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SUMMARY

Cortical activity related to erroneous behavior in discrimination or decision-making tasks is rarely 

analyzed, yet it can help clarify which computations are essential during a specific task. Here, we 

use a hidden Markov model (HMM) to perform a trial-by-trial analysis of the ensemble activity of 

dorsolateral prefrontal cortex (PFdl) neurons of rhesus monkeys performing a distance 

discrimination task. By segmenting the neural activity into sequences of metastable states, HMM 

allows us to uncover modulations of the neural dynamics related to internal computations. We find 

that metastable dynamics slow down during error trials, while state transitions at a pivotal point 

during the trial take longer in difficult correct trials. Both these phenomena occur during the 

decision interval, with errors occurring in both easy and difficult trials. Our results provide further 

support for the emerging role of metastable cortical dynamics in mediating complex cognitive 

functions and behavior.

In brief

Benozzo et al. analyze the neural activity in the prefrontal cortex of rhesus monkeys performing a 

distance discrimination task. The neural activity is a sequence of metastable states. State durations 

are longer before errors and at the beginning of the deliberation period in trials characterized by 

correct difficult discriminations.
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INTRODUCTION

The role of the prefrontal cortex in decision making has been demonstrated using a variety 

of tasks (Kim and Shadlen, 1999; Hoshi et al., 2000; Freedman et al., 2001; Tanji and Hoshi, 

2001; Genovesio et al., 2012; Maoz et al., 2013; Marcos and Genovesio, 2016; Rich et al., 

2018), including tasks with decisions in the temporal (Genovesio et al., 2009) and spatial 

(Genovesio et al., 2011) domains. In particular, we have shown previously that prefrontal 

neurons encode the decision about which stimulus was presented farther from the center in a 

distance discrimination task (Genovesio et al., 2011), as well as the transformation of goals 

into action (Marcos et al., 2019). Prefrontal neurons also code for the duration and distance 

magnitude to be maintained in working memory, using domain-specific representations of 

distance and duration in dorsolateral prefrontal cortex (PFdl) neurons (Marcos et al., 2017). 

However, in the spatial discrimination task, the effect of trial difficulty has not been 

addressed, and previous analyses could not unmask which type of failure could account for 

the response errors. It is possible that such information could be found in the collective 

activity of ensembles of neurons. For example, ensembles of monkey premotor neurons 

transition more quickly to a new state in easier trials during a vibro-tactile discrimination 

task (Ponce-Alvarez et al., 2012). One might also suspect that ensemble activity is related to 

behavioral performance and not just trial difficulty. Little is known, however, about the 

substrate of behavioral errors in terms of collective activity of ensembles of neurons. 

Examining collective neural activity during errors might also help us to understand what 
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generates the switch in coding from correct to erroneous decisions observed at the level of 

single neurons (Genovesio et al., 2011). A particularly promising approach in investigating 

the relationship between decision processes and ensemble neural activity is the use of a 

hidden Markov model (HMM) to segment the neural activity into sequences of discrete, 

metastable states. In its more frequent applications to neural data so far (Abeles et al., 1995; 

Jones et al., 2007; Kemere et al., 2008; Ponce Alvarez et al., 2008, 2012; Mazzucato et al., 

2015; Engel et al., 2016; Sadacca et al., 2016; Linderman et al., 2016), the HMM assumes 

that the neural dynamics proceeds as a sequence of hidden states, wherein each state is a 

collection of firing rates across simultaneously recorded neurons. Reliable sequences of 

HMM states have been found in frontal (Abeles et al., 1995), gustatory (Jones et al., 2007; 

Mazzucato et al., 2015), premotor, and motor areas (Ponce-Alvarez et al., 2012) of primates 

and rodents in the context of different tasks. State sequences also seem to underlie internal 

states of attention (Engel et al., 2016), expectation (Mazzucato et al., 2019), and deliberation 

during decisions (Rich and Wallis, 2016). In this work, we investigate the nature of neural 

ensemble dynamics in the PFdl of monkeys performing the distance discrimination task of 

Genovesio et al. (2011, 2012). In this task, the monkeys were required to choose which of 

two stimuli sequentially presented was farther from the center of a computer screen (Figure 

1). We focused on two main questions: whether the neural activity in PFdl could be 

characterized as metastable and, if so, what the links are among metastable state durations, 

state transition times, trial difficulty, and task performance (correct versus incorrect trials). 

