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SUMMARY

During Caenorhabditis elegans oocyte meiosis, a
multi-protein ring complex (RC) localized between
homologous chromosomes, promotes chromosome
congression through the action of the chromokinesin
KLP-19. While some RC components are known, the
mechanism of RC assembly has remained obscure.
We show that SUMO E3 ligase GEI-17/PIAS is re-
quired for KLP-19 recruitment to the RC, and proteo-
mic analysis identified KLP-19 as a SUMO substrate
in vivo. In vitro analysis revealed that KLP-19 is effi-
ciently sumoylated in a GEI-17-dependent manner,
while GEI-17 undergoes extensive auto-sumoylation.
GEI-17 and another RC component, the kinase
BUB-1, contain functional SUMO interaction motifs
(SIMs), allowing them to recruit SUMO modified pro-
teins, including KLP-19, into the RC. Thus, dynamic
SUMO modification and the presence of SIMs in RC
components generate a SUMO-SIM network that
facilitates assembly of the RC. Our results highlight
the importance of SUMO-SIM networks in regulating
the assembly of dynamic protein complexes.

INTRODUCTION

Meiosis is a specialized division in which a single round of DNA

replication is followed by two consecutive segregation steps.

Homologous chromosomes segregate in Meiosis I, while sister

chromatids segregate in Meiosis II, giving rise to haploid gam-

etes (Duro and Marston, 2015). In contrast to mitotic spindles,

meiotic spindles in many animal species (including humans

and nematodes) lack centrosomes (Dumont and Desai, 2012),

and how these spindles are organized is poorly understood

(Ohkura, 2015). As meiotic spindles vary across the animal

kingdom, identification of common and unique mechanisms of

spindle assembly and chromosome orientation, congression,

and segregation will contribute to the fundamental understand-

ing of these processes (Dumont and Desai, 2012; Severson

et al., 2016). In C. elegans oocytes, chromosome movement

along lateral microtubule bundles is facilitated by plus-end

directed forces exerted by the kinesin KLP-19 (Powers et al.,
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2004; Wignall and Villeneuve, 2009), which requires the kinase

BUB-1 for localization to the ring complex (RC). BUB-1, in turn,

requires the chromosomal passenger complex (CPC) com-

ponents AIR-2/Aurora B and ICP-1/INCENP for RC localization

(Dumont et al., 2010; Wignall and Villeneuve, 2009). However,

the mechanism of RC assembly has remained elusive.

The small ubiquitin-related modifier (SUMO) conjugation

pathway is conserved in C. elegans, and it is composed of one

SUMO ortholog, SMO-1 (hereafter, SUMO), an E1 activating

enzyme, and the E2 conjugating enzyme (UBC-9). The specificity

and dynamic nature of this modification is achieved by SUMO-

specific E3 ligases and SUMO-specific isopeptidases (Flotho

and Melchior, 2013; Gareau and Lima, 2010; Hay, 2007). In

C. elegans, these include the Siz/PIAS-type SUMO E3 ligase

GEI-17 (Kim and Michael, 2008; Pelisch et al., 2014) and the iso-

peptidases ULP-1, 2, 4, and 5 (Pelisch et al., 2014; Sapir et al.,

2014; Tsur et al., 2015; Zhang et al., 2004). SUMO E3 ligases

often target groups of functionally related proteins (Psakhye

and Jentsch, 2012) and, once this modification has taken place,

the presence of SIMs in PIAS type E3 ligases has the potential to

prolong engagement on substrate(s) leading to a dramatic ampli-

fication of the signal. Thus, SUMO-SIM networks provide a

means to rapidly and reversibly regulate protein interactions.

While sumoylation regulates chromosome synapsis during

meiosis in budding yeast (Cahoon and Hawley, 2016), it is

not known whether this is conserved in other organisms. We

addressed this using the nematode C. elegans, as it provides

an excellent model to study meiosis (Hillers et al., 2015). In

nematodes, synaptonemal complex (SC) assembly is unper-

turbed in the absence of SUMO, while bivalent differentiation

and SC disassembly are affected (Bhalla et al., 2008). Here,

we show that highly dynamic, GEI-17-mediated SUMO conju-

gation during fertilization and non-covalent SUMO binding

facilitates the assembly of a complex containing AIR-2/Aurora

B, BUB-1, and the chromokinesin KLP-19. We identified GEI-

17/PIAS as the key SUMO E3 ligase required for this com-

plex to assemble and show that it is directly involved in

SUMO modification of KLP-19. SIMs present in BUB-1 and

GEI-17 allow them to bind SUMO-modified forms of KLP-19,

providing a mechanism for SUMO-dependent RC assembly.

These results highlight the requirement for spatially and

temporally regulated SUMO modification during C. elegans

oocyte meiosis and illustrate how post-translational modifica-

tions can regulate chromosome congression on acentrosomal

spindles.
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Sumoylation Is Required for

Meiotic Chromosome Congression

(A) Schematic of a worm highlighting the germline

and the different stages of prophase. transition

zone, TZ; spermatheca, sp.

(B)Nuclei in thepachytenestageofmeiosis showing

SUMO localization in green and the synaptonemal

complex component SYP-1 in magenta. The scale

bar represents 2 mm. See also Figure S1B.

(C) SYP-1 staining in pachytene nuclei from wild-

type and gei-17(RNAi) worms. The scale bar rep-

resents 3 mm. See also Figure S1E.

(D) The schematic shows a fertilized oocyte (top left)

and highlights its anterior end and the meiotic spin-

dle (bottom left). The metaphase I-arrested oocytes

from mat-1 wild-type or gei-17(RNAi) worms were

stained for a-tubulin (green) andDNA (magenta) and

widefield images are displayed. The yellow arrow

points to a misaligned bivalent. The scale bar rep-

resents 5 mm. The bottom images display a view of

the entire oocyte for each condition.

(E) Same as in (F), but 3D-structured illumination

(SIM) images were acquired using an OMX mi-

croscope. Note that the wild-type spindle in (E) is

the same as the wild-type spindle in (D). The scale

bar represents 1 mm.

(F) Spindles were characterized as either ‘‘aligned’’

or ‘‘non-aligned’’ (at least one chromosome away

from the metaphase plate) and results from 25

oocytes for each condition are shown as% of total.

