

Epac1 and PKA agonists inhibit ROS to reduce NLRP3 inflammasome proteins in retinal endothelial cells

Li Liu, Youde Jiang, Jena J. Steinle

Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI

Purpose: Reactive oxygen species (ROS) activate inflammatory pathways in several organs, including the retina. More recent work has shown that ROS activate the NOD-like receptor protein 3 (NLRP3) inflammasome pathway proteins. We recently showed that the exchange protein activated by cAMP 1 (Epacl) and protein kinase A (PKA) regulates NLRP3 proteins in the retina. Our goal was to determine whether Epacl and PKA reduce ROS and NLRP3 inflammasome proteins.

Methods: We used human primary retinal endothelial cells (RECs) grown in normal glucose (5 mM) and stimulated in normal glucose with hydrogen peroxide (H_2O_2) to induce ROS and measured NLRP3 pathway proteins. In some groups, we treated cells with an Epac1 or a PKA agonist in addition to H_2O_2 treatment to determine whether Epac1 and PKA reduced ROS and induced NLRP3 pathway proteins.

Results: The data showed that 500 μ M H₂O₂ was the optimal dose to increase ROS in RECs. In RECs treated with H₂O₂, NLRP3 pathway proteins were increased, which were significantly reduced by cotreatment with PKA or Epac1 agonists. H₂O₂ significantly increased NIMA-related kinase 7 (Nek7) and purinergic 2X7 receptor 7 (P2X7) levels, which were blocked by Epac1 and PKA agonists.

Conclusions: Taken together, these data suggest that Epac1 and PKA reduce retinal inflammation through the reduced ROS-induced activation of NLRP3 pathway proteins.

Increased levels of reactive oxygen species (ROS) are a key factor in retinal damage due to diabetes [1]. Studies on the role of ROS remain ongoing, as they provide a target for therapeutic development [2]. Using both cell cultures and diabetic animal models, a large number of studies have focused on reducing ROS in retinal cells [3,4].

One potential way that ROS can cause retinal damage is through the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome. Several studies have focused on the mechanisms by which ROS induce NLRP3 actions. Using a rat diabetes model and arising retinal pigment epithelia (ARPE)-19 cells, studies have shown that both ghrelin and proanthocyanidins significantly reduce ROS, leading to the inhibition of NLRP3 proteins and apoptosis [5,6]. Similarly, studies on retinal endothelial cells (RECs) and diabetic rats showed that vitamin D3 was protective to the retina through reduced ROS and NLRP3 pathways [7]. Most studies have agreed that ROS is one mechanism leading to the activation of the NLRP3 inflammasome in diabetic retinas and retinal cells grown in high glucose.

We reported that the exchange protein activated by cAMP 1 (Epacl) can regulate the NLRP3 inflammasome in primary

human RECs [8]. More recently, we showed that both protein kinase A (PKA) and Epac1 agonists can regulate NLRP3 proteins in the retina and in REC grown in high glucose [9]. The role of ROS in this regulation by Epac1 and PKA agonists was unclear. Epac1 can reduce ROS in the tubular epithelium in models of ischemia/reperfusion [10]. Work in vascular injury models also demonstrated that Epac1 is key to neointima formation through reduced ROS levels [11]. Studies using glucagon-like peptide 1-receptor agonists showed that their protective effects on cardiomyoblasts occurred through PKA- and Epac1-mediated reduction in ROS actions [12]. Based on studies demonstrating that PKA and Epac1 can reduce ROS in other cell types, we hypothesized that PKA and Epac1 agonists would reduce ROS levels in REC, leading to decreased NLRP3 pathway proteins.

METHODS

Retinal endothelial cells (RECs): Primary human RECs were purchased from Cell Systems Corp. (Kirkland, WA). The cells were grown in basal glucose medium (5 mM glucose) for all cell culture studies. Cell culture was performed as previously described [13,14]. The cells were maintained in the appropriate medium for a minimum of 3 days.

