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ARTICLE INFO ABSTRACT

Tuberculosis is a bacterial disease caused by Mycobacterium tuberculosis. It is known to be the second-largest
cause of death and models a severe risk to public health throughout the world. Though it affects people of almost
XDR every age, individuals with weakened immune systems, (e.g., HIV infection) are more likely to get infected. The
MDR . present study deals with analyzing non-synonymous mutations in anti-tuberculosis drugs, which may have a
g{':;:é?::gii‘;:;mamm significant role in causing XDR and MDR tuberculosis drug resistance. Continued use of tuberculosis drugs,
Molecular dynamics discontinuation of medicines and various other factors can promote drug resistance in the host's body. To un-

derstand the actual cause of resistance, we have identified some patterns of mutations which might be re-
sponsible for a change in the structure of the protein, ultimately causing drug resistance. Here, we aim to present
some of the unique mutation patterns in the genes associated with the marketed drugs that might have a de-
leterious effect. In this study, we have used molecular docking approach for understanding the ligand binding
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affinity of the mutated drugs. The results are further validated by molecular dynamics studies.

1. Introduction

In today's world, Tuberculosis (TB) is still spreading its notorious
activity and resulting in mortality worldwide. It is an infectious disease
caused by the bacterium “Mycobacterium tuberculosis” [1-4]. Studies
claim that in the year 2017, 10.0 million people were diagnosed with
TB and about 1.3 million died from the disease. The evidence suggests
that most of the HIV deaths were due to TB. In recent years, specific
tests like GeneXpert, TB Culture and Staining for non-pulmonary type
have helped in diagnosing TB at an early stage [5]. However, dis-
continuing treatment for TB and transmission of drug-resistant TB can
result in drug resistance which can further be classified into two cate-
gories [6]. The categories include (a) Multidrug Resistance (MDR) TB
which occurs when the TB is resistant to both isoniazid and rifampicin,
at the least whereas, (b) Extensive drug resistance (XDR) TB involves
resistance to any fluoroquinolone, and at least one of three second-line
injectable drugs (capreomycin, kanamycin, and amikacin along with
multidrug resistance [7]. XDR TB is resistant to most of the effective
drugs. Hence, in this case, the patients are left with very minimal
treatment options that could help in curing the disease. It is of an ut-
most threat to patients with HIV infection or other disorder or diseases
that can decline the immune system. These patients are prone to de-
veloping TB and have a higher risk of fatality [8,9]. In view of this fact,
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in the present study, we aim to identify the generative cause of drug
resistance patterns in strains of Mycobacterium tuberculosis relating to
five marketed drugs. The study involves the analysis of non-synon-
ymous mutations that are responsible for making anti-TB drugs in-
effective by obstructing the target's structure. This is followed by ex-
amining the corresponding altered interactions between the drug and
the mutated structures.

2. Materials and methods

It is widely known that open source softwares’ play an imperative
role in the scientific community and provides various advantages to
users of molecular modeling applications. Literature also suggests a
substantial number of open-source software's are under development
and many of them are used significantly by the scientific community.
Therefore, to be a part of this scientific community, we have used
various open-source software's for molecular docking and molecular
dynamics studies [10].

2.1. Collection of data

A list of marketed drugs was collected from the web server known as
“Web MD”. From the selected marketed drugs, five were shortlisted for
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al, i further studies based on the availability of 3-Dimensional structure
A& % 855 [11]. In the present work, we emphasize on analysing non-synonymous
=% — M n T T

mutations which were collected from the Genome-wide Mycobacterium
tuberculosis variation (GMTV) database [19]. This database includes
1084 genomes and over 69,000 Single nucleotide polymorphisms (SNP)
or Indel variants, which can be queried about the causative's genome
variation across 1623 Mycobacterium tuberculosis clinical isolates, in-
cluding 1084 MDR strains. This database also gives us a holistic view of
the mutations occurring according to the space access on or the gene
name.

2.2. Retrieving PDB structures

The crystal structures of the targets in the present study were col-
lected from the Protein Data Bank (PDB) [12] and the structures of the
shortlisted marketed drugs were also downloaded from Drug Bank [13].
The details of the target (gene involved), their functions and the
shortlisted marketed drugs are presented in Table 1.

