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DeepMAge is a deep-learning DNAmethylation aging clock thatmeasures the organismal pace
of aging with the information from human epigenetic profiles. In blood samples, DeepMAge can
predict chronological agewithin a 2.8 years errormargin, but in saliva samples, its performance is
drastically reduced since aging clocks are restrictedby the training set domain.However, saliva is
an attractive fluid for genomic studies due to its availability, compared to other tissues, including
blood. In this article, we display how cell type deconvolution and elastic net can be used to
expand the domain of deep aging clocks to other tissues. Using our approach, DeepMAge’s
error in saliva samples was reduced from 20.9 to 4.7 years with no retraining.
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1 INTRODUCTION

Aging clocks are the centerpiece of the emerging longevity industry. They allow us to accurately
quantify a hidden property of living organisms–the pace of aging.

Over the years the concept of aging clocks has been validated in numerous settings. An increased
pace of aging has been shown to manifest in diseases, smoking, obesity, and other conditions that
could be interpreted as reducing human longevity potential. At the same time, a slower pace of aging
has been associated with lower mortality, and decreasing it is the aim of a new medical
paradigm–longevity medicine (Bischof et al., 2021).

However, each aging clock comes with its own set of limitations, that stand in the way of its
widespread adoption. Some of these limitations stem from the mathematical apparatus used to
measure the pace of aging (Galkin et al., 2020a). Some of them are inherent to the information a
certain data type can possibly convey about the state of the whole organism. Another set of
limitations has its root in the training set domain.

Currently, all aging clocks are implemented within the supervised learning framework. A data set
is collected and each sample is labeled with a target variable representing biological age. The most
commonly used target variable is chronological age (CA), however more complex target variables
have also been tried with great success (Levine et al., 2018; Lu et al., 2019).

A loss function is used to iteratively train a statistical model to correctly predict the age of a person
until the best parameters for the model are established. When CA is used to train the model, the pace
of aging is expressed as its prediction error: if an aging clock estimates someone to be five years older
than their CA, their pace of aging is said to be increased.

All samples within a training set need to share a degree of similarity (Chicco, 2017). Otherwise,
any modeling approach may not be able to identify the connection between the measured properties
and aging.

Edited by:
Jan Vijg,

Albert Einstein College of Medicine,
United States

Reviewed by:
Patrick De Boever,

University of Antwerp, Belgium
Johanna Heid,

Albert Einstein College of Medicine,
United States

*Correspondence:
Alex Zhavoronkov
alex@insilico.com

Fedor Galkin
fedor@deeplongevity.com

Specialty section:
This article was submitted to

Genetics, Genomics and Epigenomics
of Aging,

a section of the journal
Frontiers in Aging

Received: 30 April 2021
Accepted: 16 July 2021
Published: 29 July 2021

Citation:
Galkin F, Kochetov K, Mamoshina P
and Zhavoronkov A (2021) Adapting
Blood DNA Methylation Aging Clocks
for Use in Saliva Samples With Cell-

type Deconvolution.
Front. Aging 2:697254.

doi: 10.3389/fragi.2021.697254

Frontiers in Aging | www.frontiersin.org July 2021 | Volume 2 | Article 6972541

BRIEF RESEARCH REPORT
published: 29 July 2021

doi: 10.3389/fragi.2021.697254

http://crossmark.crossref.org/dialog/?doi=10.3389/fragi.2021.697254&domain=pdf&date_stamp=2021-07-29
https://www.frontiersin.org/articles/10.3389/fragi.2021.697254/full
https://www.frontiersin.org/articles/10.3389/fragi.2021.697254/full
https://www.frontiersin.org/articles/10.3389/fragi.2021.697254/full
http://creativecommons.org/licenses/by/4.0/
mailto:alex@insilico.com
mailto:fedor@deeplongevity.com
https://doi.org/10.3389/fragi.2021.697254
https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/journals/aging#editorial-board
https://doi.org/10.3389/fragi.2021.697254


Standard practices for putting together a training set include
collecting samples from the same species, tissue, obtained with
similar protocols, and using identical (or at least comparable)
equipment and laboratory techniques.

In the meantime, if all samples are too similar the resulting
aging clock can not be generalized (Goh et al., 2017). An aging
clock trained with samples from people of the same ethnicity may
not translate to another one. If all samples belong to a certain age
bracket, an aging clock will likely have poor performance in
people outside its range. If an aging clock is trained using only
blood samples, it will not be applicable to the samples of other
tissues, due to tissue-specific methylation patterns (Thompson
et al., 2010).