(G) Monopolar spindles arrested at metaphase

were obtained from klp-18(ok2519) worms (KLP-

18 is an essential protein to achieve bipolarity) in

the presence of emb-30(RNAi), either in the

absence or presence of smo-1(RNAi). a-tubulin is

shown in green, DNA in blue, and SEP-1 (as a

marker for metaphase) in magenta. The scale bar

represents 2 mm.

(H) The 3D distance (d) between the spindle pole

and the middle of each bivalent was measured

(number of measurements are shown for each

condition as ‘‘n’’), and the results are represented

in a dot plot with the median shown as a black

horizontal line. The results were analyzed with the

Kruskal-Wallis test, followed by Dunn’s post-test.
RESULTS

SUMO in the C. elegans Germline
While sumoylation plays a role in meiotic chromosome pairing

during prophase in yeast, this is not conserved in nematodes,

where synapsis occurs normally in the absence of SUMO (Bhalla

et al., 2008). While SUMO knockout worms have severe germline

defects (Broday et al., 2004), we found that in SUMO E3 ligase

gei-17 �/� worms, some oocytes mature in spite of the defec-

tive germline and accumulate the CPC protein ICP-1 in the mid-

bivalent and the cohesin REC-8 between homologous chromo-

somes and sister chromatids (Figure S1A). As opposed to the

SC components SYP-1 and HTP-3, SUMO displays a diffuse

localization in pachytene nuclei (Figures 1A, 1B, and S1B). As ex-

pected (Bhalla et al., 2008), RNAi-mediated depletion of GEI-17

affected neither chromosome synapsis, as evidenced by SYP-1
staining (Figure 1C), nor crossover designation (Figures S1C

and S1D). The diffuse SUMO signal in pachytene nuclei re-

mained after GEI-17 depletion (Figure S1E), likely corresponding

to unconjugated SUMO and/or SUMO conjugated by the action

of other E3 ligase(s). Enzymes of the SUMO pathway do not co-

localize with DNA during pachytene: UBC-9 co-localizes with the

nuclear envelope, while GEI-17 accumulates on the inner side of

the nuclear envelope (Figure S1F). The SUMO protease ULP-1

also localizes in the nuclear envelope (data not shown). These re-

sults show that meiosis can proceed through pachytene when

GEI-17-mediated SUMO conjugation is compromised.

Lack of Sumoylation Affects Chromosome Congression
Live imaging experiments using mCherry-H2B showed that

in the absence of GEI-17, chromosomes often failed to align

during metaphase I (Figure S2A). To robustly characterize this
Molecular Cell 65, 66–77, January 5, 2017 67



phenotype, we used an anaphase promoting complex tempera-

ture-sensitive allele: emb-27 (Golden et al., 2000), focusing on

the oocyte closest to the spermatheca to avoid indirect effects

derived from prolonged arrest. In the absence of GEI-17,

chromosome alignment was compromised, as evidenced by

the presence of one or two chromosomes closer to one of the

spindle poles (Figures 1D, yellow arrows, 1E, and 1F). This

phenotype is reminiscent of klp-19(RNAi) (Wignall and Ville-

neuve, 2009), consistent with a plus-end-directed force defect.

As monopolar spindles allow the contributions of plus- and

minus-end-directed forces to be evaluated (Muscat et al.,

2015; Wignall and Villeneuve, 2009), we generated metaphase

I-arrested monopolar spindles. Metaphase I chromosomes

localize close to the plus-end of microtubules (Figure 1G)

(Wignall and Villeneuve, 2009), but knock down of SUMO,

UBC-9, or GEI-17 reduced the chromosomes-to-pole distance

(Figures 1G and 1H). Separase (SEP-1) staining was used to con-

fim that oocytes were in metaphase I (Bembenek et al., 2007;

Muscat et al., 2015). Thus chromosome congression fails in

the absence of sumoylation due to a defect in plus-end directed

forces.

SUMO Localizes to a Ring-Shaped Structure during
Meiosis
mCherry-SUMO strongly concentrates at the midbivalent in

metaphase I and within sister chromatids in metaphase II

(Figures 2A and S2B). During anaphase I and II, SUMO is de-

tected between the segregating chromosomes and chroma-

tids, respectively (Figures 2A and S2B) and becomes diffuse

within the spindle in late anaphase (Figure 2A). Endogenous

SUMO also concentrates in the midbivalent during meta-

phase I in a ring-shaped pattern (Figures 2B, 2C, and S2C)

and partially co-localizes with microtubule bundles (Figures

2D and S2D). The same localization pattern was observed

for UBC-9 (Figure 2E) and GEI-17 (Figure 2F). Endogenous,

GFP-tagged GEI-17 localization is also dynamic being pre-

sent in the midbivalent before localizing to the spindle mid-

zone and then fading away by late anaphase (Figure 2G).

This suggests that active sumoylation takes place within the

RC and that one or more microtubule-associated proteins

are SUMO substrates.

SUMO Conjugation within the Ring Complex
Knock down of GEI-17 dramatically reduces SUMO localization

at the midbivalent (Figures 2H and 2I), although residual SUMO

remains at the midbivalent and spindle (Figure 2I; mCherry

channel ‘‘re-scaled’’). To test if conjugation is required for the

formation of the midbivalent SUMO ring, we expressed a

GFP-SUMO mutant with the C-terminal Gly-Gly sequence

mutated to Gly-Ala [‘‘GFP-SUMO(GA)’’] to block conjugation

to substrates (Pelisch et al., 2014). GFP-SUMO(GA) localization

to the midbivalent is dramatically reduced (Figure 2J), and re-

sidual localization can only be observed by rescaling the GFP

fluorescence (Figure 2K). Thus, conjugation is the primary

determinant for SUMO localization in the RC during meiosis,

although a role for non-covalent SUMO interactions is also

suggested. Supporting this argument, knock down of the

SUMO E2 enzyme, UBC-9, not only inhibits SUMO concentra-
68 Molecular Cell 65, 66–77, January 5, 2017
tion in the midbivalent, but also abolishes recruitment of the E3

ligase GEI-17 (Figure 2L). Thus, SUMO conjugation is required

for E3 ligase recruitment and for SUMO to concentrate on

the ring.