2.3. Generation of mutation patterns

The mutation data was obtained from the GMTV database [19]. The
data was organized based on the high degree of mutations in the bac-
terial genome to identify the “patterns” of mutations. The “patterns”
were obtained corresponding to each strain (a single mutation or a
combination of two or more mutations) which were organized in the
descending order of their frequency of occurrence in the population. A
web server known as “Protein Variation Effect Analyser”, (PROVEAN)
was used to identify the nature of the mutations and to predict the effect
of a mutation on the amino acid sequence [20].

2.4. Homology modeling of mutants’ structures

The PDB structures of all the mutated patterns were generated using
Swiss Model, a web server which is widely used for generating protein
models [21]. Swiss Model is a fully automated protein structure
homology-modeling server, accessible via ExPASy web server. The
input was given as the sequence that is to be modelled and based on
sequence identity “Swiss Model” gives the best possible outputs. All the
mutant structures (of the obtained patterns) pertaining to each target
were generated by Swiss Model and downloaded in .pdb format.

A homodimer enzyme with two catalytic centers at the dimer interface. The binding after the mutation of substrate-specifying residues is altered by this enzyme [17]

Catalyzes the interconversion of 1-alanine and p-alanine. p-alanine is critical in peptidoglycan cross-linking [14]
Controls and helps the enzyme in DNA recognition [18]

Involved in transferring sugar moieties to the substrates involved [15]
Sulfite reductase catalyzes the six-electron reduction of sulfite to sulfide [16]

gl ¢ 2.5. Molecular docking studies
20 %
N Molecular docking studies for each target gene were carried out
= =} . . . .
gl 8 using “PatchDock” which functions by setting patches that match to
< . . . . . .
S| 5 certain patterns in the molecule. The resulting docking scores (binding
] score) were checked and compared with the wild type target and its
9
g g mutants. The results revealed the best ten docked models. Of these ten
&~ —_ .
] models, one model was selected for further studies [22]. In order to
+ =] . . . . .
&l g < validate the obtained models, we used “FireDock” which is used for
8 § 5 E’OE & & refinement and re-scoring of models [22,23]. The resulting docked
£ complexes were analysed to check the interacting amino acids in for
= % . . . . .
£ 2 each target gene using BIOVIA Discovery Studio Visualizer [24]. The
% < interactions were analysed to assess the effect of the non-synonymous
Q .
£ 2 mutation on the structure.
S| 2 2.6. Molecular dynamics simulation studies
gl 5
ol g 5 &5 2.6.1. Protein modeling and structure prediction
2 % R 2 3} g
1 E‘g g3 The Phyre2 web portal was used for the generation of the 3-
8 o S . . . P . .
2 g8 gg 2 S Dimensional structure of the protein and prediction of the biological
% S| &8 E R functions of protein molecules from the specific amino acid sequence.
S p p q
-2 The Protein sequences were submitted to the web server and the protein
= ° i N o n structures were obtained. The mutated model for the protein corre-
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£ 3 sponding to the respective amino acid substitution was generated by
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Table 2
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Interaction analysis, total binding energies and the variation effects of the marketed drugs.

S. No Drug Gene ID Global energy of docked model (kcal/mol) PROVEAN (deleterious: neutral) Interaction Diagram for the best-docked molecule
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Swiss-PDB Viewer (v4.10). The mutant amino acid sequence was used
as an input in the Phyre2 web portal for 3D structure modeling and the
PDB files obtained were saved for further analysis [25].

2.6.2. MD simulations in water

The Desmond package from Schrodinger 2018-2 was used to run
the molecular dynamic simulation. Predefined TIP4P water model was
used for the simulation of water molecules. Orthorhombic periodic
boundary conditions buffered at 10 A distances were set up to specify

the shape and size of the repeating unit. To neutralize the system pre-
pared, appropriate counter ions (Na + /Cl-) were added and were placed
randomly in the solvated system. The minimization and relaxation of
the protein/protein-ligand complex were performed after setting up the
solvated system by NPT ensemble using default protocol of Desmond as
followed elsewhere; which includes a total of 8 stages which includes
series of minimization and short simulation steps (18-21) [26,27]. For a
summary of the Desmond's MD simulation stages, please refer to the sup-
plementary file 1.
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Fig. 1. Plot of the results from PROVEAN and calculation of the Coefficient of determination (R?.

