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Brain-computer interfaces (BCIs) have long been seen as control interfaces that

translate changes in brain activity, produced either by means of a volitional modulation

or in response to an external stimulation. However, recent trends in the BCI and

neurofeedback research highlight passive monitoring of a user’s brain activity in order

to estimate cognitive load, attention level, perceived errors and emotions. Extraction of

such higher order information from brain signals is seen as a gateway for facilitation of

interaction between humans and intelligent systems. Particularly in the field of robotics,

passive BCIs provide a promising channel for prediction of user’s cognitive and affective

state for development of a user-adaptive interaction. In this paper, we first illustrate

the state of the art in passive BCI technology and then provide examples of BCI

employment in human-robot interaction (HRI). We finally discuss the prospects and

challenges in integration of passive BCIs in socially demanding HRI settings. This work

intends to inform HRI community of the opportunities offered by passive BCI systems for

enhancement of human-robot interaction while recognizing potential pitfalls.

Keywords: brain-computer interface (BCI), passive BCIs, human-robot interaction (HRI), cognitive workload

estimation, error detection, emotion recognition, EEG, social robots

INTRODUCTION

For generations, the idea of having intelligent machines that can read people’s minds and react
without direct communication had captured human’s imagination. With recent advances in
neuroimaging technologies and brain-computer interfaces (BCI), such images are finally turning
into reality (Nam et al., 2018). BCIs are the systems that decode brain activity into meaningful
commands for machines, thereby bridging the human brain and the outside world. BCIs are
primarily developed as a non-muscular communication and control channel for patients suffering
from severe motor impairments (Millán et al., 2010; Chaudhary et al., 2015; Lebedev and Nicolelis,
2017; Chen et al., 2019). For instance, a BCI-actuated wheelchair or exoskeleton can assist a patient
with ALS or spinal cord injury to regain mobility (Kim et al., 2016; Benabid et al., 2019). Similarly,
locked-in patients can be equipped with a BCI system in order to effectively communicate with
external world (Sellers et al., 2014; Hong et al., 2018; Birbaumer and Rana, 2019). Stroke patients
have also demonstrated effective restoration of motor functions and improvement of life quality
after they were trained with a BCI-control task in a neurological rehabilitation session (Soekadar
et al., 2015).

However, with the growing popularity of BCIs, new application corners outside of the medical
field have emerged for healthy users (Allison et al., 2012; Van Erp et al., 2012; Nam et al., 2018). One
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of the mainstream applications is the integration of BCIs with
other interactive technologies such as virtual reality (VR) and
computer games (Lécuyer et al., 2008; Coogan and He, 2018).
Several prototypes have already been developed that enable a
user to either navigate through a virtual space or manipulate
a digital object only by means of thoughts (Friedman, 2015).
The combination of immersive technologies and BCIs entails a
two-way benefit for researchers in that the BCI system provides
a new form of control channel over the environment, thus
changing the user experience, and virtual environments serve as
a suitable platform for BCI research as they offer a safe, engaging,
and cost-effective tool for the design of BCI experiments and
neurofeedback (Allison et al., 2012; Lotte et al., 2012).

In addition to immersive environments, BCIs have also been
utilized in combination with physical robots in order to induce a
sense of robotic embodiment and remote presence (Alimardani
et al., 2013; Beraldo et al., 2018). In these setups, users control
a humanoid robotic body and navigate through the physical
space by means of their brain activity while they can see through
the robot’s eyes. Such interactions often lead to a feeling of
telepresence and the experience of losing boundary between
the real body and the robot’s body (Alimardani et al., 2015),
paving the way for research in cognitive neuroscience and neural
prosthetics (Pazzaglia and Molinari, 2016).

In all the above-mentioned examples, the brain activity
features extracted for the BCI classifier are either voluntarily
induced by the user (active control) or measured as a response
to an external stimulus (reactive control). Such BCI systems that
require users to get involved in a cognitive task and provide
explicit commands are referred to as active BCIs (Zander and
Kothe, 2011; Lightbody et al., 2014). On the other hand, BCIs that
are event driven andmeasure brain responses to a visual, auditory
or haptic stimulus are called reactive BCIs (Zander and Kothe,
2011). However, there is a third group of BCIs that drive their
outputs from spontaneous brain activity without the need from
the user to perform specific mental tasks or receive stimuli. These
BCI systems, which normally monitor longer epochs of brain
activity for detection of a cognitive state change or emotional
arousal, are called passive BCIs (Zander and Kothe, 2011; Aricò
et al., 2018). An example of this is a system that monitors a
driver’s neural dynamics in real-time and alarms him/her in the
case of drowsiness detection (Lin C. T. et al., 2010; Khan and
Hong, 2015).