The Kinesin KLP-19 Is a Substrate for SUMO
Modification and Exhibits SUMO-Dependent
Localization
To search for SUMO substrates during meiosis, we adapted to

C. elegans a proteomics approach successfully employed in

human cells (Tammsalu et al., 2014, 2015). To identify sumoyla-

tion sites in vivo, we generated worms expressing His6-tagged

SUMO with a Leu to Lys substitution preceding the C-terminal

diGlymotif (L88K) in the germline and early embryos (Figure S3A).

After Ni-NTA purification and Lys-C digestion, the mutant SUMO

leaves a GG remnant on substrate lysines that facilitates peptide

enrichment with an anti-K-ε-GG antibody (Figure S3B) (Tamm-

salu et al., 2014, 2015). Conjugation of SUMO(L88K) to sub-

strates in vitro is indistinguishable fromwild-type SUMO (Figures

S3C and S3D) and is also conjugated in vivo (Figure S3E). Among

the in vivo substrates, we obtained evidence for modification of

KLP-19 within its C-terminal region (Figure S3F). Mass spec-

trometry analysis of in vitro sumoylated KLP-19 showed that

Lys 873, contained in the peptide identified in vivo, is a SUMO

modification site in KLP-19 (Figures S3G–S3I), although other

lysines were identified as SUMO acceptors (Figure S7). SUMO

and KLP-19 both localize within the midbivalent (Figures 3A

and 3B, orange arrowhead), while a small fraction of KLP-19

also localizes to kinetochores (Figures 3A and 3B, yellow arrow-

head). Juxtaposition of SUMOandKLP-19 in vivo was confirmed

by proximity ligation assays (PLA) and is dependent on the

SUMO E3 ligase GEI-17 (Figure 3C). To confirm that KLP-19 is

a SUMOsubstrate, we performed in vitro sumoylation assays us-

ing bacterially expressed, purified proteins (Figures S4A–S4D).

Full-length, untagged KLP-19 is efficiently modified by SUMO

in a GEI-17-dependent manner (Figures 3D and S4E). As the

identified SUMO modification site in vivo localizes within the

C-terminal region of KLP-19, we performed in vitro sumoylation

reactions using KLP-19(651–1,083), which excludes the motor

and coiled-coil domains. KLP-19(651–1,083) is efficiently su-

moylated in a GEI-17-dependent manner (Figures 3E and S4F),

and we confirmed that the slower migrating species corre-

sponded to SUMO-modified KLP-19 using two-color western

blot (Figures 3F and S4G). Importantly, mutation of lysine 873

to arginine within KLP-19 (K873R) drastically reduced SUMO

modification of KLP-19 (Figures 3F, S4G, and S4H). Co-deple-

tion of GEI-17 and KLP-19 followed by quantification of the con-

gression defect indicated that the two proteins act on the same

genetic pathway (Figure S5A). Accumulation of KLP-19 in the RC

is drastically reduced in the absence of GEI-17 (Figures 3G,

orange arrow, and 3H), while the faint kinetochore signal is

unaffected (Figure 3G, yellow arrows). GEI-17 or UBC-9 deple-

tion revealed that in the absence of sumoylation, KLP-19 local-

ized partially in kinetochores (Figure 3I, yellow arrows) and in

thread-like structures that did not co-localize with microtubule

bundles (Figure 3I, cyan arrows). Interestingly, kinetochore pro-

teins have been shown to concentrate not only in the classical

cup-shaped structures surrounding the bivalents, but also in
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Figure 2. SUMO Conjugation during Meiosis

(A) Meiosis I in worms expressing mCherry-SUMO/

GFP-H2B was followed by in utero time lapse. The

still images of the different stages are shown with

SUMO colored in magenta and H2B in green. The

scale bar represents 2 mm. See also Figure S2B.

(B) The upper row displays a side view of the

bivalents in metaphase I with SUMO shown in

magenta and DNA in blue in themerged image. The

lower row displays another set of bivalents in

metaphase I from an end-on view. The scale bar

represents 2 mm.

(C) 3D-SIM image of a single bivalent stained with

SUMO (magenta) and DNA (green) is shown. The

scale bar represents 1 mm. See also Figure S2C.

(D) 3D-SIM was used to analyzed a metaphase I

meiotic spindleshowingSUMO inmagenta,a-tubulin

in green, and DNA in blue. The area delimited by the

yellow square is enlarged on the right. The scale bar

represents 0.2 mm. See also Figure S2D.

(E) The SUMO E2 conjugating enzyme UBC-9 also

localizes to the ring-shaped midbivalent structure.

An end-on view of the whole set of chromosomes

is displayed on the left and a side view on a single

bivalent is shown on the right. The scale bar rep-

resents 1 mm.

(F) GEI-17 is shown in magenta, along with mi-

crotubules in green, and DNA in blue. The left

image shows a side view of the spindle, while the

right image displays an end-on view. The scale bar

represents 2 mm.

(G) The localization of GEI-17 was followed through

anaphase I by tagging the endogenous protein with

GFP (see Experimental Procedures). Meiosis was

followed as explained in (A). The scale bar repre-

sents 2 mm.

(H) Wild-type and gei-17(RNAi) embryos were fixed

and stained with SUMO (magenta), DNA (blue), and

a-tubulin (green). The scale bar represents 2 mm.

(I) Worms expressing mCherry-SUMO and GFP-

H2B were fed control (wild-type) or gei-17(RNAi)

and oocyte meiosis was recorded in utero. The

scale bar represents 2 mm. The mCherry signal

from gei-17(RNAi) oocytes was re-scaled and

shown on the right.

(J) The conjugation dependency on SUMO localiza-

tion was analyzed by comparing the localization of

GFP-tagged SUMO(GG) and the non-conjugatable

form SUMO(GA). The stills from live imaging experi-

ments are shown for metaphase and anaphase from

meiosis I. The scale bar represents 1 mm.

(K) The GFP fluorescence from GFP-SUMO(GA) was re-scaled to enhance detection of the small amount of SUMO remaining.

(L) GEI-17 recruitment to the midbivalent is UBC-9-dependent. The worms were fed control or ubc-9(RNAi) and stained for GEI-17 (green), SUMO (magenta), and

DNA (blue). The channel corresponding to SUMO fluorescence was re-scaled as in (D). The scale bar represents 1 mm.
the so-called ‘‘linear elements’’ within the spindle and the cell

cortex (Figure 3J) (Dumont et al., 2010; Monen et al., 2005).