Cell treatments: Some of the cells were treated with a protein kinase A agonist (forskolin, 20 μ m for 2 h, Tocris, UK) [15], or an Epacl agonist (10 μ M for 2 h, Tocris) [9]. Some were

Correspondence to: Jena J. Steinle, Department of Ophthalmology, Visual and Anatomical Sciences, 9314 Scott Hall, Detroit, MI 48202; Phone: (313) 577-9731; FAX: (313) 577-3125 email: jsteinle@ med.wayne.edu

also treated with H_2O_2 (Sigma) for a dose–response curve. Once the optimal dose was determined, the cells were treated with 500 μ M H_2O_2 alone or in combination with the Epacl agonist or forskolin. H_2O_2 was administered for 2 h before stimulation with the Epac1 or PKA agonists, with cells in treatment for a total of 4 h. Six replicates for cell culture work were done for cell treatments, except for the dose response, where n = 9 was used.

Reactive oxygen species (ROS) assay: ROS levels were measured using a fluorescent probe, 2,7-dichloroflurescein diacetate (DCF-DA; Invitrogen, Waltham, MA). In brief, cell lysates with 1 μ g/ μ l proteinase inhibitor diluted in PBS were collected, and protein concentrations were calculated. Protein samples (10 μ g) were loaded in triplicate into a black 96-well plate. A proteinase inhibitor (100 μ l) diluted in PBS and containing 5 μ M fresh DCF-DA was added to the plate and incubated in 37 °C for 1 h. Fluorescence intensity was read on a plate reader at excitation and emission wavelengths of 485 and 530 nm, respectively.

Western blotting: Western blotting was performed as previously described [16]. The primary antibodies used were Epac1 (Ab124162, 1:1000), PKA (Ab75991, 1:500), NLRP3 (Ab263899, 1:500), ASC1 (Ab70627, 1:600), Nek7 (Ab133514, 1:500), P2X7 receptor (Ab109054, 1:500; Abcam, Cambridge, MA), cleaved caspase 1 (Asp297, ThermoFisher PA5–77886, 1:200), and beta-actin (Santa Cruz). The primary antibodies were incubated overnight. Secondary antibodies

Figure 1. Hydrogen peroxide (H_2O_2) increased reactive oxygen species (ROS). Dose–response curve for H_2O_2 in retinal endothelial cells (RECs) grown in normal glucose. n = 9. Data are mean \pm SEM *p < 0.05 versus NG, #p < 0.05 versus 50 and 100 μ m H_2O_2 .

were conjugated to horseradish peroxide (HRP; Promega, Madison, WI). Bands were visualized using an Azure C500 machine (Azure, Dublin, CA). *IL-1\beta ELISA*. IL-1 β ELISA (R&D Systems, Menomomie, WI) was performed according to the manufacturer's instructions, with the exception that the ELISA was run overnight at 4 °C.

Statistics: Data are presented as mean \pm SEM. Statistics were measured using Prism 8.0 (GraphPad, San Diego, CA). One-way ANOVA with Tukey's post-hoc test was used. p < 0.05 was considered statistically significant. In the case of Western blotting, one representative blot is shown. The molecular weight is shown by the representative blot.

Figure 2. Exchange protein by cAMP 1 (Epacl) and forskolin reduced hydrogen peroxide (H_2O_2) -induced reactive oxygen species (ROS) levels. Western blot for retinal endothelial cells (RECs) grown in normal glucose (NG) and treated with H_2O_2 or an Epacl agonist (Panel A) or forskolin, a PKA agonist (B). n = 6. Data are mean \pm SEM *p < 0.05 versus NG, #p < 0.05 versus NG + H_2O_2 .

RESULTS

Dose response for hydrogen peroxide in REC: To dissect potential mechanisms of NLRP3 regulation in REC, we used REC in normal glucose and treated them with varying doses of H_2O_2 to determine the optimal dose to increase ROS levels. Figure 1 shows a dose–response curve for the levels of ROS after H_2O_2 treatment in RECs grown in normal glucose. All subsequent experiments were performed with 500 μ M H_2O_2 .