Passive BCIs primarily aim at detecting unintentional changes
in a user’s cognitive state as an input for other adaptive systems
(Zander et al., 2010; Aricò et al., 2016). For instance, in the
driving example, the output of the BCI system that evaluates
driver drowsiness can alternatively be used for administration of
the temperature in the car or the volume of the sound system
in order to increase alertness of the driver (Liu et al., 2013).
Similarly, a BCI that extracts information about a user’s ongoing
cognitive load and affective states offers numerous applications
in the design of adaptive systems and social agents that would
adjust their behavior to the user’s ongoing mental state, without
distracting the user from the main task, thereby enriching the
quality of interaction and performance (Szafir and Mutlu, 2012;

Alimardani and Hiraki, 2017; Zander et al., 2017; Ehrlich and
Cheng, 2018).

In this article, we mainly discuss passive BCIs in the context of
human-computer and human-robot interaction. In section BCIs
and Cognitive/Affective State Estimation, we first lay out the state
of the art in passive BCIs by briefly reviewing existing studies that
attempted detection of cognitive and affective state changes from
brain responses.We restricted our literature search to studies that
adopted electroencephalography (EEG) signals for development
of the BCI classifier. Given its mobility, high temporal resolution,
and relatively low price, EEG is considered as a feasible non-
invasive brain imaging technique that can be deployed into a wide
variety of applications including human-robot interaction. In
section BCIs and Human-Robot Interaction, we focus on passive
BCI-robot studies that used cognitive and affective statemeasures
as a neurofeedback input for a social or mechanical robot,
thereby optimizing their response and behavior in a closed-loop
interaction. In the last section, we discuss the prospects and
challenges that are faced in the employment of passive BCIs in
real-world human-robot interaction.

BCIs AND COGNITIVE/AFFECTIVE STATE
ESTIMATION

In neuroscientific literature, cognitive state estimation refers to
the quantification of neurophysiological processes that underlie
attention, working-memory load, perception, reasoning, and
decision-making, while affective computing targets assessment
of the emotional experience. BCI systems that decode covert
information in the brain signals regarding these internal
processes can establish an implicit communication channel for
an adaptive human-technology interaction, presenting novel
applications in the domains of education, entertainment,
healthcare, marketing, etc. (Van Erp et al., 2012; Blankertz et al.,
2016; Krol and Zander, 2017; Aricò et al., 2018). We identified
three main directions for assessment of cognitive and affective
states in EEG-based passive BCIs; (1) detection of attention
and mental fatigue, (2) detection of errors, and (3) detection of
emotions. In the following, we describe the current state of the
art in each of these domains, laying out a foundation for future
employment of passive BCIs in human-robot interaction.

Detection of Attention and Mental Fatigue
As discussed in the drowsy driver example, monitoring real-
time mental workload and vigilance is of particular importance
in safety-critical environments (Lin C. T. et al., 2010; Khan
and Hong, 2015; Aricò et al., 2017). Non-invasive BCIs that
detect drops in attention level and increased mental fatigue
can be utilized in a broad range of operational environments
and application domains including aviation (Aricò et al., 2016;
Hou et al., 2017) and industrial workspaces (Schultze-Kraft
et al., 2012) where safety and efficiency are important, as
well as educational and healthcare setups where the system
can provide feedback from learners to a teacher (Ko et al.,
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2017; Spüler et al., 2017), evaluate sustained attention in e-
learning platforms (Chen et al., 2017), and execute attention
training for clinical patients who suffer from attention deficit
hyperactivity disorder (ADHD) (Lim et al., 2019). It is even
suggested that detection of attention level can be employed
in a hybrid BCI system in which an attention classifier is
integrated with other BCI algorithms in order to confirm users’
focus on the BCI task and validate the produced response,
thereby yielding a more reliable and robust performance
(Diez et al., 2015).

Multiple algorithms have already been proposed to quantify
the level of alertness and mental workload within EEG brain
activity. A large number of these models rely on frequency
domain features such as theta, alpha and beta band powers, for
estimation of attention level and mental fatigue experienced by
the user (Lin C. T. et al., 2010; Roy et al., 2013; Diez et al.,
2015; Khan and Hong, 2015; Aricò et al., 2016; Lim et al., 2019).
On the other hand, some studies have examined non-linear
complexity measures of time series EEG signals such as entropy
(Liu et al., 2010; Min et al., 2017; Mu et al., 2017), promoting a
fast and less costly method for real-time processing. Although
not very common, a few studies have also proposed the usage
of event-related potentials (ERP), such as non-target P300, in
development of passive classifiers given that such brain responses
are affected by both attention and fatigue and thus can provide
a measure of target recognition processes (Kirchner et al., 2013;
McDaniel et al., 2018).