KLP-19 is not only present in the linear elements of the spindle,

but also at the cell cortex (Figure S5D, cyan arrows). While mu-

tation of Lys 873 to Arg in KLP-19 did not significantly affect its

localization, general perturbation of the SUMO conjugation

pathway lead to significant re-localization of KLP-19 away from

the RC toward kinetochores and linear elements. Consistent

with KLP-19 being a major SUMO substrate, klp-19(RNAi) leads

to reduced ring localized SUMO (Figures S5B and S5C). Thus,
KLP-19 is a SUMO substrate and sumoylation controls KLP-19

recruitment to the RC in vivo.

Sumoylation Is Essential for the Assembly of the Ring
Complex
We then tested whether two other central RC components,

BUB-1 and AIR-2, relied on sumoylation as a recruitment signal.

As reported (Dumont et al., 2010; Wignall and Villeneuve, 2009),

midbivalent localization of BUB-1 is dependent on ICP-1, but

not on KLP-19 (Figure 4A). Depletion of ubc-9 leads to a complete
Molecular Cell 65, 66–77, January 5, 2017 69
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Figure 3. KLP-19 Is a SUMO Substrate and

Its Ring Localization Depends on SUMO

Conjugation

(A) Widefield images of a single bivalent stained for

SUMO (top) and KLP-19 (bottom). The yellow arrow

points to the kinetochore, while the orange arrow

marks the midbivalent. The scale bar represents

1 mm.

(B) 3D-SIM images of a single bivalent stained for

SUMO (magenta) or KLP-19 (green) and a-tubulin

(gray).

(C) Proximity ligation assay of the KLP-19-SUMO

interaction in control and gei-17(RNAi) worms. The

bivalents during the first meiotic division are

shown. The scale bar represents 2 mm.

(D) The cartoon depicts the domain architecture of

KLP-19. The motor domain is shown in purple

and the putative coiled-coil domains in pink.

Full-length, recombinant KLP-19 was incubated

in the presence of SUMO (20 mM), E1 enzyme

(100 nM), UBC-9 (140 nM), and GEI-17 (12.5 and

25 nM). An aliquot of the reaction was run on an

SDS-PAGE, and western blot was performed

with an anti-KLP-19 antibody. The green arrow-

head points to unmodified KLP-19, and the

square bracket denotes SUMO-modified KLP-19.

See also Figures S4A, S4B, S4D, and S4E.

(E) In vitro SUMO conjugation reactions were

performed with KLP-19(651–1,083) as substrate.

The reactions were incubated in the presence of

SUMO (20 mM), E1 enzyme (100 ng), UBC-9

(140 nM), and increasing amounts of GEI-17

(12.5 and 25 mM). The reactions were develo-

ped as in (A). The green arrowhead points to un-

modified KLP-19, and the square bracket denotes

SUMO-modified KLP-19. See also Figures S4A,

S4C, S4D, and S4F.

(F) Wild-type and K873R KLP-19(651–1,083) were

subject to GEI-17-dependent in vitro SUMO

conjugation, using the same conditions as above

and 12.5 mM GEI-17. The reactions were then

run on a gel, transferred to a membrane, and

developed by two-color near-infrared western

blotting (LICOR). KLP-19 is shown in green and

SUMO in red. The red arrowhead indicates free

SUMO; the green arrowhead points to unmodified

KLP-19; and the square bracket denotes

SUMO-modified KLP-19. See also Figures S3A–

S3I, S4G, and S4H.

(G) KLP-19 localization in the midbivalent is

dependent on GEI-17. Metaphase I-arrested

oocytes were stained for KLP-19, SUMO, and DNA

as indicated. The yellow arrow points to the

kinetochore, while the orange arrow marks the

midbivalent.

(H) Quantitation of the KLP-19 intensity in the

midbivalent was analyzed using the Mann-Whitney

test. The black lines indicate the median.

(I) KLP-19 localization was analyzed after GEI-17 or UBC-9 depletion. An orange arrow signals KLP-19 on themidbivalent. The yellow arrow indicates kinetochore

localization. The blue arrow indicates the linear elements (see main text for details). The scale bar represents 4 mm. See also Figure S5D.

(J) Schematic depicting the procedure for quantifying KLP-19 residing outside the RC (‘‘non-RC’’). The microtubule bundles, kinetochores, midbivalents, and

linear elements are shown next to the colored arrows used throughout the figure to highlight them. Thewhole spindle areawas selected using a-tubulin as a guide,

and themidbivalents were selected from the DNA channel. After substracting the background-corrected midbivalent signal to the background-corrected spindle

signal, we obtained the non-RC KLP-19 intensity.

(K) KLP-19 re-localizes to kinetochores and linear elements after UBC-9 or GEI-17 depletion. The data for non-RC KLP-19 intensity are shown as a dot plot, and

the samples were compared using a Kruskal-Wallis test, followed by Dunn’s post-test. The black lines denote the medians.
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Figure 4. Ring Complex Assembly Depends on Sumoylation

(A) BUB-1 and KLP-19 localization were analyzed in control (wild-type),

ubc-9(RNAi), klp-19(RNAi), and icp-1(RNAi) in emb-27 oocytes arrested at

metaphase I. The scale bar represents 1 mm. See also Figures S6A and

S6B.

(B) The localization of BUB-1 and SUMO was analyzed as in (A) in control

(wild-type), bub-1(RNAi), and gei-17(RNAi) in emb-27 oocytes arrested at

metaphase I. The scale bar represents 1 mm.

(C) Localization of the kinetochore component NDC-80 was analyzed in the

presence of control RNAi (wild-type), ubc-9(RNAi), or knl-1(RNAi) a known

regulator of kinetochore assembly. The scale bar represents 1 mm. See also

Figure S6C.
loss of BUB-1 at the midbivalent without affecting its kinetochore

localization (Figures 4A, S6A, and S6B). In the absence of BUB-1,

SUMO can still be detected in the midbivalent (Figure 4B).