We found that PFdl activity can be characterized as a sequence of metastable states, some of 

which code for the relative distance of the two stimuli from the center, based on stimulus 

features or order of presentation. Most notably, however, we found that the mean duration of 

metastable states was longer before errors. Thus, a slowdown of the metastable dynamics 

after the presentation of the second stimulus (S2) was typically associated with an incorrect 

response. We also found a link between trial difficulty and hidden state transitions in correct 

trials (Ponce-Alvarez et al., 2012). Specifically, the first state transition after S2 was faster in 

easier trials, even though the reaction times (RTs) were not different. This suggests that 

transition times reflect the level of trial difficulty, even when the delay before a response is 

too long to affect the RT. Overall, these results show a potential role of metastable dynamics 

in PFdl neurons during a decision process in the spatial domain, adding to accumulating 

evidence for a role of metastable dynamics in neural coding and cognition (La Camera et al., 

2019).

RESULTS

Metastability of prefrontal neural activity during distance discrimination

To find neural correlates of behavior in the ensemble dynamics, we first characterized the 

dynamics by performing an HMM analysis of the ensemble activity of correct and error 

trials (see Figure 2 and STAR Methods for details of the procedure). We found that 

ensemble neural activity was well described by sequences of metastable states, in which 

each state was defined as a collection of firing rates across simultaneously recorded neurons, 

with the number of states varying between 2 and 5 across sessions. As in previous accounts 

(Abeles et al., 1995; Jones et al., 2007; Mazzucato et al., 2015, 2019; Ponce-Alvarez et al., 

2012), state transitions varied trial by trial and were not necessarily locked to external 
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relevant events. This can be illustrated by warping time so that events in different trials occur 

simultaneously (Recanatesi et al., 2020), while onset and offset times of states are variable, 

as indicated in Figure 3A for an illustrative session (see STAR Methods for details). From 

this plot, it is apparent that the blue state tends to occur after S2 and the GO signal, whereas 

the yellow state tends to occur after the decision (RT). However, the time at which 

transitions occur varies from trial to trial, as documented in the aforementioned studies. 

Moreover, during trial epochs in which no clear external events occur, such as halfway after 

S2 and during the delay period, state transitions are much more variable, possibly reflecting 

the internal dynamics of state deliberation (this is discussed later).

The orderly sequences observed in Figure 3A were not an artifact of the HMM analysis, as 

they disappear in shuffled datasets. We used two types of shuffling procedures introduced by 

Maboudi et al. (2018), which we call circular and swap shuffles (see STAR Methods). As 

indicated in Figures 3B and 3C, both shuffling procedures disrupted the temporal alignment 

between state sequence and task events. The difference with the original data is especially 

evident after S2, the GO signal, and RT. Moreover, model selection had a larger score 

(smaller Bayesian information criterion; BIC) in the original data than in the shuffled 

datasets (Figure 3D), revealing worse HMM fits when the data were shuffled. The analysis 

also shows a significant reduction of the optimal number of states after swap-shuffling the 

data (between 2 and 3 compared to 2–5, with a median of 3 for the original data; Figure 3E). 

The comparison with shuffled datasets shows that the presence of metastable activity and the 

potential meaning of hidden states are not artifacts of the HMM analysis.