In addition to spectral and temporal information carried by
EEG signals, spatial features such as brain regions from which
the signals were collected have been shown important in the
detection of different mental state changes (Myrden and Chau,
2017). Although reported results are not always consistent, there
is a general consensus on the role of frontal lobe in discrimination
of cognitive workload and task difficulty (Zarjam et al., 2015;
Dimitrakopoulos et al., 2017), prefrontal and central lobes in
detection of fatigue and drowsiness (Min et al., 2017; Ogino
and Mitsukura, 2018), and posterior areas (particularly posterior
alpha band) in estimation of visuospatial attention (Ko et al.,
2017; Myrden and Chau, 2017). It is worth noting that functional
connectivity between different brain regions is also suggested
in the literature as an index for estimation of engagement and
attention (Dimitriadis et al., 2015; Dimitrakopoulos et al., 2017),
although due to computational cost it poses limitations on real-
time implementation.

Detection of Errors
Failures during technology usage and outputs that deviate from
expectation can become a source of dissatisfaction and additional
cognitive workload for the user. Unintentional mistakes made
by the human or erroneous behavior presented by the system
can generate user frustration and aggravate human-system
interaction (Zander et al., 2010). Such negative repercussions
can be prevented by automatic detection and feedback of errors,
as perceived by the user, for online correction or adaptation
of system characteristics while the user is still involved in the
interaction (Zander et al., 2010; Chavarriaga et al., 2014; Krol and
Zander, 2017).

When a user recognizes a mismatch from expectation, an
error-related potential (ErrP) is generated in the EEG signals.
A passive BCI system that extracts this information in real-time
can be used in development of hybrid and adaptive systems that
optimize the performance of the user either by removing the
erroneous trials (Ferrez and Millán, 2008; Schmidt et al., 2012;
Yousefi et al., 2019), or bymodifying the classification parameters
through online learning of the BCI classifier (Krol and Zander,
2017; Mousavi and de Sa, 2019), or by adjusting the task difficulty
level to different individuals in order to improve engagement and
motivation (Mattout et al., 2015). For instance, Ferrez andMillán
(2008) combined a motor imagery BCI with an error detection
algorithm that looked for an ErrP immediately after each trial and
filtered out trials that contained an error-related response. Their
results displayed a significant improvement of BCI performance
in real-time by reducing the classification error rate from 30 to
7%. Similarly, Schmidt et al. (2012) combined online detection
of ErrPs with a BCI speller and reported 49% improvement in
the mean spelling speed. In a recent report, Dehais et al. (2019)
presented a passive BCI classifier for prediction of auditory
attentional errors during a real flight condition, proposing future
smart cockpits that would adapt to pilots’ cognitive needs.

A unique feature of ErrPs is that they would arise in response
to any form of discrepancy during interaction/task execution
including when the user realizes a self-made error (response
ErrP), when s/he is informed about the error through some type
of feedback (feedback ErrP), and even when the user senses
an error made by a third party (observation ErrP) (Ferrez
and Millán, 2005; Gürkök and Nijholt, 2012; Vi et al., 2014).
This permits detection and management of errors in any form
and at any time during the interaction, promoting closed-loop
passive BCIs not only as an efficient and seamless tool for
online evaluation of user performance but also as a secondary
communication tool in multi-user collaborative environments
such as emergency rooms (Vi et al., 2014) where agile and
high-risk decision making is required (Poli et al., 2014).

Additionally, recent efforts suggest that different kinds of
errors generate different ErrPs, allowing discrimination of error
severity and error types (Spüler and Niethammer, 2015; Wirth
et al., 2019) based on temporal, spectral, and spatial information
in the EEG waveforms. However, the downside of this approach
is that, in most cases, the ErrP classifier relies on an event-locked
paradigm in which ErrPs can only be extracted within a fixed
window from a specified trigger. In real-world applications, the
information regarding stimulus time or origin of the error is
often unavailable and the latency of user responses may vary
across individuals and tasks. Therefore, future integration of
such passive BCIs with natural human-agent interactions calls
for further developments on self-paced algorithms that make
asynchronous error detection possible at any time during the
interaction (Lightbody et al., 2014; Spüler andNiethammer, 2015;
Yousefi et al., 2019).

Detection of Emotions
With advancement of commercially available wearable sensors,
estimation of human emotions from ongoing biosignals has
received increased attention in recent years (Al-Nafjan et al.,
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2017; Shu et al., 2018; García-Martínez et al., 2019; Dzedzickis
et al., 2020). Emotions are particularly important in the design
of intelligent and socially interactive systems as they enable the
digital agents to generate a well-suited behavior and establish
an affective loop with the human partner (Paiva et al., 2014;
Ehrlich et al., 2017). Compared to conventional methods
of social signal processing and affective computing (such as
voice and image processing), biosignals present the advantage
of containing spontaneous and less controllable features of
emotions. Emotions entail three aspects; physiological arousal,
conscious experience of the emotion (subjective feeling) and
behavioral expression (Alarcao and Fonseca, 2017). Voice and
face recognition technologies can only capture the third aspect,
i.e., overt behavioral expression of emotion, whereas brain
activity can inform us about the neurophysiological and cognitive
processes that generate and lead to such emotional states
(Mühl et al., 2014a).