Epacl and PKA can reduce ROS induced by H_2O_2 : We recently reported that Epac1 and PKA agonists reduce NLRP3 signaling proteins [8,9,17]. We wanted to ascertain whether this occurred through a reduction in ROS. Figure 2 demonstrates that H_2O_2 significantly increased ROS. Both the Epac1 (A) agonist and the PKA (B) agonist were able to significantly reduce the H_2O_2 -induced increase in ROS.

Epacl-mediated reduction in ROS correlates with reduced NLRP3 signaling proteins: The Epac1 agonist could reduce ROS (Figure 2) and NLRP3 proteins [17], the goal was to determine whether Epac1 could overcome H_2O_2 to reduce NLRP3 proteins. Figure 3A shows that Epac1 levels were

reduced in REC treated with H_2O_2 and that the Epacl agonist was able to increase Epacl levels. Figure 3B–E shows that RECs grown in normal glucose and treated with H_2O_2 have increased NLRP3 pathway protein levels. These levels are reduced when the cells are treated with the Epacl agonist and H_2O_2 , demonstrating that Epacl can overcome the ROS produced by H_2O_2 , to reduce NLRP3 signaling proteins.

Forskolin, a PKA agonist, significantly reduces NLRP3 pathway proteins: We have shown that, similar to Epacl, PKA agonists can reduce ROS. In these experiments, we demonstrated that forskolin, a PKA agonist, can decrease H_2O_2 -induced activation of the NLRP3 pathway. Figure 4A is a control to show that H_2O_2 decreases PKA levels, and forskolin significantly increases PKA levels. Figure 4B–E shows that H_2O_2 increased NLRP3 (B), ASC1 (C), and cleaved caspase 1 (D) levels and the activation of IL-1 β (E). Forskolin treatment combined with H_2O_2 significantly reduced the levels of all proteins compared to H_2O_2 alone.

Both Epac1 and PKA reduce H_2O_2 -mediated increases in Nek7 and P2X7R: We recently showed that Nek7 and P2X7R

Figure 3. Exchange protein activated by cAMP 1 (Epacl) can overcome hydrogen peroxide (H_2O_2) -mediated activation of NLR family pyrin domain containing 3 (NLRP3) pathway proteins. Western blot for retinal endothelial cells (RECs) grown in normal glucose (NG) and treated with H_2O_2 or an Epacl agonist (Panel A). Panels B–D are Western blot results for NLRP3 (B), ASC1 (C), and cleaved caspase 1 (D). Panel E shows the ELISA results for IL-1 β in the same treatments. n = 6. Data are mean ± SEM *p < 0.05 versus NG, # p < 0.05 versus NG + H_2O_2 .

Figure 4. Protein kinase A (PKA) blocked hydrogen peroxide (H_2O_2) -mediated activation of NLR family pyrin domain containing 3 (NLRP3) pathway proteins. Western blot for retinal endothelial cells (RECs) grown in normal glucose (NG) and treated with H_2O_2 or forskolin, a PKA agonist (Panel A). Panels B–D are Western blot results for NLRP3 (B), ASC1 (C), and cleaved caspase 1 (D). Panel E shows the ELISA results for IL-1 β in the same treatments. n = 6. Data are mean ± SEM *p < 0.05 versus NG, #p < 0.05 versus NG + H_2O_2 .

caused the activation of the NLRP3 inflammasome [9,17]. To further these findings, we explored whether the Epacl agonist and forskolin could reduce H_2O_2 -mediated increases in NLRP3 proteins. Figure 5A,B show that H_2O_2 increased both Nek7 (A) and P2X7 (B) levels. These increases were inhibited by the Epacl agonist. Similarly, PKA significantly reduced H_2O_2 -mediated increases in Nek7 (Figure 5C) and P2X7R (Figure 5D) when RECs were treated with forskolin combined with H_2O_2 .

DISCUSSION

The role of ROS in the retina has been studied for decades [18,19]. Whereas it is clear that ROS play a role, more recent work has focused on the potential mechanisms by which ROS induce retinal damage in response to high glucose levels. One of these mechanisms is likely the activation of the NLRP3 inflammasome. An abundance of literature supports the idea that ROS activates the NLRP3 inflammasome to induce damage to retinal cells [20-22]. Our data support these findings, showing that H_2O_2 , a known ROS activator, caused significant increases in NLRP3 pathway proteins in RECs.