To investigate how the hidden states relate to relevant task variables, we searched for 

“coding states.” We define a coding state as a hidden state that tends to recur significantly 

more often in a specific task condition compared to other task conditions (Mazzucato et al., 

2019). To illustrate this notion, in Figures 3A–3C, trials were grouped according to the 

features (blue circles versus red squares) of the farther stimulus from the center. The 

separation between the two groups is indicated by the black horizontal line, with extremities 

marked by triangles. Note that, during S2 and before D2, the yellow state appears only in 

trials that are above the horizontal separation line, and, therefore, it is a coding state for 

relative distance based on stimulus features (i.e., “red farther” or “blue closer”) in the current 

trial (p < 0.05, χ2 test; see STAR Methods for details). We found coding states for the 

features of the farther stimulus in 22% of the sessions (two example sessions are indicated in 

Figure 4A). This is a significantly larger fraction than the 6% found in the circularly shuffled 

datasets (p = 0.0006, χ2 test; not enough state transitions occurred in the swap-shuffled 

data). We also found evidence for coding states for relative distance based on the order of 

presentation (“S2 farther or closer from the center”) in 19% of sessions (two example 

sessions are indicated in Figure 4B). For comparison, only 5% of sessions in shuffled 

datasets had coding states for relative distance based on the order of presentation, a 

significant difference (p = 0.002, χ2 test). We did not find coding states significantly 

associated with target position (left versus right) between the GO signal and RT (6% of 

sessions versus 2% of shuffled sessions; p = 0.089, χ2 test). This set of comparisons with 

shuffled datasets shows that the presence of metastable activity, as well as the nature of 

hidden states as coding for relevant task variables, is not an artifact of the HMM analysis.
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Mean state durations predict incorrect trials

As indicated in Figure 5A, RTs were longer in error trials than in correct trials. However, 

RTs were neither correlated with task difficulty (Jonckheere’s trend test, p = 0.10) nor 

correlated with the time of first transition after S2 (Spearman’s rank correlation, r = 0.05, p 

= 0.31; see the next section for details). Based on recent findings on the role of metastable 

dynamics in cognitive processes (Mazzucato et al., 2019), we considered the possibility that 

longer RTs in error trials may result from a global modulation of the neural dynamics. For 

example, a slowdown of the dynamics would manifest itself through longer state durations 

and, therefore, less frequent transitions among hidden states. To test this hypothesis, we 

compared the mean durations of the hidden states in both conditions (correct versus error) 

over a time interval going from 400 ms before S2 onset until the end of the trial (Figure 5B). 

In analyzing state durations, only states occurring after S2 were considered. Based on the 

criteria reported in STAR Methods, we analyzed 56 sessions. On average, there were 82 ± 

35 correct trials and 22 ± 11 incorrect trials per session (mean ± SD). The optimal number of 

states of the HMM in each session ranged from 2 to 5 across sessions, with a median of 3 for 

both correct and incorrect trials. We found that the mean state duration after S2 was 

significantly greater in incorrect trials, 374.0 ± 9.4 ms (mean ± SEM), than in correct trials, 

321.8 ± 3.7 ms (p < 0.001, two-sided Mann-Whitney U test; Figure 5B).

A longer state duration in incorrect trials is in line with the hypothesis that the slower RTs in 

incorrect trials are associated with a global slowdown of the dynamics. However, we found 

only a negligible correlation between mean state durations after the GO signal and RTs 

(Spearman’s rank correlation, r = 0.05 for correct trials, p = 0.0009; and r = − 0.01 for error 

trials, p = 0.75). It is possible that cortical slowdown occurs during the deliberation period 

only and that it directly affects the decision but not the RT (which occurs after the GO 

signal).

To test this hypothesis, we computed the mean state durations in two periods, from S2 to GO 

(deliberation period) and from GO to the end of the trial (included the intertrial interval), and 

performed a two-way ANOVA, with trial type (correct/incorrect) and temporal window as 

factors (Figure 5C). Both the main effects of trial type and temporal window were 

significant (p < 0.001): overall, state durations were longer during the S2-GO period 

compared to the GO-END period (in both correct and incorrect trials; see Figures 5D and 5E 

for the distributions of mean state durations). However, the reduction in mean state duration 

observed in the GO-END period (compared to the S2-GO period) was larger in error trials 

compared to that in correct trials (Figure 5C; p (interaction) <10−5, F(1) = 16.3; Figures 5D 

and 5E show distributions of mean state durations in the two time periods, together with 

examples from single sessions). This result shows that slowing down of cortical dynamics 

occurred mostly in the S2-GO period, i.e., in the period when internal deliberation occurs 