A major challenge in classification of emotions from brain
activity is that there is not a unique computational method
for extraction and mapping of emotion-related features. There
are two theories in the modeling of emotions; discrete model
and dimensional model (Kim et al., 2013). The former defines
emotions as a set of categorical affective states that represent
core emotions such as happiness, sadness, anger, disgust, fear,
and surprise (Lin Y. P. et al., 2010; Jenke et al., 2014). The
latter maps emotions on either a two-dimensional valence-
arousal space (Posner et al., 2005; Atkinson and Campos,
2016) or a three-dimensional valence-arousal-dominance space
(Mehrabian, 1996; Reuderink et al., 2013). The discrete model is
more popular among BCI developers as it reduces the problem
of dimensionality, however it does not consider that the same
emotion may manifest on different scales of arousal, valence and
dominance. The dimensional model provides continuity as it
quantifies emotions on each dimension (valence ranging from
positive to negative, arousal ranging from calm to excited and
dominance ranging from in-control to submission). Particularly,
the 2D model has been previously used in multiple EEG studies
(Liberati et al., 2015; Al-Nafjan et al., 2017; Mohammadi et al.,
2017), however in these studies, the dimensionality is often
simplified again by means of clustering emotions across the
valence-arousal coordinates (e.g., fear as negative valence, high
arousal or happiness as positive valence, high arousal), which
bears the risk of grouping different emotions that share the same
valence and arousal levels (e.g., anger and fear) in one cluster
(Liberati et al., 2015).

Another challenge in the development of emotional BCIs
is the diverse elicitation strategies that exist in the affective
computing literature. Multiple types of stimuli including affective
pictures, sounds, video fragments and music have been used in
the past in order to induce emotional responses (Al-Nafjan et al.,
2017). In addition to the lack of consistency among reported
results and available EEG datasets, an inherent problem with
these forms of stimuli is that there is no evidence whether
the induced emotion is a natural affective state or just a
reactive response to the stimulus. To counter this issue, some
studies have employed a self-induced strategy such as recall
of autobiographical emotional memory (Chanel et al., 2009;

Iacoviello et al., 2015) or imagination of the emotion by means
of verbal narratives (Kothe et al., 2013). This method entails
other problems; the self-induced emotions are inevitably weaker
than those induced by external stimuli, and users are prone to
distraction during the task as it is difficult to maintain mental
imageries for a long period (Chanel et al., 2009).

It is worth mentioning that emotions are more than just an
affective state for social interaction and adaptive environments;
they may also influence other cognitive functions. For instance,
frustration can extend negative impacts on attention, decision-
making, learning, and response accuracy. Indeed, past research
has shown that affective states such as stress, anxiety and
frustration can influence BCI performance in estimation of
mental workload and attention (Mühl et al., 2014b; Myrden
and Chau, 2015; Lotte et al., 2018). Thus, it can be expected
that an adaptive multimodal BCI system that identifies users’
affective states and regulates tasks accordingly would improve
user performance and validity of the system in the long term
(Gürkök and Nijholt, 2012).

To sum up, there have been several BCI algorithms proposed
for detection of affective state changes from EEG signals
(Alarcao and Fonseca, 2017), however, automatic recognition of
emotions during ecologically valid tasks and natural interactions
remains a challenge, hindering deployment of affective BCIs
in other platforms such as human-robot interaction. Future
research should attend currently existing issues such as
insufficient classification accuracy, inconsistent computational
and elicitation techniques, as well as development of BCI models
that can extract emotions in an unobtrusive and asynchronous
manner over a long period of time.

BCIs AND HUMAN-ROBOT INTERACTION

With more integration of robots into our daily life, the necessity
for them to function as social and assistive companions in real-
world environments such as schools and healthcare facilities
becomes eminent. In addition to human’s intentions and control
commands, it is crucial for the robots to estimate the emotional
states of a human partner in order to be socially responsive,
engage longer with users and promote natural HRI (Ficocelli
et al., 2015). More importantly, estimation of workload, anxiety
and errors is crucial for ergonomic and safe human-robot
collaboration in both domestic and industrial spaces (Ajoudani
et al., 2018). In this section, we particularly discuss studies
that have employed BCIs for passive detection of cognitive and
affective states of a human user in order to effectively adapt the
behavior of a robot in a closed-loop interaction with the human
partner (Figure 1).

We restricted our literature search to only non-invasive BCI
studies that passively extracted user’s cognitive and affective states
during interaction with a physical robot, therefore, articles that
employed active BCIs for motion control (e.g., motor-imagery
based robot operation) or reactive BCIs for intentional selection
of behavior for a robotic interface (e.g., robot manipulation
triggered by event-related P300 or Steady State Visually Evoked
Potential SSVEP) were not included. Another inclusion criterion
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FIGURE 1 | Closed-loop human-robot interaction using passive BCIs.