2.6.3. Analysis of molecular dynamics trajectory

The molecular dynamics simulation trajectories were analysed using
simulation event analysis and simulation interaction diagram programs
available with the Desmond Module. The Root mean squared deviation
(RMSD) and Root mean squared Fluctuation (RMSF) data for Wild-type
and mutated proteins were calculated from the simulation interaction
diagram. The total Energy was obtained from the simulation files
whereas the number of intra-molecular Hydrogen bonds and Radius of
gyration was obtained from the Simulation event analysis. The data
obtained was then graphed using R project for Statistical Computing
[30]. Simulation Event Analysis (SEA) was used to analyze each frame
of simulated trajectory output while Simulation Interaction Diagram
(SID) was utilized to analyze parameters during the simulation time
[27,28].

3. Results and discussion
3.1. Molecular docking studies

To explore the nature of the mutations under study, a web server
known as “PROVEAN” was used to screen the generated mutant pat-
terns, and as a result, several deleterious and neutral mutations were
retrieved [29]. In the case of “alr and gid gene” most of the mutations
were found to be deleterious. Since “gid gene” is a bulky protein; the
effects were seen at multiple sites. The results of the “sirR” gene were in
the ratio of 8:10 (neutral: deleterious) suggesting it to be the least
harmful set of mutations observed thereby, making it the least drug-
resistant mutations. All the mutations seen in the case of “rpsL” gene
were found to be deleterious, whereas the results of “gyrA” gene reveal
that most of the mutations were deleterious and about 38% were
neutral [30].

This analysis was followed by molecular docking studies which
were carried out by using “PatchDock”, [22,23] and “FireDock” was
used later for the refinement of the docked models [23]. This method
targets issues of docked models like flexibility and scoring solutions. It
generates the best pose of the drug and ligand interactions. The input
for FireDock was generated by rigid body docking methods and the
analysis and interpretation of the docked models were carried out by
using BIOVIA Discovery Studio Visualizer [24].

The analysis of docking results is important to predict how the li-
gand binds to the receptor's binding site [26]. The analysis of the
docked model for the cycloserine drug revealed that the diphosphate
ring attached to the benzenoid ring forms hydrogen bonds with Tyr 46,
Ile 231, Gly 230 and Ser 213. Serine usually participates in hydrogen
bond formations whereas, glycine stays inside the protein core. Arg 228
is a positively charges residue that is usually involved in detox pro-
cesses and arginine, Trp 88 forms a hydrogen bond with the benzene
ring. Lys 42 is the only attractive charge present. Hoh 557, Met 170, Lys
133, Asn 212, Pro 229 showed van der Waals interactions with the
complex. This model exhibited global energy of 1.50 kcal/mol.

The interaction analysis of Capreomycin revealed that the hydroxyl,
oxygen, and nitro groups form hydrogen bonds with Gly 132, Glu 80,
Ile 134 and Val 136. The van der Waals interactions were constituted by
Arg 131, Arg 222, Val 53, Val 78, Val 135, Ser 130, Ile 50. Arginine is a
charged amino acid often forms salt bridges and the model exhibited
global energy of —30.41 kcal/mol.

The interaction analysis of Amikacin revealed that Gln 396 is the
only hydrogen bonding interaction. However, many hydrophobic in-
teractions with Cys434, Gly 484, Asn 364, Glu 448 were also seen. Cys
434 and Met 432 were involved in both hydrophobic and covalent in-
teractions and the model exhibited global energy of —11.14 kcal/mol.

The interaction analysis of Streptomycin revealed that a pentanone
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ring is predominant and Gly 341 formed the only hydrogen bond in the
model. However, Lys 300 and Thr 302 formed covalent bonding very
close to the ring. There were many hydrophobic and van der Waals
interactions with Phe 310, Thr 302, Val 340, Lys 303, Leu 304, Lys 300,
Ala 339, Arg 312 and the global energy of the model was found to be
—26.54 kcal/mol.

The interaction analysis of Moxifloxacin revealed that a polycyclic
ketone and the oxygen, hydroxy and nitro groups at the edges of the
ring showed hydrogen bonds with Arg 691 and Leu 693, Ile 648 and Lys
636, Leu 693. Lys 634 and Lys 636 formed covalent bonds with the ring
and the global energy obtained for this model was found to be 3.92. The
interactions diagram for all the marketed drugs has been presented in
(Table 2) (Figs. 1-5).

