 
of neurostimulator electrode array in subcortical site (eg, thalamus, globus 
pallidus, subthalamic nucleus, periventricular, periaqueductal gray), with use of 
intraoperative microelectrode recording; each additional array (list separately in 
addition to primary procedure)

Specific DBS

CPT 64999 Cranial implantation or replacement of neurostimulator pulse generator Specific RNS

CPT 61850 Craniectomy or craniotomy for implantation of neurostimulator electrodes, 
cerebral, cortical

Specific RNS

CPT 61860 Electrocorticogram from an implanted brain neurostimulator pulse generator/
transmitter, including recording, with interpretation and written report, up to 30 
days

Specific RNS

CPT 95836 Insertion of neurostimulator lead into brain, percutaneous endoscopic approach Specific RNS
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Table 1. All NM-Related Procedure Codes Identified Among Patientsa During the Study Period, by Code Specificity and Billing Categorization

Code Type Code Code Description Specificity Categorization

CPT 61863 Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation 
of neurostimulator electrode array in subcortical site (eg, thalamus, globus 
pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use of 
intraoperative microelectrode recording; first array

Nonspecific RNS/DBS

CPT 61864 Twist drill, burr hole, craniotomy, or craniectomy with stereotactic implantation 
of neurostimulator electrode array in subcortical site (eg, thalamus, globus 
pallidus, subthalamic nucleus, periventricular, periaqueductal gray), without use 
of intraoperative microelectrode recording; each additional array (list separately in 
addition to primary procedure)

Nonspecific RNS/DBS

CPT 61880 Revision or removal of intracranial neurostimulator electrodes Nonspecific RNS/DBS

CPT 61885 Insertion or replacement of cranial neurostimulator pulse generator or receiver, 
direct or inductive coupling; with connection to a single electrode array

Nonspecific RNS/DBS/
VNS

CPT 61886 Insertion or replacement of cranial neurostimulator pulse generator or receiver, 
direct or inductive coupling; with connection to 2 or more electrode arrays

Nonspecific RNS/DBS

CPT 95983 Electronic analysis of implanted neurostimulator pulse generator/transmitter 
(eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/
off cycling, burst, magnet mode, dose lockout, patient selectable parameters, 
responsive neuromodulation, detection algorithms, closed loop parameters, and 
passive parameters) by physician or other qualified healthcare professional; with 
brain neurostimulator pulse generator/transmitter programming, first 15 minutes 
face-to-face time with physician or other qualified healthcare professional

Nonspecific RNS/DBS

CPT 95984 Electronic analysis of implanted neurostimulator pulse generator/transmitter 
(eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/
off cycling, burst, magnet mode, dose lockout, patient selectable parameters, 
responsive neuromodulation, detection algorithms, closed loop parameters, and 
passive parameters) by physician or other qualified healthcare professional; with 
brain neurostimulator pulse generator/transmitter programming, each additional 
15 minutes face-to-face time with physician or other qualified healthcare 
professional (list separately in addition to code for primary procedure)

Nonspecific RNS/DBS

CPT 61888 Revision or removal of cranial neurostimulator pulse generator or receiver Nonspecific RNS/DBS/
VNS

CPT 95970 Electronic analysis of implanted neurostimulator pulse generator/transmitter 
(eg, contact group[s], interleaving, amplitude, pulse width, frequency [Hz], on/
off cycling, burst, magnet mode, dose lockout, patient selectable parameters, 
responsive neuromodulation, detection algorithms, closed loop parameters, and 
passive parameters) by physician or other qualified healthcare professional; with 
brain, cranial nerve, spinal cord, peripheral nerve, or sacral nerve, neurostimulator 
pulse generator/transmitter, without programming

Nonspecific RNS/DBS/
VNS

HCPCS C1778 Lead, neurostimulator (implantable) Specific VNS

HCPCS L8680 Implantable neurostimulator electrode, each Nonspecific VNS/RNS

HCPCS C1787 Patient programmer, neurostimulator Specific DBS

HCPCS C1820 Generator, neurostimulator (implantable), with rechargeable battery and charging 
system

Specific DBS

HCPCS C1883 Adapter/extension, pacing lead or neurostimulator lead (implantable) Specific DBS