(360 ms in correct trials versus 440 ms in error trials). After the GO signal, state durations 

dropped below 300 ms in both correct and incorrect trials, suggesting that cortical slowdown 

occurred during deliberation rather than during the motor action (accordingly, state durations 

after GO were not correlated with trial difficulty, i.e., with |S2–S1|: Jonckheere’s trend test 

gave p = 0.06 for error trials and p = 0.21 for correct trials). The difference in state durations 

was also reflected in the HMM, specifically in the distributions of self-transition rates, λii 
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(the diagonal elements of the transition matrix of the HMM), which were significantly larger 

in error trials than in correct trials (p = 0.002, Kolmogorov-Smirnov test).

We validated this result by repeating the HMM analysis with a balanced number of correct 

and error trials within each session. Since error trials were always fewer than correct trials, a 

random subsample of correct trials was selected in each session, and the procedure was 

repeated 20 times. During the deliberation period (S2-GO), we found longer state durations 

in error trials in 19 out of 20 subsampling repetitions (p < 0.001, Wilcoxon signed-rank test). 

As a control, we also performed the same analysis after shuffling the data (circular and swap 

shuffle; see STAR Methods and Figure 3). When the data were circularly shuffled, the mean 

state duration in error trials was found to be longer than in correct trials in about half of the 

shuffled dataset (11 out of 20), while it was found to be shorter in the other half (p = 0.39, 

Wilcoxon signed-rank test), consistent with the null hypothesis of no difference in state 

durations between correct and error trials. The ratio 19/20 is significantly larger than the 

ratio 11/20 obtained in the shuffled data (p = 0.0035, χ2 test for proportions), suggesting 

that our result is a true property of the data. In the swap-shuffled data, we mostly found 2 

states (Figure 3E), which resulted in only a handful of trials with at least 2 transitions in 

each session, precluding a meaningful analysis of the state durations in this case.

To further quantify the link between mean state durations and performance, we decoded the 

monkey performance in a fictitious 2AFC task in which we were presented with a correct 

and an error trial, and for each such pair, we predicted that the error trial is the one with 

longer mean state duration (see STAR Methods for details). This analysis was performed in 

35 of 56 sessions with significantly longer state durations in the S2-GO period during error 

trials, and it correctly predicted the performance in (72% ± 16%) of the trials (area under the 

receiver operating characteristic [ROC] curve, mean ± SD). A similar analysis using RTs 

rather than state durations gave similar results, (72% ± 12%). On a trial-by-trial basis, state 

durations or RTs would predict the behavior of the monkey in 72% of the trials, and 

although this is not remarkable in terms of predictive performance, it is well above chance 

level (p < 0.001 in a 2AFC task with n ≥ 46 trials, binomial test). Finally, we also found that 

we could decode the trial type by comparing the posterior probabilities based on the HMM 

for correct and error trials, respectively. Specifically, we classified a trial as correct if its 

posterior under the HMM for correct trials was larger than under the HMM for error trials, 

and we classified the trial as an error trial otherwise, obtaining a balanced accuracy (see 

STAR Methods) of 79%.

Neural correlates of trial difficulty

After examining the relationship between neural dynamics and performance, we examined 

the effect of trial difficulty on metastable dynamics. Despite a non-significant trend before 

the GO signal (data not shown), average state duration was not correlated with trial difficulty 

(between S2 and GO: p = 0.059, Jonckheere’s trend test; linear regression slope = −1.25, p = 

0.24; after GO: p = 0.28, Jonckheere’s trend test; linear regression slope = −0.22, p = 0.70). 

In search for a more significant neural correlate of trial difficulty, we followed Ponce-

Alvarez et al. (2012) study and looked at the first transition to a new state after S2 onset 

(fTaS2). The hypothesis was that, regardless of mean state durations, transitions after S2 
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onset would occur sooner in easy trials than in difficult trials. Figure 6 indicates two 

examples of HMM analysis for one difficult trial (Figure 6A) and one easy trial (Figure 6C). 