Each choice taken to balance the similarity-diversity trade-off
limits the range of possible applications of the aging clock. In this
article, we display a simple approach that has let us overcome the
original tissue domain of an aging clock. DeepMAge is a deep-
learning DNA methylation (DNAm) aging clock, which was
trained exclusively on human blood DNAm profiles (Galkin
et al., 2020b). For such profiles, DeepMAge can predict CA
within a 2.77 years error margin. But in saliva samples, its
performance drops drastically.

However, using saliva samples for epigenetic analysis is more
attractive than blood due to the simplicity of collecting the
material. Saliva is also a good source of high-quality DNA for
use in (epi)genomic studies and contains a broad range of
diagnostically relevant molecules, such as microRNA, RNA
antibodies, and inflammations markers (Langie et al., 2017).

Saliva also contains both white blood cells and buccal cells and
can be considered a multi-tissue sample. Some clocks, originally
trained in multiple tissues, can handle both these cell types, and
thus, are suitable for epigenetic research in saliva (Fitzgerald et al.,
2021). In the meantime, single-tissue models may be unable to
handle the variable cell composition of saliva.

The immune cell fraction in saliva samples depends on the
level of inflammation, donor’s age, and sample collection
procedure (Aps et al., 2002; Theda et al., 2018). The effect of
cell composition may obscure the useful information contained
within epigenetic profiles. There are multiple cell-type
deconvolution tools that allow to diminish this effect (Langie
et al., 2017; Houseman et al., 2012). We used one such reference-
based tool—EpiDISH—to derive a linear cell-type adjustment to
DeepMAge’s predictions (Teschendorff et al., 2017). With this
adjustment, the aging clock’s accuracy was salvaged, showing that
in some cases it is not necessary to include different tissues into
the training set of a deep-learning model to obtain a multi-tissue
aging clock.

2 MATERIALS AND METHODS

2.1 Aging Clock
The aging clock used in this study is DeepMAge originally
published in Galkin et al. (2020b). DeepMAge is a deep-
learning neural network that takes in a vector of β-values for
1,000 CpG sites present in Illumina BeadChip 27 K and Illumina
BeadChip 450 K platforms.

DeepMAge has been trained on a collection of blood DNAm
profiles and its behavior in saliva samples has not been described
elsewhere.

2.2 Cell Type Deconvolution
To determine the cell type composition of the saliva samples,
EpiDISH described in Zheng et al. (2018) was used. EpiDISH is
available as an R package at https://github.com/sjczheng/
EpiDISH (v.2.6.0).

2.3 Data Collection
All data used in this study is publicly available at Gene Expression
Omnibus (GEO). We selected the datasets according to the
following criteria: 1) A data set had to contain epigenetic
profiles obtained with an Illumina Infinium array; 2) A data
set had to contain saliva and/or buccal swab samples; 3) A data set
had to be annotated with age and sex information.

In the end, 12 datasets were selected. Study accession numbers
for the training set are: GSE78874–contains men and women of
two ethnic backgrounds: Hispanics and Caucasians (N � 259
people), GSE80261–contains human buccal epithelial cells from
children from the NeuroDevNet cohort (N � 216),
GSE94876–contain methylation profiles in buccal cells of long-
term smokers and moist snuff consumers (N � 120),
GSE34035–contains saliva DNA from alcohol-dependent
subjects (N � 112), GSE50759–contains samples from buccal
epithelium collected using exfoliative brushing (N � 96),
GSE28746–saliva samples from male identical twins discordant
for sexual orientation (N � 84), GSE42700 - buccal cell samples
collected at birth and 18 months from 10 monozygotic and five
dizygotic twin pairs from the Peri/postnatal Epigenetic Twins
Study (PETS) cohort (N � 53), GSE50586–buccal swabs (N � 20).
Studies used in the verification set include: GSE92767–saliva from
54 males aged 18–73 years (N � 54), GSE109042–human buccal
epithelial cells from children with fetal alcohol spectrum disorder
and control samples (N � 47), GSE28217–contains primary oral
squamous cell carcinoma, oral leukoplakia, and normal oral
mucosa (N � 12). GSE48472–contains data from blood, saliva,
buccal swab, and hair follicles, but only saliva and buccal swab
samples were used (N � 5). All samples were normalized using
lumi, according to the protocol described in Galkin et al. (2020b),
Du et al. (2008).