We showed that a reduction in ROS led to decreased levels of NLRP3 inflammasome proteins in REC, similar to what has been shown in retinal pigment epithelium (RPE) cells [23]. Thus, our findings on RECs agree with the literature.

The novel aspects of our studies were the experiments showing that Epac1 and PKA reduce ROS to block NLRP3 pathway proteins. In addition, we expanded our recent work to show that Nek7 and P2X7 receptors are regulated by ROS in RECs. Studies of other targets have suggested that Epac1 and PKA could reduce ROS in other targets [11,12]. We were the first to demonstrate a role for Epac1 and PKA in these actions in REC. In addition, we recently reported that Epac1 and PKA reduced Nek7 and P2X7 to block NLRP3 actions in RECs [9,17]; however, we did not explore the role of ROS in these actions. These studies expanded our work to show that both Epac1 and PKA can reduce ROS levels in RECs, which was correlated with a significant reduction in NLRP3 pathway proteins.

In conclusion, we showed that ROS led to increased levels of NLRP3 pathway proteins, which corroborates the

Figure 5. Exchange protein activated by cAMP 1 (Epacl) and a protein kinase A (PKA) agonist reduce NIMA-related kinase 7 (Nek7) and purinergic 2X7 receptor 7 (P2X7) levels in retinal endothelial cells (RECs) grown in normal glucose (NG) and treated with H_2O_2 and Epacl (A and B) or forskolin (C and D). n = 6. Data are mean \pm SEM *p < 0.05 versus NG, # p < 0.05 versus NG + H_2O_2 .

existing literature on retinal cells. We added to the existing knowledge with our data showing that Epac1 and PKA reduce H_2O_2 -induced ROS levels. This reduction was associated with a significant decrease in NLRP3 pathway proteins. Future work will expand these studies into mouse work.

ACKNOWLEDGMENTS

These studies were funded by R01EY0028442 (JJS), R01EY030284 (JJS), and P30EY04068 (LDH) and a unrestricted grant from Research to Prevent Blindness.

REFERENCES

- Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414:813-20. [PMID: 11742414].
- Kowluru RA. Diabetic Retinopathy and NADPH Oxidase-2: A Sweet Slippery Road. Antioxidants 2021; 10:10-[PMID: 34063353].
- Gao X, Liu K, Hu C, Chen K, Jiang Z. Captopril alleviates oxidative damage in diabetic retinopathy. Life Sci 2022; 290:120246-[PMID: 34953892].
- Zhu Y, Wang X, Zhou X, Ding L, Liu D, Xu H. DNMT1mediated PPARalpha methylation aggravates damage of retinal tissues in diabetic retinopathy mice. Biol Res 2021; 54:25-[PMID: 34362460].