3.2. Molecular dynamics (MD simulations)

To make a comparative study the conformational changes in the
proteins due to the mutations, molecular dynamics simulation (MDS)
was carried out for each protein. Parameters that were analysed include
radius of gyration, total energy, total number of intra-molecular hy-
drogen bonds, RMSD (Root mean squared deviation), as a time-de-
pendent function of MDS. Further, RMSF (Root mean squared fluctua-
tions) of the proteins were also computed. The data obtained were
plotted using R statistical tool and a comparative study was made. The
time duration of the simulation used is optimal for the protein's native
state and to facilitate various conformations. Furthermore, recent stu-
dies have shown that the dynamics of a single protein molecule are self-
similar and resemble the same, irrespective of duration [28].

J Clin Tuberc Other Mycobact Dis 17 (2019) 100124

In order to understand the effects of mutations on the structure of
the protein, the RMSD values of the wild type/native and other mutant
proteins were analysed. The RMSD of the protein alpha carbon was
calculated during the simulation with reference to a fixed frame
(Table 3).

3.2.1. RMSD

To understand the effect of mutations on the protein structure, their
RMSD was calculated throughout the MDS. The RMSD plot of ALR and
its mutant reveals that the RMSD of the wild type protein is more sta-
bilized compared to that of the mutant. Further, the wild type RMSD
has a lower mean and a narrower range relative to that of the mutant,
suggesting that the wild type is more stable than the mutant.

In the case of GID and GYRA, it is clear from the RMSD plot that the
wild type has a lower and a more stabilized RMSD compared to the
mutant. This clearly reveals that the wild type is protein is more stable
than the mutant.

The RMSD plot of RPSL shows that there is a higher variation in the
RMSD of wild type compared to that of the mutant. Also, the mean
RMSD of the wild type is higher than that of the mutant. This does not
provide conclusive evidence comparing the stability of the proteins.

The RMSD plot of SIRR reveals that the RMSD of the mutant is more
stabilized and has a higher mean than that of the wild type. This reveals
the mutant to be stable relative to the wild type.
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Fig. 2. The RMSD plot of ALR gene *(Other RMSD plots in Supplementary data 1).
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3.2.2. RMSF

The RMSF of each residue was also monitored to determine the
effects of mutation on the protein residues’ dynamic behavior. The re-
sults suggest that residue level fluctuations for wild type are like that of
the mutants for ALR and SIRR, indicating similar flexibility. RMSF plot
of GYRA indicates that although the Wild type and mutant have similar
RMSF for some residues, RMSF of residues 500 — 700 (approx.) reveal
wild type to have higher flexibility. The RMSF plot of RPSL reveals that
the wild type protein is slightly more flexible and the RMSF of GID
shows that the mutant is slightly more flexible than the wild type. In
conclusion, the mutant has a higher degree of flexibility in case of GID
while the wild type has a higher degree of flexibility in case of GID.
Further, no conclusion could be attained from the RMSF plot of ALR
and SIRR.

J Clin Tuberc Other Mycobact Dis 17 (2019) 100124

3.2.3. Energy parameters

Analysing the energy parameters for the MDS trajectories revealed
that the mean total energy of wild type/native protein to be lower than
that of the mutant in the case of ALR and RPSL indicating that the
mutant is destabilizing.

The mean total energy of GYRA, SIRR and GID mutants were re-
vealed to be significantly lower than that of their wild type counter-
parts. This lower total energy of mutants indicates that the mutations
have a stabilizing effect on the proteins.
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Fig. 3. The RMSF plot of ALR gene *(Other RMSD plots in Supplementary data 2).
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Fig. 4. The energy plot of ALR gene *(Other energy plots in Supplementary data 3).
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3.2.4. Intra-molecular Hydrogen bonds

Study of the total numbers of intra-molecular Hydrogen bonds of
the wild type and mutant proteins (Table 1) revealed that the mutant
had the highest mean number of Hydrogen bonds occurred in the case
of GID. In the case of all other proteins, the wild type had the highest
mean number of hydrogen bonds. In the case of GYRA, the mutant has
the largest range for the number of hydrogen bonds. This indicates that
mutant has greater flexibility compared to wild type in the case of

J Clin Tuberc Other Mycobact Dis 17 (2019) 100124

3.2.5. Radius of gyration

The radiuses of gyration of the wild type/native and mutant pro-
teins were analysed to measure their compactness. From Table 1, it is
revealed that wild type protein has the highest compactness in case of
all the proteins except RPSL. In RPSL, the mutation K43R has the
highest compactness with a radius of 62.2A (Fig. 6).
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Fig. 5. The Hydrogen bonds plot of ALR gene *(Other energy plots in Supplementary data 4).
Table 3

Statistical analysis for the MD simulations trajectory of wild and mutated proteins.