Sumoylation does not regulate kinetochore assembly as as-

sessed by NDC-80 localization (Figures 4C and S6C). PLA assays

show that SUMO is in close proximity to both BUB-1 (Figure 4D)

and AIR-2 (Figure 4E) within the RC. In the absence of sumoyla-

tion, AIR-2 still localized between homologous chromosomes,

although to a lesser extent (Figures 4F and 4G). Another CPC

component, ICP-1/INCENP and the CPC substrate phospho-

H3(S10), re-localize from the midbivalent to chromosomes in

the absence of GEI-17 (Figures 4H and 4I). The midbivalent is

also strongly stained with the anti-mitotic phospho-proteins

MPM-2 antibody (Kitagawa and Rose, 1999), where it specifically

recognizes the RC (Muscat et al., 2015). Depletion of GEI-17

leads to a dispersion of the MPM-2 signal, further showing that

abolishing GEI-17-mediated sumoylation leads to RC disruption

(Figure S6D). Additionally, completely disassembling the CPC

by means of icp-1(RNAi) leads to the loss of the SUMO signal in

the midbivalent (Figure 4J). Thus, the CPC and sumoylation are

required for the RC to assemble, and we propose that this

SUMO-dependent CPC assembly provides the basic platform

for other components to associate with the RC. Initial or ‘‘seed’’

SUMO modification is thus CPC-dependent and likely to occur

within the CPC itself, possibly with AIR-2 as a substrate.

Acute, Germline-Specific Loss of GEI-17 Affects KLP-19
Recruitment to the Ring
While we propose that SUMO affects KLP-19 directly, this

interpretation is complicated by the fact that BUB-1, required

for KLP-19 recruitment, is absent from the RC upon GEI-17

depletion. To overcome this, we used CRISPR/Cas9-mediated

genome editing to tag the endogenous copies of gei-17 with

a fragment encoding a fusion between GFP, FLAG, and an

auxin-responsive degron sequence (Zhang et al., 2015) (Fig-

ure 5A). Addition of auxin for 1.5 hr leads to the loss of the

GFP-GEI-17 signal from the germline (Figure 5B) and embryo

(Figure 5C) in worms specifically co-expressing mRuby-TIR1
(D) Proximity ligation assays were performed using BUB-1 and SUMO specific

antibodies, and the PLA signal is shown inmagenta and DNA in blue. The scale

bar represents 1 mm.

(E) Proximity ligation assays were performed using AIR-2 and SUMO specific

antibodies, and the PLA signal is shown inmagenta and DNA in blue. The scale

bar represents 1 mm.

(F) AIR-2 localization was in metaphase I-arrested oocytes from emb-27

worms in the presence of control (wild-type) or gei-17(RNAi).

(G) AIR-2 fluorescence intensity in the midbivalent was quantified in wild-type,

gei-17(RNAi), and icp-1(RNAi) oocytes. The AIR-2 intensity is shown in the

dot plot graph, and the samples were compared using a Kruskal-Wallis test,

followed by Dunn’s post-test. The black lines denote the medians.

(H) The absence of GEI-17 affects ICP-1/INCENP localization. ICP-1 locali-

zation was analyzed in wild-type or gei-17(RNAi) oocytes as above. The scale

bar represents 1 mm.

(I) The absence of GEI-17 affects phospho-Ser10-H3 localization. H3 phos-

phorylated on serine 10, known to be a CPC substrate, was analyzed in wild-

type or gei-17(RNAi) oocytes as above. The scale bar represents 1 mm.

(J) The CPC is required for ring assembly. Single bivalents co-stained for

BUB-1 (yellow), SUMO (green), AIR-2 (magenta), and DNA (blue), either from

wild-type or icp-1(RNAi) oocytes are shown. The scale bar represents 1 mm.
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Figure 5. Tissue-Specific, Auxin-Induced Degradation of GEI-17

(A) Schematic of the generation of GFP-FLAG-degron-tagged endogenous

GEI-17 by CRISPR/Cas9-mediated genome editing. The SAP and PINIT do-

mains are highlighted, as well as the SP-RING. The numbering corresponds to

GEI-17 isoform f (Uniprot Q94361-2).

(B) Gonads from untreated or auxin-treated (1.5 hr) worms were dissected,

fixed, and imaged for GFP (GEI-17) and mRuby (TIR1) fluorescence. The scale

bar represents 20 mm.

(C)Embryos fromuntreatedorauxin-treated (1.5hr)wormswerefixedand imaged

for GFP-GEI-17 (green) and DNA (magenta). The scale bar represents 10 mm.

(D) Metaphase I oocytes from untreated or auxin-treated worms were fixed

and imaged for GFP-GEI-17, KLP-19, and SUMO, along with DNA. Treatment
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(Zhang et al., 2015). Addition of auxin for 4 hr was sufficient to

inhibit recruitment of KLP-19 to the midbivalent ring (Figures

5D and 5E) even though BUB-1 was still present (Figure 5F).

However, re-scaling the SUMO channel fluorescence revealed

that a small amount of SUMO could still be detected in ring-

like structures, consistent with the persistence of other sub-

strate(s) and/or non-covalent SUMObinding proteins (Figure 5E).

Thus, sumoylation directly regulates KLP-19 recruitment to the

midbivalent ring.

Ring Components Are Recruited in a Stepwise Fashion
from Diakinesis to Prometaphase
Live imaging and immunostaining revealed that SUMO shifted

from diffusely chromosomal to the midbivalent concomitant

with oocyte NEBD (Figures 6A and 6B). Whereas ICP-1 was

detected at the midbivalent in the �2 oocyte (Bishop and

Schumacher, 2002; Schumacher et al., 1998), SUMO only

concentrated in the midbivalent in the �1 oocyte (Figure 6C).

This concentration of SUMO was dependent on conjugation as

it was abrogated by ubc-9(RNAi) (Figure 6D). GEI-17 was also re-

cruited to the midbivalent in post-NEBD oocytes, suggesting

that GEI-17-mediated sumoylation within the ring was initiated

during fertilization (Figure 6E) and precedes KLP-19 concentra-

tion in the midbivalent (Figure 6F) (Powers et al., 2004). In fixed

�1 oocytes, BUB-1 is predominantly localized in kinetochores

(Figure 6G), while live imaging on oocytes expressing mCherry-

BUB-1 and GFP-SUMO showed that BUB-1 was initially

recruited to the kinetochore, while SUMO was already concen-

trated in the midbivalent (Figure 6H, top image). By metaphase

I, however, BUB-1 has been recruited to the RC (Figure 6H,

bottom image). Thus SUMO modification of RC components

precedes BUB recruitment to the midbivalent. These results

show that the RC is assembled in a stepwise manner with as-

sembly initiated prior to fertilization.