2.4 DeepMAge Prediction Adjustment
Several approaches were compared to find the optimal way of
enabling accurate DeepMAge predictions for saliva samples:

• No adjustment: DeepMAge predictions were used as-is;
• Simple adjustment: No information from cell-type
deconvolution was used. Actual age of the saliva samples
was regressed as a function of its DeepMAge prediction
alone;

• Shift adjustment: DeltaAge was regressed as a function of
saliva samples’ cell types to obtain a correction term, where
DeltaAge � DeepMAge prediction–CA. Correction terms
were added to DeepMAge output of the saliva samples to
obtain the adjusted predictions;
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• Total age adjustment: CA of saliva samples was regressed
as a function of DeepMAge predictions and cell
composition to obtain the adjusted predictions.

Any models used to derive adjustments were implemented
with the ElasticNet fitter, as implemented in scikit-learn v.0.24.1
Python package. Optimal regression parameters were chosen
based on the grid search defined as:

{′l1_ratio′: numpy.arange(0, 1, 0.01),
′alpha′: (1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.0, 1.0, 10.0, 100.0)}
with leave-one-study-out (LOSO) cross-validation (CV) folds.

The final adjustment regressions were trained on all studies, save
those in the verification set.

For simple and total age adjustments, transformed predicted
age values were tried. The adjustment was described in detail in
Horvath (2013). The age transformation may be expressed as:

f (x) �
x + 1
21

− 1, if x > 20

ln
x + 1
21

, if x ≤ 20

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f −1(x) � 21 × exp(x) − 1, if x < 0

21 × x + 20, if x ≥ 0
{

3 RESULTS

3.1 Cell Composition in Saliva DNA
Methylation Studies
The collection of publicly available studies we used was extremely
diverse in its cell composition. The average fraction of immune
cells in the samples varied within the 5.6–81.3% range. Most
studies contained a negligible fraction of fibroblasts (< 5%),
except for GSE28217 in which samples contained 23.3%
fibroblast cells on average (Figure 1A).

Cell composition varied significantly not only between studies
but also between the samples from the same study, illustrating the
heterogeneity inherent to salivary samples processed according to
the same study protocol (Figure 1B).

3.2 Enabling Age Prediction in Saliva
Samples
No adjustment for cell-type composition produced worse
predictions than the baseline model – median age assignment
(Table 1). The accuracy was increased with any of the proposed
adjustments. Among the adjusters using non-transformed age,
the correction based on delta age, immune and epithelial cell
relative counts (“Delta age” in Table 1) produced the most
accurate results – MAE � 6.34 years in the CV and MAE �
6.28 years in the verification sets.

The most accurate adjuster, however, used the age
transformation described in Methods. The best adjuster
among those tested is “Total age-transformed” with a MAE
of 4.57 years in the CV set and 4.74 years in the verification sets
(Figure 2). This adjustment improved DeepMAge’s accuracy
in all tried data sets, despite their differences in cell-type
composition (Figure 3).

The total age adjustment can be expressed as the
following formulas, with and without age transformation,
respectively:

f (DeepMAge Saliva) � 0.93 × f (DeepMAge Blood) − 1.14 × Epi

+ 1.05 × IC − 1.18

(1)

FIGURE 1 | Publicly available studies of DNAm in saliva samples have high inter- and intra-study cell composition variability. (A) Average cell composition of saliva
samples in the studies used, estimated with EpiDISH DNAmdeconvolution. N � Total number of samples in a study. (B) Immune cell distributions within the studies used.
Boxes correspond to the IQR, whiskers protrude no further than 1.5×IQR. Boxes are colored according to their inclusion in the training or verification set.

TABLE 1 | All cell-type variability adjustments significantly improve DeepMAge’s
accuracy in saliva samplesMAE �Mean Absolute Error, seeMATERIALS AND
METHODS for the description of the adjustments used.

Adjustment Age transformed MAE, years

Train Test

Baseline Non-transformed 22.09 19.03
None Non-transformed 26.36 20.86
Simple Non-transformed 13.48 13.74

Transformed 12.54 13.87
Delta age Non-transformed 6.34 6.28
Total age Non-transformed 7.76 6.83

Transformed 4.57 4.74
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DeepMAge Saliva � 0.85 × DeepMAge Blood − 11.54 × Epi + 10.56

× IC − 15.76

(2)

where Epi and IC are the portions of epithelial and immune cells
in the sample, respectively.