Hbonds_mean Hbonds_range Rad_mean(A) Rad_range(A) RMSD_mean(A) RMSD_range(A) Energy_mean (kcalmol) Energy_Range (kcal/mol)
GID_WT 159.11 =27 31.2991 31.19855-31.40242 107 0.000-1483 -69476.29 [-69485.01) - [-69467 40}
GID_E99G 164.35 -26 31.88143  31.80240-31.99859 149 0.000-1.883 7194331 [-87777.79)-(-71773.05)
RPSL_WT 67.59 -19 3857 38.46466-38.65908 156 0-2.28 -114188.9 (-1141967)-(-114180.0)
RPSL_K43R 62.2 -16 37.25 37.14078-37.33806 147 0-2.06 -96227.18 [-96234.41)-(-96220.93)
ALR_WT 608.72 -47 28.15308  28.05660-28.40375  0.8528017 0-1.033 -175382.3 [-175396.8)--175363.9)
ALR_A2565 607.47 -44 2816452  28.02638-28.33649  0.8325041 0-1.058 -175372.5 (-175383.6)-(-175357.9)
SIRR_WT 180.31 -27 33.383 33.2875-33.45976 1.039017 0-1.391 -82712.08 [-69485.01) - -69467 40}
SIRR_M36R 172.34 -24 33.7797 33.68729-33.84507 1.365099 0-1.846 -85290.61 (-87777.79)-(-71773.05)
GYRA_WT 573.9091 51 5947114  50.38759-5050155 1549579 0-2.209 -69476.29 FEAEEMEEETEY
GYRA_GB32A  566.8926 -65 5049743  59.41259-59.60068 1.695587 02214 -342335.7 SR e
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Fig. 6. The radius of gyration plot of ALR gene *(Other energy plots in Supplementary data 5) *(Visualization of the protein superimposed of pre (Green) and post

(Red) MD structures can be viewed in Supplementary data 6).

4. Conclusions

In the present study, we observed that the obtained mutation pat-
terns led to change in the structure of the protein and eventually the
interactions between the drug and the mutated structures were altered.
The stability of the target-drug complex was evaluated using docking
studies which revealed that the wild type complex was the most stable
among all the patterns under investigation. On analysing the stability of
the mutated complexes as well as the interactions between the drug and
the target(s), it was concluded that the mutations are responsible for
making the drug ineffective at the genetic level. The graph plotted from
the results obtained from the PROVEAN server as shown in Fig. 1 in-
dicates the coefficient of determination where R? = 0.129 (deleterious
mutations) and R? = 0.006 (neutral mutations). This clearly suggests
that the deleterious mutations are more significant than neutral ones.
Many other factors such as the passage of drug via metabolic networks,
pumping out through ion channels etc. might also be responsible for a
drug's inefficacy in cases where the docking results were not reason-
able. Hence, in the observed data, simple mutations in the genetic basis
of life (genome sequence) have been found to initiate the complex
changes in the structural and functional aspects of the resulting pro-
teins. Furthermore, the molecular dynamics simulations of these mu-
tant and wild type proteins have demonstrated similar properties and
molecular interactions. Subsequently, it can be concluded that the re-
sults of molecular docking studies are in line with simulation studies
and the mutant protein is structurally and functionally validated.
Overall, the current investigation aids to find the mutation patterns
which are responsible for the inefficacy of the marketed drugs for Tu-
berculosis. These results can be taken up for further evaluation and we
believe that this approach of identifying the mutation patterns will
greatly reduce the chances of drug resistance. We believe that pre-
scribing medicines for Tuberculosis according to the genomic analysis
of the individuals will strongly improve efficacy, specificity, fewer side
effects with fewer chances of drug resistance.
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