BUB-1 Interacts with SUMO-Modified KLP-19
and GEI-17
The observation that a mutant SUMO incapable of conjugating

to substrates partially localizes to the RC points to the existence

of non-covalent SUMO interactions occurring within the RC.

Having shown that KLP-19, AIR-2, and GEI-17 are conjugated

to SUMO (Figure 7A), we searched for an RC component that

could interact non-covalently with SUMO. An obvious candidate

is the SUMO E3 ligase GEI-17, whose yeast and mammalian

orthologs have SIMs (Jentsch and Psakhye, 2013). Another

candidate is BUB-1, a protein that localizes in kinetochores

and the RC and is essential for KLP-19 recruitment to the RC. In-

spection of BUB-1 amino acid sequence revealed putative SIMs,
with auxin for 4 hr is enough to reduce SUMO levels and also leads to a diffuse

KLP-19 localization.

(E) Re-scaling of the SUMO fluorescence shows that while some SUMO is still

present, there is no specific co-localization with KLP-19. The scale bar rep-

resents 2 mm.

(F) Metaphase I oocytes from untreated or auxin-treated wormswere fixed and

imaged for GFP-GEI-17 (yellow), BUB-1 (magenta), and SUMO (green), along

with DNA. After treatment with auxin for 4 hr, BUB-1 is still present in the

midbivalent. The scale bar represents 1 mm.
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Figure 6. Ring Complex Assembly Starts during

Diakinesis

(A) An oocyte from a worm expressing mCherry-SUMO and

GFP-H2B was recorded during fertilization. The yellow ar-

row in each image points to the oocyte that was followed.

‘‘�2’’ and ‘‘�1’’ stand for, the �2 and �1 oocytes, respec-

tively; spermatheca, sp.; ‘‘+1’’ is the fertilized oocyte.

(B) SUMO concentrates in the short axis of the bivalent

(midbivalent). A bivalent within a �1 oocyte is shown with

SUMO in magenta and DNA in blue. The scale bar repre-

sents 1 mm.

(C) The CPC component ICP-1 (magenta) localizes to the

midbivalent as early as the�2 oocyte, as opposed to SUMO

(green) that only concentrates in the midbivalent in the �1

oocyte. The scale bar represents 2 mm.

(D) SUMO concentration in the midbivalent in early oocytes

is dependent on UBC-9. The �1 oocyte was followed as in

(A) in wild-type or ubc-9(RNAi)worms. An image after NEBD

is shown. The scale bar represents 2 mm.

(E) GEI-17 concentrates on the midbivalent after oocyte

NEBD. Worms expressing endogenous GEI-17 tagged with

a GFP-FLAG-degron cassette together with mCherry-H2B

were analyzed as in (A) and (E). The scale bar represents

5 mm.

(F) KLP-19 (magenta) localization during diakinesis was

analyzed by immunostaining of dissected gonads. The sin-

gle bivalents from the threemost mature oocytes are shown.

The scale bar represents 2 mm.

(G) BUB-1 is first recruited to the kinetochores. BUB-1

(magenta) localization along with that of SUMO (green) was

analyzed by immunostaining of dissected gonads. A single

bivalent from the �1 oocyte is shown. The scale bar repre-

sents 2 mm.

(H) An oocyte from worms expressing GFP-SUMO and

mCherry-BUB-1 was followed as in (A). In the upper image,

the �1 oocyte has gone through NEBD (as judged by the

SUMO staining), while the lower image shows bivalents in

metaphase of meiosis I. The scale bar represents 1 mm.
mostly concentrated outside of the C-terminal kinase domain

(Figure 7B). We expressed the fragment (1–689) containing the

putative SIMs with a His6 tag to perform pull-down assays

(Figure 7B). BUB-1(1–689) preferentially interacts with SUMO-

modified KLP-19 (Figure 7C) and GEI-17 (Figure 7D). When

analyzing binding reactions with a SUMO antibody, it was

apparent that BUB-1 binds high molecular weight SUMO

conjugates, but not free SUMO (Figure 7E). We then tested the

functionality of the putative SIMs in BUB-1 and GEI-17 using

MBP-fusion proteins (Figure 7F) in pull-down assays with su-

moylated GEI-17 or KLP-19(651–1,083). While BUB-1(2–551)

readily interacted with SUMO-modified GEI-17 and SUMO-

modified KLP-19, mutation of all five putative SIMs abolished

this interaction (Figures 7G and 7H). Additionally, a fragment

containing the two predicted high-affinity SIMs in GEI-17 (aa

423–602 in isoform f), pulled down higher molecular weight

forms of both sumoylated GEI-17 and sumoylated KLP-19 and

these interactions were strictly SIM-dependent (Figures 7G
and 7H). Thus, both SUMO substrates and non-

covalent SUMO binders co-exist within the ring.

If BUB-1 is important for non-covalent SUMO

binding in vivo, then depletion of BUB-1 is pre-
dicted to affect non-covalent SUMO recruitment to the RC. To

test this, we used a mutant version of SUMO that cannot conju-

gate to substrate proteins (SUMO(GA), see Figures 2J and 2K)

and thus provides a readout for non-covalent SUMO interac-

tions. Consistent with BUB-1 interacting non-covalently with

SUMO/sumoylated proteins, GFP-SUMO(GA) recruitment to

the RC during meiosis I was greatly diminished in the absence

of BUB-1 (Figure 7I, yellow arrows). We then sought to test

whether KLP-19 localization in the RC is SIM dependent. To

this end, we injected a SIM containing peptide (Bruderer et al.,

2011) (or a control peptide) into the gonads of emb-27 worms

and metaphase I-arrested oocytes were analyzed 24 hr later

(Figure 7J). While SIM injection did not dramatically affect KLP-

19 recruitment to the RC, an increase in KLP-19 in kinetochores

and linear elements was observed (Figure 7J). This result,

while smaller in magnitude, resembles the effect obtained

after knocking down either GEI-17 or UBC-9 (Figures 3I–3K).