The HMM was first performed with only 2 states and centered on a 1,400-ms window 

around S2—specifically, from 400 ms before to 1,000 ms after S2 offset—and during correct 

trials only. To increase statistical power, the HMM analysis was performed separately on 

trials with S2 appearing above the central stimulus and on trials with S2 appearing below the 

central stimulus (however, an HMM with all trials lumped together gave similar results; this 

is discussed in the subsequent text). Sessions were then selected based on the ability of the 

HMM to decode the monkeys’ decision (see STAR Methods). Only sessions with a 

significant decoding performance were kept for further analysis: 41/61 sessions with S2 

appearing above the central stimulus and 34/61 sessions with S2 appearing below, 

comprising, on average, 27.6 ± 12.8 trials per session (mean ± SD). Decoding performance 

was significantly better than in shuffled datasets, where the same analysis was performed 

after randomly shuffling the class labels (S1 > S2 versus S2 > S1; see STAR Methods). In 

this case, the decoding performance was significant only in 7/61 sessions (S2 above the 

stimulus, p < 3×10−10, χ2 test) and in 6/61 sessions (S2 below the stimulus, p < 7×10−8, χ2 

test). As hypothesized, the first transition time after S2 correlated with trial difficulty, with 

faster transitions occurring in easier trials (Figure 6E). Specifically, we divided all trials in 5 

groups according to the difference in spatial distance between S1 and S2 and found a 

significant decreasing trend of fTaS2 with increasing |S2–S1| (p = 0.006, Jonckheere’s trend 

test) (Bewick et al., 2004). Slope of linear regression fit = −1.74 (p = 0.015, two-sided Wald 

test with t distribution; an HMM with S2 appearing both above and below the central 

stimulus gave similar results: linear regression slope = −1.058, p = 0.015). This trend 

disappeared when the data were shuffled (data not shown; p = 0.28 for circular shuffle, and p 

= 0.46 for swap shuffle, respectively; Jonckheere’s trend test).

These results mirror previous results in motor and dorsal premotor cortex of monkeys 

(Ponce-Alvarez et al., 2012) and suggest that the signature of a longer process of 

deliberation in PFdl neurons is a longer transition out of the state present at S2 onset. Since 

spatial target selection and actions occur after the GO signal, when, presumably, the decision 

process has already occurred (except, perhaps, in some of the very difficult trials), faster 

transition times after S2 would not be expected necessarily to correlate with faster RTs (the 

time from GO to action). Indeed, we found that fTaS2s and RTs were uncorrelated 

(Spearman’s rank correlation, r = 0.05, p = 0.31). In keeping with this interpretation, we 

performed a similar analysis for the transition time after GO (Figures 6B–6D) and found no 

relationship with trial difficulty (p = 0.06, Jonckheere’s trend test; Figure 6F). In this case, 

the HMM analysis was performed in a time interval of −400 ms and +1,000 ms around the 

GO signal. Similarly, the RTs (time between GO and action) did not depend on trial 

difficulty (p = 0.10, Jonckheere’s trend test; Figure 6G).

DISCUSSION

Metastable dynamics of cortical circuits is emerging as a flexible framework to interpret an 

increasing number of neural phenomena and related behaviors, including working memory 

(Abeles et al., 1995; Ponce-Alvarez et al., 2012), selective attention (Engel et al., 2016), and 

decision tasks (Rich and Wallis, 2016) in monkeys; navigation (Maboudi et al., 2018), 
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expectation (Mazzucato et al., 2019), and decision tasks (Miller and Katz, 2010) in rodents; 

and even task-related information in human decision making (Taghia et al., 2018; see La 

Camera et al., 2019, for a recent review).