- Bai J, Yang F, Wang R, Yan Q. Ghrelin Ameliorates Diabetic Retinal Injury: Potential Therapeutic Avenues for Diabetic Retinopathy. Oxid Med Cell Longev 2021; 2021:8043299-[PMID: 34737846].
- Li H, Li R, Wang L, Liao D, Zhang W, Wang J. Proanthocyanidins attenuate the high glucose-induced damage of retinal pigment epithelial cells by attenuating oxidative stress and inhibiting activation of the NLRP3 inflammasome. J Biochem Mol Toxicol 2021; 35:e22845-[PMID: 34338401].
- Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z. Vitamin D3 Protects against Diabetic Retinopathy by Inhibiting High-Glucose-Induced Activation of the ROS/TXNIP/NLRP3 Inflammasome Pathway. J Diabetes Res 2018; 2018:8193523-[PMID: 29682582].
- Jiang Y, Liu L, Curtiss E, Steinle JJ. Epacl Blocks NLRP3 Inflammasome to Reduce IL-Ibeta in Retinal Endothelial Cells and Mouse Retinal Vasculature. Mediators Inflamm 2017; 2017:2860956-[PMID: 28348460].
- Liu L, Jiang Y, Steinle JJ. PKA and Epacl Reduce Nek7 to Block the NLRP3 Inflammasome Proteins in the Retinal Vasculature. Invest Ophthalmol Vis Sci 2022; 63:14-[PMID: 35006270].
- Stokman G, Qin Y, Booij TH, Ramaiahgari S, Lacombe M, Dolman ME, van Dorenmalen KM, Teske GJ, Florquin S, Schwede F, van de Water B, Kok RJ, Price LS. Epac-Rap signaling reduces oxidative stress in the tubular epithelium. J Am Soc Nephrol 2014; 25:1474-85. [PMID: 24511123].
- Wang H, Robichaux WG, Wang Z, Mei FC, Cai M, Du G, Chen J, Cheng X. Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury. Sci Rep 2016; 6:36552-[PMID: 27830723].
- Nuamnaichati N, Mangmool S, Chattipakorn N, Parichatikanond W. Stimulation of GLP-1 Receptor Inhibits Methylglyoxal-Induced Mitochondrial Dysfunctions in H9c2 Cardiomyoblasts: Potential Role of Epac/PI3K/Akt Pathway. Front Pharmacol 2020; 11:805-[PMID: 32547400].
- Jiang Y, Liu L, Steinle JJ. Epacl deacetylates HMGB1 through increased IGFBP-3 and SIRT1 levels in the retinal vasculature. Mol Vis 2018; 24:727-32. [PMID: 30581279].
- 14. Liu L, Jiang Y, Steinle JJ. Toll-Like Receptor 4 Reduces Occludin and Zonula Occludens 1 to Increase Retinal

Permeability Both in vitro and in vivo. J Vasc Res 2017; 54:367-75. [PMID: 29136627].

- Liu L, Jiang Y, Steinle JJ. Forskolin regulates retinal endothelial cell permeability through TLR4 actions in vitro. Mol Cell Biochem 2021; 476:4487-92. [PMID: 34499321].
- Liu L, Patel P, Steinle JJ. PKA regulates HMGB1 through activation of IGFBP-3 and SIRT1 in human retinal endothelial cells cultured in high glucose. Inflamm Res 2018; 67:1013-9. [PMID: 30328477].
- Liu L, Jiang Y, Steinle JJ. Epac1 and PKA regulate of P2X7 and NLRP3 inflammasome proteins in the retinal vasculature. Exp Eye Res 2022; 218:108987-[PMID: 35182568].
- Marumo T, Noll T, Schini-Kerth VB, Harley EA, Duhault J, Piper HM, Busse R. Significance of nitric oxide and peroxynitrite in permeability changes of the retinal microvascular endothelial cell monolayer induced by vascular endothelial growth factor. J Vasc Res 1999; 36:510-5. [PMID: 10629427].
- Amano S, Yamagishi S, Kato N, Inagaki Y, Okamoto T, Makino M, Taniko K, Hirooka H, Jomori T, Takeuchi M. Sorbitol dehydrogenase overexpression potentiates glucose toxicity to cultured retinal pericytes. Biochem Biophys Res Commun 2002; 299:183-8. [PMID: 12437967].
- Liu Q, Zhang F, Zhang X, Cheng R, Ma JX, Yi J, Li J. Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Mol Cell Biochem 2018; 445:105-15. [PMID: 29264825].
- Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD, Singh LP. TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012; 2012:438238-[PMID: 22474421].
- 22. Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X, Guan H, Zheng Z, Qiu Q. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res 2017; 66:157-66. [PMID: 27785530].
- Wang P, Chen F, Wang W, Zhang XD. Hydrogen Sulfide Attenuates High Glucose-Induced Human Retinal Pigment Epithelial Cell Inflammation by Inhibiting ROS Formation and NLRP3 Inflammasome Activation. Mediators Inflamm 2019; 2019:8908960-[PMID: 31178664].

Articles are provided courtesy of Emory University and the Zhongshan Ophthalmic Center, Sun Yat-sen University, P.R. China. The print version of this article was created on 31 December 2022. This reflects all typographical corrections and errata to the article through that date. Details of any changes may be found in the online version of the article.