Thus, we conclude that both covalent SUMO conjugation and
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Figure 7. BUB-1 Binds to SUMO-Modified

KLP-19 and GEI-17

(A) Reconstituted in vitro sumoylation reactions were

performed as described in Experimental Proced-

ures. While AIR-2 is modified by a single SUMO

(doublet corresponds to two mono-sumoylated

forms; Pelisch et al., 2014), KLP-19 and GEI-17 un-

dergo multiple modifications. The arrowheads point

to unmodified substrates, while open brackets indi-

cate the SUMO-modified substrate.

(B) Schematic of BUB-1 with its C-terminal kinase

domain (top) and the hexahistidine-tagged BUB-1

fragment used for the pull-down assays shown in

images (C)–(E).

(C) 6xHis-MBP (‘‘His-MBP’’, control) and 6xHis-

BUB-1(1–689) (‘‘His-BUB-1’’) were used in Ni-NTA

pull-down assays using SUMO-modified full-length

KLP-19 as input. The binding reactions were run on

SDS-PAGE, and western blotting was performed

with an antiKLP-19 specific antibody. The arrow-

head points to the position of unmodified KLP-19,

and the square bracket show the bands corre-

sponding to SUMO-modified KLP-19.

(D) Same as (C), but using SUMO-modified GEI-17

as input material. In this case, a GEI-17 specific

antibody was used. The arrowhead points to the

position of unmodified GEI-17, and the square

bracket show the bands corresponding to SUMO-

modified GEI-17.

(E) Pull-down assays were performed using GEI-17-

mediated SUMO-modified full-length KLP-19 as

input. The reactions were analyzed as above using a

SUMO-specific antibody. The arrowhead points to

the position of unconjugated SUMO, and the square

bracket indicates the position of conjugated SUMO

(to KLP-19 and GEI-17).

(F) Schematic of the GEI-17 and BUB-1 fragments

containing the putative SIM motifs used in the pull-

down experiments.

(G) SUMO-modified GEI-17 was used for pull-down

assays with MBP-tagged BUB-1, BUB-1mut, GEI-

17, and GEI-17mut. Input and pulled-down materia

were analyzed by western blot with an anti-SUMO

antibody.

(H) SUMO-modified KLP-19 was used for pull-down

assays with MBP-tagged BUB-1, BUB-1mut, GEI-

17, and GEI-17mut. Input and pulled-down materia

were analyzed by western blot with an anti-SUMO

antibody. The arrowhead indicates the presence of

free SUMO, and the square bracket denotes SUMO-

conjugated KLP-19(651–1,083).

(I) Meiosis was followed in utero in control

(wild-type) or bub-1(RNAi) worms expressing

GFP-SUMO(GA) and mCherry-tagged H2B. The

oocytes at metaphase I are pointed out by a yellow

arrow. ‘‘sp.’’ denotes the location of the sperma-

theca; ‘‘meta. I’’ indicates the location of the oocyte

at metaphase I; and ‘‘�1’’ shows the location of the

maturing oocyte closest to the spermatheca before

fertilization, the �1 oocyte.

(J) emb-27worms were injected with a SIM-containing or a control peptide, and KLP-19 and BUB-1 localization was assessed in metaphase I-arrested oocytes.

The pink arrow points to a linear element, and the blue arrow points to a cup-shaped kinetochore. The scale bar represents 2 mm.

(K) Proposed model for SUMO-mediated control of chromosome congression.
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non-covalent SUMO interaction contribute to stable RC assem-

bly. Notably, the dynamic and reversible nature of these interac-

tions guarantees that the ring can be easily disassembled, an

event required as anaphase progresses.

DISCUSSION

We provide evidence that SUMO modification plays an impor-

tant role during female meiotic chromosome congression in

C. elegans by regulating RC assembly (Figure 7K). AIR-2/Aurora

B and ICP-1/INCENP localize to the midbivalent during diaki-

nesis in a SUMO-independent manner, providing the basic

platform of the RC. The SUMO E3 ligase GEI-17 then joins the

complex during oocyte nuclear envelope breakdown and trig-

gers SUMO conjugation, likely of AIR-2 (and/or other yet to

be identified RC components). Then BUB-1, which is already in

kinetochores, joins the RC in a GEI-17-dependent manner.

Finally, the kinesin KLP-19 is modified by SUMO in a GEI-17-

dependent manner and is recruited to the midbivalent RC in a

sumoylation-dependent fashion. As the SIMs in both GEI-17

and BUB-1 allow them to interact with SUMO-modified GEI-17

and KLP-19 (and likely other SUMO-modified proteins), they

act as central players in the formation of this meiosis-specific

SUMO-SIM network.

Both SUMO conjugation and non-covalent SUMO interaction

are required for proper RC assembly. Indeed, when sumoylation

is inhibited by UBC-9 or GEI-17 depletion, KLP-19 ‘‘diffuses

away’’ from the RC and displays a localization pattern character-

istic of outer kinetochore proteins, localizing in cup-shaped struc-

tures surrounding the bivalents and in linear elements in the spin-

dle and cell cortex (Dumont et al., 2010;Monenet al., 2005). In this

model, SUMO could be key in regulating the partitioning of pro-

teins between the RC and other neighboring structures.

Many aspects of the RC function during meiosis remain to be

elucidated. This structure is functioning as a signaling hub,

where phospho-proteins, as well as SUMO-modified proteins

concentrate. The enzymes that catalyze these modifications,

like the kinases AIR-2/Aurora B and BUB-1 and the SUMO E3

ligase GEI-17, localize within the RC themselves. This suggests

that active protein modification takes place within the RC. The

RC was shown to disassemble during anaphase, so future

studies are needed to address the role of SUMO proteases in

RC disassembly. Interestingly, it was recently reported that

protein phosphatase 1 recruitment by the nucleoporin MEL-

28 directs outer kinetochore disassembly, an event required

for proper meiotic chromosome segregation (Hattersley et al.,

2016). We propose that PTMs, and interactions among them,

will be key regulators of the highly dynamic changes that take

place within the meiotic spindle.