3.3 The Effect of Immune Cell Fraction on
the Increase in Accuracy
Since DeepMAge was trained on a set of blood-derived DNAm
profiles, we wondered if our adjuster-suggested shift in prediction
was larger in samples with lower IC proportions. For this purpose,
we measured the increase in accuracy between DeepMAgeBlood and
DeepMAgeSaliva as the drop in distance to the chronological age after
the adjustment.

We compared the increase in accuracy to the IC content of the
samples to discover that IC content was strongly negatively correlated
with the absolute adjustment magnitude (R2 � 0.72, Pearson′s r �
−0.85).Moreover, only 5% of all samples actually grew farther from the
chronological age, among which most consist of > 50% IC (Figure 4).

4 DISCUSSION

In this article, we have demonstrated a method to expand an
aging clock’s domain of applications to other tissues.

More specifically, the method we propose can be used to
translate blood-trained aging clocks to saliva and buccal swab
samples.

Saliva is one of the easiest to obtain tissues and is a good source
of high-quality DNA. In comparison to blood, saliva requires no
additional anticoagulant, the risk of disease transmission is lower,
and there is no need for venipuncture (Langie et al., 2017).
Although blood is the most widely used tissue for clinical
tests, saliva in its own right has been shown to be a valuable
biomarker for the early detection of such cancer types as oral
cancer, head and neck squamous cell carcinoma, and breast
cancer (Liyanage et al., 2019; Bryan et al., 2013; Nagler, 2009;
Delmonico et al., 2015).

Moreover, saliva methylome was also shown to be positively
correlated with methylation in blood for 88.5% (Smith et al.,
2015). Thus, changes in salivary DNAm profiles might be
indicative of organism-wide aging processes that can also be
detected in blood DNAm levels. From a technical standpoint,
however, saliva cannot be used as a substitute for DNAm aging
clocks trained on blood samples only.

DeepMAge is a deep learning model, which was trained on a
set of blood-derived DNAmprofiles and shows poor performance
in saliva samples. Salvaging its accuracy in other tissues can be
formalized as a domain adaptation problem, for which a variety of
theoretical solutions exist within the deep learning framework.
Our solution, however, does not involve retraining the model or

FIGURE 2 | Cell-type adjustment (“total age-transformed”) significantly improves the performance of DeepMAge (originally developed for blood samples) in the
domain of saliva samples. (A) Training set, unadjusted: R2 � 0.73. (B) Training set, adjusted: R2 � 0.95. (C) Verification set, unadjusted: R2 � 0.63. (D) Verification set,
adjusted: R2 � 0.92. R2 � coefficient of determination. Predictions for the training set were obtained with leave-one-study-out cross-validation.
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manipulating the target domain samples. It is based on
introducing additional information (cell type composition) on
the target domain samples to derive a linear offset for aging clock
predictions. The reported adjustment has resulted in a saliva
DNAm aging clock with a MAE of 4.7 years, which is comparable
to the clock described in Bocklandt et al. (2011) which was trained
in saliva and reached a MAE of 5.2 years.

To estimate the cell content of salivary sample, we used
EpiDISH – a cell type deconvolution algorithm that uses a
reference of pure cell type DNAm profiles to evaluate the cell
composition of bulk samples. This tool was verified using in silico
mixtures of pure cell types. Its creators aimed to remove the effect
of immune cell contamination in differential methylation studies
in epithelial tissues.

Since DeepMAge was trained on blood data, the IC effect
represents not the contamination, in this setting, but the signal

the aging clock is prepared to recognize. Thus in some sense,
EpiDISH may be said to adjust for the noise associated with
epithelial DNAm profiles, bringing the samples closer to the
original training domain.

However, this explanation for the efficiency of cell-type
adjustment in the context of DeepMAge performance is an
oversimplification. EpiDISH does not deconvolute DNAm
bulk profiles into three distinct profiles of fibroblast, immune,
and epithelial origin, the mixture of which would produce the
observed profile. It only provides a vector of relative abundances
for these three cell types in the sample. Thus, it is impossible to
subtract the epithelial noise from the DNAm profiles. Another
counterargument for the noise hypothesis is that EpiDISH
significantly improves DeepMAge prediction quality even in
data sets that have low immune cell abundance (GSE42700,
GSE109042), and thus could be said to have an overwhelming
noise to signal ratio (Figure 4).