HCPCS L8679 Implantable neurostimulator, pulse generator, any type Specific DBS

HCPCS L8681 Patient programmer (external) for use with implantable programmable 
neurostimulator pulse generator, rep

Specific DBS

HCPCS L8687 Implantable neurostimulator pulse generator, dual array, rechargeable, includes 
extension

Specific DBS

HCPCS C1767 Generator, neurostimulator (implantable), non-rechargeable Nonspecific RNS/DBS/
VNS

HCPCS L8688 Implantable neurostimulator pulse generator, dual array, non-rechargeable, 
includes extension

Nonspecific RNS/DBS

HCPCS L8686 Implantable neurostimulator pulse generator, single array, non-rechargeable, 
includes extension

Nonspecific RNS/DBS/
VNS

ICD-10 0JH60BZ Insertion of single array stimulator generator into chest subcutaneous tissue and 
fascia, open approach

Specific DBS
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 As noted above, 58% of patients who underwent NM implan-
tation were excluded from our study due to insufficient durations 
of continuous enrollment during the 2-year baseline period. Conse-
quently, establishing incident epilepsy, DRE (which cannot occur until 
sometime after the diagnosis of epilepsy has been established), and date 
of implantation (which may occur as late as 20 years following DRE 
onset,39,40 whereas mean duration of continuous enrollment in private 
[ie, commercial] US insurance plans is only 1.4 years26) was thought 
to be unfeasible within these data. Moreover, while there are diagnosis 
codes specific to “intractable” epilepsy, they are not consistently used. 
Accordingly, we started with the date of NM implantation based on 
procedure codes only, and then worked backward to ascertain: (1) the 
presence of epilepsy (diagnosis required to be identified on the date of 
implantation); and (2) one or more claims for ASMs during the 12 
months prior to the implant date, with the assumption that clinicians 
would not offer NM until multiple ASM regimens had failed. Our 
definition was therefore based on knowledge of what was and was not 
available in the database, existing NM billing requirements,36-38,41-46 and 
previously utilized definitions in literature.12,18

While all patients in the sample had evidence of epilepsy on index 
date, that does not necessarily mean the procedure was performed for 

that condition. Consequently, with claims data, it was important to 
establish both the presence of the desired condition and the absence of 
other conditions for which the procedure could have been performed. 
In our study, this meant we sought to maximize the likelihood that 
NM was implanted for the management of DRE rather than another 
condition for which NM can be utilized, including essential tremors, 
incontinence, depression, and Parkinson’s disease.14,29-32,47-49 The reason 
each patient undergoes a particular procedure is not recorded in claims 
data; therefore, one must find alternative methods to ensure the proce-
dure was not undertaken for other indications. For example, we discov-
ered a number of patients with at least 1 diagnosis of epilepsy within 
30 days of NM implantation but not on their index date: many of 
these patients had diagnoses for bladder control/incontinence (another 
condition for which NM can also be used39) on their index date; others 
had diagnoses of Parkinson’s disease. We ultimately opted to ensure a 
diagnosis of epilepsy was present on the index date, and to exclude all 
of these patients with “competing” explanations for NM to avoid risk 
of misclassification (Table 2).

While conditions like Parkinson’s disease enable relatively straight-
forward decisions, others, such as depression, which can be another 
reason to use NM or a consequence of DRE, do not. Approximately 

Table 1. All NM-Related Procedure Codes Identified Among Patientsa During the Study Period, by Code Specificity and Billing Categorization

Code Type Code Code Description Specificity Categorization

ICD-10 0JH60DZ Insertion of multiple array stimulator generator into chest subcutaneous tissue and 
fascia, open approach

Specific DBS

ICD-10 0JH60EZ Insertion of multiple array rechargeable stimulator generator into chest 
subcutaneous tissue and fascia

Specific DBS

ICD-10 0JPT0MZ Removal of stimulator generator from trunk subcutaneous tissue and fascia, open 
approach

Specific DBS

ICD-10 0JPT3MZ Removal of stimulator generator from trunk subcutaneous tissue and fascia, 
percutaneous approach

Specific DBS

ICD-10 00P03MZ Removal of neurostimulator lead from brain, percutaneous approach Specific DBS