A remarkable feature of the RC is that within a 30-min period, it

undergoes two cycles of assembly/disassembly linked to two

waves of SUMO modification/deconjugation that are regulated

with exquisite precision both temporally and spatially. During

oocyte nuclear envelope breakdown, RC becomes SUMOmodi-

fied and an assembly feedforward cycle starts. However, SUMO

is removed and the RC disassembles during anaphase I, and this

is followed by SUMO conjugation/RC assembly during prometa-

phase II and SUMO deconjugation/RC disassembly during
anaphase II. However, this is not the end of the dynamic

behavior, as we have shown that SUMO modification/deconju-

gation takes place during the first embryonic mitotic division

(Pelisch et al., 2014). The ability of SUMO to function as a revers-

ible molecular ‘‘glue’’ satisfies the need for this rapid assembly-

disassembly cycles. Since the introduction of the protein group

sumoylation concept (Psakhye and Jentsch, 2012), SUMO-

mediated RC assembly provides the first example of a special-

ized complex within a multi-cellular organism assembled as

a SUMO-SIM network under physiological conditions. Just as

a balance of forces exists between kinesin-driven plus-end

movement and dynein-mediated minus end forces (Muscat

et al., 2015), a similar equilibrium may be mediated by SUMO

E3 ligases and SUMO proteases. Indeed, the SUMO protease

ULP-1 localizes to the RC (data not shown). In this context, while

E3 activity prevails until metaphase, SUMO proteases are likely

to predominate during anaphase, leading to ring disassembly.

While it remains to be shown what signal(s) regulate the balance

between E3 and protease activities, the presence of both E3

ligases and SUMO proteases would facilitate the assembly/

disassembly cycles.

In budding yeast, SUMO co-localizes with the synaptonemal

complex during pachytene and plays a role in chromosome

synapsis (Cahoon and Hawley, 2016). However, SUMO is

not essential for SC assembly in early pachytene in nematodes

(Bhalla et al., 2008) and localizes mainly at the midbivalent,

where key regulators of chromosome congression (like

KLP-19) reside. As in nematodes, it has been shown in rat

spermatocytes that SUMO does not co-localize with the syn-

aptonemal complex during pachytene (Rogers et al., 2004),

while depletion of SUMO or UBC9 caused abnormal spindle

organization, and led to chromosome misalignment, segrega-

tion defects, and aneuploidy in rat oocytes (Yuan et al., 2014).

Additionally, SUMO-1 concentrates in spindle poles and

between segregating chromosomes in anaphase I, while

SUMO-2/3 co-localized with condensed chromatin in mouse

oocytes (Wang et al., 2010). This localization pattern is remi-

niscent of that of SUMO-1 and SUMO-2/3 during mitosis

(Zhang et al., 2008), and the only SUMO isoform in nematodes

displays a combination of these localization patterns during

the first embryonic mitotic division (Pelisch et al., 2014).

Many SUMO substrates are involved in chromatin structure

and function (Cubeñas-Potts and Matunis, 2013), and KIF4A,

the human ortholog of KLP-19, has been identified as a

SUMO substrate in mitotic chromatin (Cubeñas-Potts et al.,

2015). These observations support the notion that while pre-

cise mechanisms that guarantee proper chromosome orienta-

tion, congression, and segregation might differ between

meiosis and mitosis and also among species, SUMO is likely

a key contributor to a timely and accurate regulation of protein

interactions within narrow spatial and temporal windows. In

line with this, AIR-2/Aurora B shifts its localization from chro-

matin to the spindle midzone during mitotic anaphase and

this transition is dependent on the SUMO protease ULP-4

(Pelisch et al., 2014). SUMO-SIM networks are likely to pre-

dominate when the equilibrium of a protein between two or

more cell structures/protein complexes is subject to a fast dy-

namic regulation. Overall, we have provided evidence that
Molecular Cell 65, 66–77, January 5, 2017 75



highly dynamic, coordinated, and spatially constrained su-

moylation regulates chromosome congression during meiosis

in C. elegans oocytes.

EXPERIMENTAL PROCEDURES

Worms

C. elegans strains were maintained according to standard procedures

(Brenner, 1974). The strains used are listed in Supplemental Experimental

Procedures. For RNAi treatment, bacterial clones expressing dsRNAs were

obtained from a commercial library (Kamath and Ahringer, 2003).

CRISPR/Cas9

GEI-17 fused to GFP-FLAG-degron was generated by CRISPR (Dickinson

et al., 2015). The degron sequence consisted of the 44-amino acid (aa) frag-

ment of the Arabidopsis thaliana IAA17 protein (Morawska and Ulrich, 2013;

Zhang et al., 2015).

Auxin Treatment

Auxin (IAA, Sigma-Aldrich) was used at 1 mM final concentration in standard

NGM plates.

Antibodies

Antibodies against SMO-1, GEI-17, and UBC-9 were reported previously (Pel-

isch and Hay, 2016; Pelisch et al., 2014). AIR-2 and ICP-1 peptide antibodies

were produced and affinity purified using previously described peptides (Bur-

rows et al., 2006; Schumacher et al., 1998). Anti-KLP-19 serum (Powers et al.,

2004) was subject to protein-A purification before use.

In Utero Embryo Live Imaging

Worms were picked into a solution of tricaine (0.1%) and tetramisole

(0.01%), pipetted onto a 4% agar pad, covered with a coverslip, and

imaged with a spinning-disk confocal microscope (MAG Biosystems)

mounted on a microscope (IX81; Olympus) with a 100 3 /1.45 Plan Apo-

chromat oil immersion lens (Olympus), a camera (Cascade II; Photomet-

rics), spinning-disk head (CSU-X1; Yokogawa Electric), and MetaMorph

software (Molecular Devices).

Immunostaining

Immunofluorescence analysis was performed essentially as described (Pel-

isch and Hay, 2016; Pelisch et al., 2014).

Duolink In Situ Proximity Ligation Assay

Proximity ligation assays were performed as described (Pelisch and Hay,

2016; Pelisch et al., 2014).

Analysis of Mass Spectrometry Data

Raw mass spectrometry (MS) files were analyzed using MaxQuant software

package (version 1.3.0.5) (Cox and Mann, 2008) and peak lists were searched

with an integrated Andromeda search engine (Cox et al., 2011) against an

entire C. elegans UniProtKB proteome.

Statistical Analysis

The different tests used throughout the study are detailed in Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.molcel.2016.11.001.
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