Another, more probable explanation for the efficiency of
EpiDISH is that the pace of epigenetic aging, as perceived by
DeepMAge, is faster in epithelial samples. This follows from the
total age correction formula: 1) DeepMAge overestimates the age
of saliva samples (see <1 coefficient for DeepMAge Blood, negative
intercept), 2) a sample consisting completely of epithelial cells
would be predicted 27.3 years older than it should be (see negative
Epi coefficient, negative intercept).

Another major contributing factor, apparently, is that despite
their different function and ontogenesis, buccal epithelium and
immune blood cells share similar aging signatures.

Since the correction can be interpreted to stretch the original
DeepMAge prediction space, it may be argued that the changes in
the organismal pace of aging may be more rapidly reflected in
saliva than in blood. This quicker responsiveness and the
difference in the aging rate between IC and epithelium may be

FIGURE 3 | The reported adjustment significantly increases the
accuracy of age prediction in all studies, despite their different cell-type
composition (Figure 1). (A) Prior to the adjustment DeepMAgeBlood predicts
chronological age in saliva samples with a MAE of 26.36 years in the
training set and 20.86 years in the verification set (Table 1). Numbers above
boxes stand for the number of samples in each study. (B) After the “total age-
transformed” adjustment DeepMAge’s error in saliva samples drops to a MAE
of 4.57 years in the training set and 4.74 years in the verification set, despite
the variable cell type composition of the samples across studies (Figure 1A).
Boxes correspond to the interquartile region (IQR), whiskers protrude no
further than 1.5×IQR. Boxes are colored according to their inclusion in the
training or verification set.

FIGURE 4 | The “total age-transformed” adjustment increases the age
prediction accuracy in individual samples by up to 50 years in saliva samples.
The absolute increase in accuracy is smaller in samples with higher immune
cell count. Very few (5%) samples are predicted less accurately (left to
the red vertical line) after the adjustment. Black line is the ordinary least
squares regression, its R2 is 0.72 and Pearson’s r is −0.85.
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explained by a much higher turnover rate of buccal epithelium
whose surface layer is replaced every 3 h (Sender and Milo, 2021;
Dawes, 2003).

The tissue-specific pace of aging has been reported in some
other publications (Hannum et al., 2013; Thompson et al., 2018),
yet in them, the impact of variable cell composition is not
explored. We believe that it is important to delineate the
effects of the primary tissue and that of the contaminating cells.

We tried the approach similar to the one used inHannum et al.
(2013) (“Simple adjustment” in Table 1) (two-fold increase in
accuracy). While it yielded better results than the non-adjusted
DeepMAge, the best adjuster produced predictions almost three
times as accurate (Table 1). We argue that simple tissue-specific
linear offsets are insufficient to turn a single-tissue clock into a
multi-tissue one. This approach ignores the marked variance of
cell composition that is present even within the same specimen
collection protocol. Samples from the same study can have no
immune cell contaminants at all, or be composed of them
completely (Figure 1). Nonetheless, both extremes and
everything in-between will be identically labeled as “saliva”.

In the future, single-cell DNAm profiling may render the
concept of a “tissue-specific” aging clock obsolete by designing
biological age as a probabilistic function of individual cells (Trapp
et al., 2021). But within the bulk sample context, DNAm
deconvolution is an impressively efficient technique to solve
the tissue domain problem. While working with public data
repositories, it can also serve as a quality control tool to
remove outliers, control a hidden source of technical variation,
and fill in missing or misleading tissue labels.

From a practical standpoint, our results show that it is not
necessary to retrain deep learning clocks or employ any other
complex domain adaptation techniques to widen their range of
use cases. Since the correction procedure is model agnostic, similar
extensions may be developed for shallow learning aging clocks.

While blood is easily available in clinical settings, the
necessity to schedule blood drawing stands in the way of

consumer biogerontology applications. Using cell
deconvolution to adapt the existing blood domain solutions
to saliva samples will increase the adoption rate of the aging
clock technology.

5 CONCLUSION

Cell-type deconvolution can be used to expand the applicability of
aging clocks to the tissues outside of their original training
domain and significantly increase their accuracy for initially
unintended use-cases.
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