ICD-10 00H04MZ Insertion of neurostimulator generator into skull, open approach Specific RNS

ICD-10 0NH00NZ Removal of neurostimulator generator from skull, open approach Specific RNS

ICD-10 0NP00NZ Cranial implantation or replacement of neurostimulator pulse generator Specific RNS

ICD-10 00H00MZ Insertion of neurostimulator lead into brain, open approach Nonspecific RNS/DBS

ICD-10 00H03MZ Insertion of neurostimulator lead into brain, percutaneous approach Nonspecific RNS/DBS

ICD-10 00P00MZ Removal of neurostimulator lead from brain, open approach Nonspecific RNS/DBS

ICD-9 8605 Incision with removal of foreign body or device from skin and subcutaneous tissue Specific DBS

ICD-9 8694 Insertion or replacement of single array neurostimulator pulse generator, not 
specified as rechargeable

Specific DBS

ICD-9 8695 Insertion or replacement of multiple array neurostimulator pulse generator, not 
specified as rechargeable

Specific DBS

ICD-9 8696 Insertion or replacement of other neurostimulator pulse generator Specific DBS

ICD-9 8697 Insertion or replacement of single array rechargeable neurostimulator pulse 
generator

Specific DBS

ICD-9 8698 Insertion or replacement of multiple array (two or more) rechargeable 
neurostimulator pulse generator

Specific DBS

ICD-9 0120 Removal of cranial neurostimulator pulse generator Specific RNS

ICD-9 0129 Twist drill or burr hole(s) for implantation of neurostimulator electrodes, cortical Specific RNS

ICD-9 0296 Insertion of sphenoidal electrodes Nonspecific RNS/DBS

ICD-9 0122 Removal of intracranial neurostimulator lead(s) Nonspecific RNS/DBS

ICD-9 0293 Implantation or replacement of intracranial neurostimulator lead(s) Nonspecific RNS/DBS
aDemonstrated codes are among all patients with any neuromodulation-related procedure code during the exposure identification period (January 1, 2012–December 
31, 2019) and prior to implementation of additional exclusion criteria (eg, exclusion of codes indicating device removal/replacement). 
Abbreviations: CPT, Current Procedural Terminology; DBS, deep brain stimulation; HCPCS, Healthcare Common Procedure Coding System; ICD-9, Interna-
tional Classification of Diseases, Ninth Revision; ICD-10, International Classification of Diseases, Tenth Revision; RNS, responsive neurostimulation; VNS, vagus nerve 
stimulation.
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one-third of patients with DRE have been reported to have comor-
bid depression; excluding these patients would therefore risk reducing 
study generalizability.24 In studies of NM for DRE, we recommend 
including patients with comorbid depression and subsequently con-
ducting stratified analyses to better understand how NM impacts those 
with and without this comorbidity.

Outcomes Assessment
Claims data do not include information on seizure frequency or se-
verity, likely because these events are a common occurrence (often 
occurring multiple times daily among persons with DRE) with which 
patients learn to live without seeking care upon the advent of each sei-
zure. Patients often keep seizure diaries and record individual seizure 
events, along with specific triggers, which can be shared with providers 
at scheduled visits to assess effectiveness of epilepsy management and 
inform treatment changes.39,50 These diaries are not typically readily 
linkable to claims. Conversely, one benefit of healthcare claims data is 
its capture of robust economic and utilization data, including “costs.” 
While the term can represent what is paid for care, what is charged 
for care, or expenditures needed to render care, RWD sources tend to 
be limited to reimbursed amounts or charges, and healthcare claims 
represent total amounts paid (or charged). Depending on the research 
question(s), the researcher may wish to focus only on amounts paid by 
insurers or those paid by patients; regardless, researchers also should 
specify what their cost data represent. Because the study period often 
spans multiple years, the researcher may consider use of an inflation 
factor (eg, the medical care component of the Consumer Price Index) 
to allow all cost data to be presented using a common “reference” 
year.51 