TABLE 1 | The inclusion and exclusion criteria as used for the selection of

BCI-HRI studies in section BCIs and Human-Robot Interaction.

Parameters Inclusion criteria Exclusion criteria

Type of BCI Passive BCIs

(hybrid with other BCI types

acceptable)

Active or reactive BCIs

(e.g., motor imagery, ERP,

SSVEP)

Type of signal EEG

(hybrid with other signal types

acceptable)

fNIRS, fMRI, MEG

Type of interaction Interaction with physical robots

(e.g., social robots, arm robots)

Interaction with virtual

avatars, computer games

Type of analysis Real-time classification/

feedback to the robot

Offline analysis of brain

signals captured during HRI

was usage of AI-powered predictive models together with EEG
signals in the study, where a passive BCI classifier was used
(or its development was attempted) during real-time interaction
with a robot. Neuroscience research in which only brain
oscillation patterns associated with robot interaction are reported
were either excluded or already reported in section BCIs and
Cognitive/Affective State Estimation. Finally, the study should
have reported a passive BCI interaction with a physical robot;
interactions with virtual or simulated agents were excluded as the
definition of a simulated agent is very board and incorporates
human-computer interaction and game applications of passive
BCIs. The inclusion and exclusion criteria defined for review of
BCI-HRI studies in this section are summarized in Table 1.

Our search resulted in a total of 10 studies as shown in
Table 2. In the following, we briefly describe the methodology
and outcomes of each listed study.

Szafir and Mutlu (2012) reported an interesting study in
which a humanoid robot monitored students’ EEG signals during
storytelling and gave them attention-evoking immediacy cues
(either in verbal or non-verbal form) whenever engagement
drops were detected. In doing so, they extracted EEG levels in
alpha, beta and theta frequency bands and smoothed them into
an engagement signal that would represent attention levels. Every

time the attention level went below a pre-defined threshold,
the robot displayed immediacy cues such as increased spoken
volume, increased eye contact, and head-nodding. Their results
showed that participants who experienced interaction with an
adaptive BCI-driven robot had a significantly better recall of the
story details than those who participated in an interaction with
randomly presented immediacy cues. In addition to this, female
participants reported a more favorable evaluation of the robot
behavior, in terms of improved motivation and rapport, in the
BCI condition compared to the random condition. The results of
this study highlight the benefits of BCIs in interactive educational
setups where real-time detection of user disengagement and
attention drop can be compensated by means of an embodied
social agent.

Kirchner et al. (2013) employed passive classification of event-
related potential P300 in an adaptive human-robot interaction.
They reported a brain reading (BR) system that implicitly
extracted p300 during teleoperation of an exoskeleton arm
whenever an important stimulus was presented to the user. They
used the evoked potential amplitude as an indicator of successful
stimuli recognition by the user. If the response did not contain
P300 or the potential was not strong enough, it implied that the
user had missed the important information that was presented
and thus the system repeated the stimuli. Authors found a
reduced stress level in subjects when BR was embedded in the
control interface, recommending their approach as a promising
way to improve the functionality of interactive technical systems.

Ehrlich et al. (2014) proposed an EEG-based framework for
detection of social cues such as gaze by a humanoid robot as
a measure for social engagement. They instructed subjects to
either wait for the robot to make eye-contact with them or to
intentionally generate brain patterns for the robot to initiate eye-
contact with them (influence the robot’s behavior). By extracting
frequency band powers as discriminating features in an offline
analysis, they could find high classification performance between
the two conditions. Such predictive model could be implemented
in a human-robot interaction in order to enable the robot to
estimate its social role and adapt its behavior to the expectations
of the human partner.

Iturrate et al. (2015) introduced a reinforcement learning (RL)
algorithm that learned optimal motor behavior of a robotic arm
based on observation ErrPs carried in the brain signals of a
human viewer. The BCI classifier decoded reaching actions as
erroneous whenever ErrPs were present. The non-ErrP trials
were then employed as an online reward for the RL algorithm.
Their approach improved the number of learned actions and
control policies compared to random rewards. Authors suggest
their algorithm for future application in neuroprosthetics in
which implicit input from the patient can optimize the behavior
of an artificial limb for goal-oriented movements.

Kim et al. (2017) conducted a study similar to Iturrate et al.
(2015) in which they trained a RL algorithm based on the
user’s ErrPs in a gesture recognition task. They prepared two
scenarios; (1) when a simulated arm robot recognized and copied
user’s gestures, and (2) when a real arm robot recognized and
copied user’s gestures. In both scenarios, the ErrP classifier used
the correct mappings as a reward for the RL algorithm. They
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TABLE 2 | List of articles in the literature that used a passive BCI classifier for extraction of user’s cognitive and affective state during interaction with a physical robot.