Our study therefore maximized information available in health-
care claims and assessed incidence of epilepsy-related hospital admis-
sions, epilepsy-related emergency department visits, and epilepsy-relat-
ed accidents, with the assumption that such services represented care 
likely rendered for severe seizures and/or other unwanted sequelae of 
epilepsy. As with NM (or exposure) ascertainment, operational defi-
nitions for outcomes should be constructed with sufficient sensitivity 
and specificity to exclude rule-out conditions and coding errors. In our 
study we defined epilepsy-related utilization and costs as all medical 
(ie, inpatient and outpatient) claims resulting in an epilepsy diagnosis 
code (any position) and all ASM dispenses. This broad definition is 
more sensitive as to not miss visits or costs that could be epilepsy-re-
lated. A sensitivity analyses was also conducted with a more specific 
definition requiring a primary diagnosis of epilepsy on medical claims 
(as well as all ASM dispenses) for utilization and costs to be considered 
epilepsy-related. The latter definition is more likely to only included 
epilepsy-related utilization and cost but may also underestimate the 
true utilization and cost associated with epilepsy. 

Conducting Comparative Effectiveness Assessments
Unlike randomized-controlled trials, exposures are not randomly as-
signed in studies based on RWD.52 The lack of randomization can re-
sult in selection bias and significant differences between exposed and 
unexposed patients that serve to confound analyses of the relationship 
between exposure and outcome (ie, differences in outcomes may be 
due to differences between groups other than exposure status).53 There 
are several methods to minimize risk of confounding, including but 
not limited to stratification and matching exposed patients to unex-
posed patients based on various potential confounding variables (ie, co-
variates). The latter approach can be achieved through propensity score 
matching; propensity scores also can be used to inform another means 
by which exposed and unexposed groups can be balanced called in-
verse probability of treatment weighting, in which weights are assigned 
to each patient based on their probability of exposure.53 Regardless of 
whether any of these methods are used, multivariable regression models 
can also be developed and used to provide (additional) adjustment for 
potential confounding. While it is beyond the scope of this paper to 
delve into these methods, researchers should employ appropriate meth-
ods that account for potential confounding that maximize available 
data and assess the degree to which these methods have resulted in 
balanced treatment/exposure groups prior to conducting comparisons. 
The method to adjust for confounding should be considered carefully, 
as each has strengths and limitations that may be more or less relevant, 
depending on specific study question(s) and data source(s). 

In our study, we used propensity score matching with a “greedy” 
nearest neighbor approach54 to match (1:1) a maximal number of VNS 
patients to their RNS/DBS counterparts; a specific radius (0.2 times 
the SD of the log-transformed propensity score distribution) was used 
for matching.24 Standardized differences were used to assess the balance 
of variables across the 2 cohorts following propensity score matching. 
One example of an important confounding variable in our study was 
age. While all NM devices (VNS and RNS, and DBS) are indicated for 
adults, only VNS is also indicated for pediatric patients.14-16 Therefore, 
pediatric patients are much more likely to have received VNS than other 
devices. Relatedly, patterns of use and cost of healthcare services may 
differ between pediatric and adult patients. Accordingly, it is import-
ant to ensure that age (along with other covariates) is balanced between 
VNS and RNS/DBS patients; we did so through incorporation of this 
measure into the model used to derive the propensity score. There are 
many other reasons physicians may choose one device over the other, 
including personal preference, experience (or lack thereof ), where one 
practices, and insurance requirements/allowances. Many of these deci-
sions cannot be measured directly in healthcare claims, and must in-
stead be assessed through proxies. Among such proxies, we recommend 
inclusion of measures focused on use and cost of healthcare services (ei-
ther all-cause or disease-specific, depending on the research question), as 
these parameters are good proxies for overall levels of morbidity and/or 

Table 2. Case Study Attrition

Selection Criterion N

≥1 claim resulting in procedure codes for VNS, RNS, and/or DBS between Jan. 1, 2012, and Dec. 31, 2019 28 218

Diagnosis of epilepsy on index date 4872

Outpatient pharmacy dispense of an ASM during 12-month period before and including index date 3824

Continuous enrollment for the 24-month period before and including index date 1600

No evidence of craniotomy or insertion or replacement of cranial neurostimulator pulse generator or receiver (RNS/DBS only), 
or of device removal/replacement (all 3 devices) during the 24-month period prior to index date. No evidence of multiple 
neurostimulators implanted on index date

876

No evidence of cranial epilepsy surgery or Parkinson’s disease during 24-month period before index date 860
Abbreviations: ASM, anti-seizure medication; CPT, Current Procedural Terminology; DBS, deep brain stimulation; RNS, responsive neurostimulation; VNS, vagus 
nerve stimulation.
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disease severity. Table 3 illustrates the distribution of selected covari-
ates in VNS vs RNS/DBS patients before and after propensity score 
matching.