References EEG feature BCI classifier output Adaptive HRI

Szafir and Mutlu (2012) Spectral band powers Attention drops in user during storytelling by a robot The robot provided attention-evoking cues

Kirchner et al. (2013) Absence of P300 Stimuli recognition during teleoperation of an

exoskeleton arm

The robot controller repeated stimuli or

changed response window if the user missed

the stimuli

Ehrlich et al. (2014) Spectral band powers User intention to initiate eye-contact with a robot None

Iturrate et al. (2015) Error-related potential Erroneous motor behavior by an artificial robotic arm in a

reaching task

The robot arm controller learned correct and

incorrect behavior through reinforcement

learning

Kim et al. (2017) Error-related potential Wrong mapping between user’s gestures and robot’s

action

The robot updated action-selection strategy

and learned gesture meaning through

reinforcement learning

Salazar-Gomez et al. (2017) Error-related potential Erroneous robot motion in a binary reaching task The robot switched trajectory based on the

observer’s EEG response

Ehrlich and Cheng (2018) Error-related potential Mismatch in gaze behavior The robot adapted gaze behavior based on

decoded ErrPs

Ehrlich and Cheng (2019) Error-related potential Erroneous robot head movement as a response to a

directional key press by the user

None

Shao et al. (2019) Spectral asymmetry Emotional valence (positive vs. negative) during exercise

with a robot coach

The robot provided verbal and non-verbal

feedback based on the user’s affect and

engagement level

Lopes-Dias et al. (2019) Error-related potential Erroneous arm robot movement when the robot should

have imitated human hand movement.

The robot would give control to human again to

correct his/her movement

showed that both simulated and real robots could effectively
learn gestures from the human instructor with a high online
ErrP detection accuracy (90 and 91%, respectively). However,
not surprisingly, the learning curve was different across subjects
based on the performance of ErrP classifier. Past studies have
shown that ERP-based BCI performance varies across individuals
based on psycho-cognitive parameters (Sprague et al., 2016)
suggesting that ErrP-based BCIs may require subject-specific
calibration and training when integrated within an HRI setting.

Salazar-Gomez et al. (2017) introduced a closed-loop control
interface for automatic correction of reaching behavior of a
robotic arm. They recorded EEG signals from a human observer
while the robot was performing a binary object selection task
after a cue presentation. They used ErrP responses as a real-time
feedback for the robot to switch trajectory if the selected choice
was not compatible with the cue. Despite the soundmethodology
of this study, authors only reported classification results from
four subjects, which makes it difficult to draw firm conclusions.
Also, no reports were made regarding user perception of the
interaction and attitude toward the robot in open-loop vs. closed-
loop HRI. However, an interesting finding in this study was the
presence of a secondary ErrP in the closed-loop interaction when
the human observed an incorrect interpretation of the feedback
by the robot (robot not obeying the human or switching to
the wrong trajectory due to misclassification). This suggests the
design of new BCI paradigms where secondary and further ErrPs
can be incorporated in continuous interactions until an optimal
behavior is achieved (Cruz et al., 2018).

Ehrlich and Cheng (2018, 2019) reported two consecutive
studies in which they used ErrP signals for detection of mismatch
between user’s intended gaze and actual robot’s gaze (Ehrlich

and Cheng, 2018) and user’s intended head movement and
actual robot’s head movement (Ehrlich and Cheng, 2019). In
the former study, they used a closed-loop interaction (adaptive
behavior by the robot) where the user first guessed the direction
of robot gaze from three available choices and then the robot
performed a random gaze behavior which was followed by an
updated behavior based on the ErrP classifier outcome. Using a
learning paradigm for the robot’s gaze policy, they showed that
a mutual adaptation between the human and robot’s behavior
emerged, leading to a relatively high classification performance
and more efficient interaction. In the latter study (Ehrlich and
Cheng, 2019), authors again used a guessing game to compare
the observability and decodeability of ErrP responses to two
experimental stimuli; an incongruent robot movement vs. an
incongruent curser movement. In the first condition, participants
guessed the robot head movement from three possible directions
(left, right, up) using arrow key-presses, and watched the robot
perform a random action. In the second condition, they again
guessed a possible direction but watched a curser moving either
toward or away from that direction on a computer screen.
Although they found a satisfactory classification accuracy (69%)
in the HRI scenario, they observed that the classification accuracy
for ErrP responses was significantly higher in the cursor scenario
(90%), indicating more sensitivity of ErrPs to visually simple cues
compared to contextual robot actions.

Shao et al. (2019) used a low-cost EEG (InteraXon Muse
2016) together with heart rate and motion sensors during
interaction with a health coach humanoid robot. They extracted
EEG frequency band powers in order to classify the emotional
valence of the user during exercise with the robot. The robot
then presented an online positive or negative feedback (happy,
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interested, worried, and sad) based on the user’s affect (positive
or negative) and engagement level (engaged or not engaged).
The participants of their study reported a high acceptance
and perceived usability for the robot, however the robot was
tested in a non-controlled experiment (no other condition
was compared with the above scenario) and the classification
results for the affect recognition model was not particularly high
(71%), therefore it is possible that the reported results were
merely due to the novelty effect caused by the robot presence,
and not emotional awareness and adaptive feedback during
the interaction.

Finally, Lopes-Dias et al. (2019) attempted asynchronous
decoding of ErrPs during online control of an arm robot.
Participants had to move their own hand according to a
binary stimuli on the screen and using a motion capture
system, the robot was expected to copy the same movement
in the physical world. In case the hand movement was not
detected correctly, an ErrP signal was detected and the robot
allowed the user to correct the error. The major finding of this
study was the possibility of asynchronous detection of ErrPs
using a sliding window during online robot operation. Authors
do not discuss their results in the context of human-robot
interaction and a possible embodiment effect (Alimardani et al.,
2013), however similar to Salazar-Gomez et al. (2017), they
observed secondary ErrPs in some participants which confirms
the applicability of these later potentials in improvement of
robot performance.

Although, this section only focused on EEG-based passive
BCIs for the purpose of HRI, it is worth mentioning the
potential of other brain imaging techniques such as fNIRS
(Canning and Scheutz, 2013) in passive evaluation of user
responses during robot interaction, for instance, detection
of cognitive workload during multitasking with two robots
(Solovey et al., 2012) or detection of affinity and eeriness
in robot appearance (Strait and Scheutz, 2014). Additionally,
insights can be driven from passive BCI studies with simulated
agents and teleoperated robots (Esfahani and Sundararajan,
2011; Cavazza et al., 2015; Aranyi et al., 2016; Zander et al.,
2017) to further inform the HRI community of the possible
exploitation avenues.

Altogether, passive BCIs show promise in the design of
optimal robot behavior by means of indirect communication
from the human partner. Our literature review shows that
detection of erroneous robot behavior using ErrP signals is
the most popular paradigm for integration of passive BCIs
in HRI settings. Contrary to our expectation, there were very
few studies that employed detection of mental workload or
emotions for adaptive social behavior in HRI. This confirms that
despite the great effort of AI community in developing several
classification models for EEG-based emotion and cognitive state
prediction, real-time incorporation of these models in a closed-
loop interaction with physical robots are yet not adequately
explored. This gap should be addressed by BCI and HRI
researchers in the future, thereby creating a synergy between
the two domains for promotion of socially intelligent and
adaptive robots.

PROSPECTS AND CHALLENGES

As discussed in previous sections, passive BCIs offer a promising
means to objectively monitor cognitive and affective states of a
technology user either as an offline evaluation metric of the user’s
performance or as a communication modality for closed-loop
adaptive interaction. This puts forward application of passive
BCIs in neuroergonomic HRI (Lotte and Roy, 2019) where
potential mental overload, attention drops, negative emotions,
and human errors can be prevented or managed in an online and
unobtrusive manner, thereby increasing the interactivity between
the user and the robot and facilitating their collaboration (Krol
et al., 2018). Meanwhile, more research is required in the field
of HRI to formulate appropriate design principles for context-
aware alignment of the robot behavior with human expectations,
needs and conventions, once such higher order information
from the user is available (Rossi et al., 2017; Sciutti et al.,
2018).

Another direction toward future collaboration between
passive BCI and HRI research could be development of
social robots that assist neurofeedback training for augmented
cognition or sustenance of a desirable psychological state
(Anzalone et al., 2016; Alimardani and Hiraki, 2017; Alimardani
et al., 2018, 2020; Tsiakas et al., 2018; Cinel et al., 2019). One of
the main problems with the traditional neurofeedback training
paradigms is that the changes in brain features are usually
presented to the users through auditory or visual feedback. This
lacks engagement with the interface, which makes the training
after a short while tedious. Recent works have replaced the
old protocol with interactive computer games (Mishra et al.,
2016) and immersive virtual environments (Kosunen et al.,
2016). However, these applications require steady visual attention
toward a computer screen or placement of a head-mounted
display over the EEG electrodes that can be intrusive to the
user and cause cybersickness. A social robot on the other hand,
induces a feeling of co-presence, mind perception, and emotional
support (Alimardani and Qurashi, 2019), which can positively
influence performance, motivation, and social interaction during
a training program (Wiese et al., 2017; Sinnema and Alimardani,
2019; Alimardani et al., 2020). Past research has shown that
the physical embodiment of an agent generates a more natural,
efficient, and joyful communication during elderly cognitive
training (Tapus et al., 2009) as well as a higher learning
gain during tutoring interactions (Leyzberg et al., 2012).
Therefore, it is expected that a robot-guided cognitive training
would extend similar benefits compared to previous non-social
environments (Pino et al., 2019).