DISCUSSION 

Regulatory agencies, payers, clinicians, and other decision-makers have 
historically prioritized randomized clinical trials to inform their decision 
making. Although the strict selection criteria and bespoke data collec-
tion activities of these trials maximize internal validity by limiting attri-
bution of outcomes to the studied exposure(s), this is at the expense of 
generalizability.55 For example, one clinical trial limited to four selection 
criteria excluded 73% of eligible patients56; in another, only 4% to 7% of 
“real-world” individuals with the condition of interest met eligibility cri-
teria from 30 published randomized clinical trials.55 Epilepsy trials that 
assess the efficacy of management strategies (eg, ASMs, NM) frequently 
exclude patients with chronic comorbidities and psychiatric conditions 
to evaluate treatment(s) in “laboratory conditions,” thus substantially 
reducing generalizability.57 Consequently, stakeholders have increasingly 
recognized the importance of RWE to inform healthcare practice and 
policy using information generated on relatively large and heterogenous 
populations treated in real-world settings.

However, working with RWD is challenging, not least because 
these data are often initially collected for reasons other than research. 
Consequently, researchers need to be diligent in their methodolo-
gy. While choice of patient population(s) and research question(s) 
should drive the decision as to which RWD source(s) should be used, 
source-specific limitations and issues must subsequently be identified, 
investigated, mitigated, and described to yield reliable and reproducible 
observational research. Different RWD types have different strengths 
and weaknesses. Choice of RWD therefore should be informed by the 
research question(s), as that will inform population and outcomes of 
interest. In evaluating different RWD sources, one should also consider 
the ability to identify relevant exposure(s) and examine outcomes of 
interest, the likelihood of missing/incomplete data, and the potential 
impacts that these issues may have on sample selection and analyses. 
Variables used to assess exposures, outcomes, and covariates will be lim-
ited to those available within the selected RWD source; accordingly, 
researchers should also factor these concerns into their decision-mak-
ing process.

The study timeline should be developed thoughtfully and provide 
for the ability to assign exposure temporally in relation to indication 
of interest, ascertain covariates, and assess outcomes; all decisions with 
respect to these and related issues also need to be balanced against con-
cerns such as selection bias and immortal time bias. Constitution of 
study measures should be informed by the RWD source selected and 
prior research (within the same or a similar source) where possible. We 
encourage a review of existing publications to inform operational defi-
nitions, including where available methodologies have been validated 
and/or implemented within the same RWD source that was used for the 

study in question.21,58-61 Where possible, operational definitions should 
be reviewed by relevant experts to further ensure accuracy and appro-
priateness. If needed, proxies should be used when relevant information 
is unavailable; as relevant, operational definitions should account for 
coding practices and/or differences in available codes over time. 

With the exception of pragmatic trials, RWE studies are not 
typically able to randomly allocate exposure and consequently pres-
ent opportunities for residual and unmeasured confounding and other 
potential biases. While beyond our scope herein, analytic options to 
address these concerns include matching, weighting, stratification, and 
multivariable regression.41-46 Ultimately, to maximize internal and ex-
ternal validity of the study, the investigator should fully describe meth-
ods used and acknowledge any potential for residual confounding and 
bias, including its possible impact on study findings. 

These recommendations apply to claims-based research on DRE; 
however, the general concepts described above are, in the collective 
opinion of the authors, relevant for a broader range of RWE generation 
studies.

CONCLUSION

The importance of RWE continues to grow and inform all aspects of 
healthcare decision making, including but not limited to those related 
to decisions related to treatment and outcomes of DRE. While oppor-
tunities have never been greater, so too is the need for methodologically 
rigorous and robust approaches to maximize the ability to use RWE to 
improve patients’ health and quality of life.
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