Although passive BCIs provide substantial opportunity for
optimization of performance and interactivity in HRI, their
advantages are often mitigated by several limitations with respect
to real-world implementation. One of the general challenges
in the usage of BCIs in real-world conditions is the high cost
and long preparation time that is required for the hardware
setup (electrode placement) and software tuning (individualized
calibration). Recent development of wireless EEG caps and low-
cost commercial headsets has substantially reduced the setup
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time for real-world recordings, however they often come at
the cost of precision and reliability. Also, there have been
attempts in reducing calibration time by means of machine
learning techniques and adaptive classifiers that extract common
features among all users (Lotte, 2015), known as inter-subject
associativity (Saha and Baumert, 2019). On the other hand, deep
learning methods have been suggested for automatic learning
of representations in the brain activity, thereby reducing the
pre-processing and manual feature extraction that is required
for BCI classifier training (Nagel and Spüler, 2019; Tanveer
et al., 2019). For BCI technology to become mainstream and
be employed by non-experts in other research domains, we
must reduce the cost of equipment use while improving the
quality of recording and precision of algorithms. Hence, further
advancement in wearable sensor technology as well as progress
in signal processing techniques and computational modeling of
brain activity is required for the BCIs to be finally deployed in
every-day use.

Another constraint in employing BCIs in real-world scenarios
is vulnerability of BCI output to external noise (Minguillon
et al., 2017). In most BCI studies, participants are instructed to
relax during the recording and avoid unnecessary movements;
nevertheless the online performance of these systems is yet
far from ideal due to uncontrolled concomitant stimulus
in the environment and diverse neurophysiological dynamics
across individuals. In the case of passive BCIs, this is an
even more severe issue as the user’s involvement in another
task or integration of the BCI system with other types of
technology introduces new artifacts from the environment
resulting in undesirable outcome (Zander et al., 2010). Such
misclassifications can become particularly critical in the HRI
scenarios, as poor performance from the system will produce
unwanted behavior from the robot, thereby harming the
interaction quality and diminishing the expected effects. A
proposed solution for this problem is combination of multiple
brain imaging modalities, such as fNIRS and EEG, to develop
hybrid BCIs that benefit from both high temporal and high
spatial resolution and hence can provide better accuracy and
process more commands from the user (Hong and Khan, 2017;
Dehais et al., 2018). Similarly, combination of brain signals with
other physiological data such as electromyography (EMG) or
electrooculography (EOG) can help detect and reduce the effect
of noise and increase the number of control commands necessary
for multi-task control (Hong and Khan, 2017; Zhang et al., 2019).

In the same vein, care must be taken when collecting
data for development of passive BCIs models in complex
environments where alternative sources of cognitive and affective
stimuli are available. Mappings between target mental states
and brain activity should clearly be defined and investigated
with careful consideration of confounding factors that might
affect neurophysiological variables (Brouwer et al., 2015). For
instance, when developing an affective BCI classifier for detection
of human emotions during interaction with a robot, the BCI
model should be trained and tested in an ecologically valid
HRI setting rather than with a set of affective visual stimuli.
Such new experimental paradigms may lead to unsuccessful
or inconsistent results compared to prior neuroscience studies,
however, this should not demotivate researchers from reporting

their findings as the BCI field is still in its infancy and the report
of negative results is equally valuable for its further progress
(Lotte et al., 2020).

Yet, another challenge with respect to integration of passive
BCIs in human-robot interaction studies is the high demand
for computational resources and data storage, which are
indispensible to real-time processing of brain activity as well as
real-time configuration of the robot controller. This means that
in practice, the two interfaces are often operated on different
computers/environments and hence need to communicate with
one another through proxy solutions (Müller-Putz et al.,
2011). In order to integrate BCIs and robots efficiently, future
developments is required to provide cost-effective BCI modules
that can be compiled and implemented in multiple environments
without requiring extensive programming and adaptation.

Last but not least, we should not lose sight on the emerging
ethical issues in real-world employment of passive BCIs such
as management of user expectation and sensitive data (Burwell
et al., 2017). Obviously, the idea of continuous monitoring
and access to someone’s thoughts is dreadful, particularly when
this information is collected and processed by a humanlike
entity such as a robot. Especially, in the case of affective BCIs,
there are unique challenges with respect to user autonomy as
they entail the risk of manipulation or inducement of affective
states without the user’s consent (Steinert and Friedrich, 2020).
Therefore, it is of high importance to scrutinize the ethical
implications of BCI-driven robots and develop educational
programs that communicate ethical guidelines to potential
users before such technologies are released into the wild.

CONCLUSION

Passive BCI technology holds promise in extracting affective and
cognitive states for an optimized human-technology interaction.
In this paper, we laid out the current state of the art
in passive BCIs and illustrated their implications for real-
world applications. We particularly reviewed their possible
employment in human-robot interaction with the intention to
inform the HRI community of the promises and challenges of
passive BCI technology. Future work should continue to advance
the synergy between the two domains and further explore the
impact and effectiveness of BCI-driven robots during closed-loop
interactions with humans.
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