Here, we found that the neural activity of ensembles of PFdl neurons of monkeys performing 

a distance discrimination task are well described as sequences of metastable states. Among 

those states, some specifically code for the relative distance of the two stimuli from the 

center, based on stimulus features or order of presentation. Most importantly, this study has 

uncovered a new role of discrete-state metastable dynamics in the PFdl neurons of monkeys 

performing a distance discrimination task. Our main results suggest that (1) incorrect 

decisions correspond to a slowing down of the metastable dynamics preceding the action, 

regardless of trial difficulty; and (2) a slower state transition after S2 occurs in difficult 

correct trials, compared to a faster transition in easy correct trials. We begin by discussing 

the latter.

Effect of task difficulty on state transitions

Single units in the PFdl neurons contain information about the decision on which stimulus is 

farther from the central stimulus (Genovesio et al., 2011). Whether they also encode trial 

difficulty is not clear. Based on previous studies in primary motor and premotor cortex 

(Pardo-Vazquez et al., 2008; Ponce-Alvarez et al., 2012) and prefrontal cortex (Kim and 

Shadlen, 1999), we expected PFdl neuron activity to be affected by trial difficulty. We 

followed Ponce-Alvarez et al. (2012) and looked for this information in the ensemble 

dynamics of PFdl neurons as modeled by HMM. We found that, in difficult trials, the state 

transition after S2, but not the GO signal, had a later onset compared to that in easier trials. 

Thus, the state transition latency reflected trial difficulty only in the deliberation period and 

not later during the transformation from goal to action. This may also explain why, although 

slower in error trials, RTs were not correlated with trial difficulty.

Our results are analogous to those found by Ponce-Alvarez et al. (2012) in motor and dorsal 

premotor cortex of monkeys engaged in a delayed vibro-tactile discrimination task. Our 

findings are also somewhat reminiscent of results obtained in rat gustatory cortex in very 

different contexts. Specifically, Moran and Katz (2014) found that the transition among 2 

HMM states evoked by sucrose were delayed by conditional taste aversion, while Mazzucato 

et al. (2019) found a faster onset of certain hidden states (named “coding states”) when a 

stimulus was expected, compared to the case where it was not expected. We will say more 

on this later.

Slowdown of metastable dynamics in error trials

The other main result of this study is the link between a modulation of metastable activity 

and behavior. Specifically, we found an increased duration of hidden states during error trials 

compared to correct trials. Moreover, this occurred during the deliberation period and not 

after the GO signal prompting the behavioral response. This result indicates that, during 

errors, one critical aspect that can be affected is the passage through states that presumably 

characterize different phases of the task, and before the action takes place. We are confident 

that the affected period reflects an internal deliberation, because, in our task, the targets’ 
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positions are revealed only at the GO signal, separating in time the deliberation phase from 

target selection and movement preparation.

Similarly, we found that RTs were related to performance (correct versus error) and not 

“objective” trial difficulty (where the latter is defined based on the relative distance between 

the two stimuli). It seems, therefore, that the RTs also reflected the internal process of 

deliberation and whether such process resulted in correct performance, regardless of 

objective trial difficulty. These findings are reminiscent of intriguing results obtained in the 

orbitofrontal cortex by Rich and Wallis (2016), who showed that slow deliberation was 

related to equal times spent in the latent states representing the available targets during a 

choice, rather than the difficulty of the decision as judged by eye movements. The closest 

analogy, however, is with the study of Mazzucato et al. (2019), who found shorter state 

durations when a stimulus was expected, compared to the case where it was not expected. 

The comparison with Mazzucato et al. (2019) invites speculation that correct decisions are 

more likely in trials in which expectations are successfully formed because, based on that 

study, this would predict faster dynamics in correct trials compared to error trials, as found 

here. In Mazzucato et al. (2019), faster neural dynamics was related to faster stimulus 

decoding, not behavioral performance. The link with behavior was provided via a spiking 

network model, which showed that distractor stimuli could induce the opposite effect of 

slowing down the dynamics. If distractors would be more likely to induce an error, this 

would again predict slower dynamics before errors. Here, we provide direct experimental 

evidence of a slowdown of the cortical dynamics during errors. To our knowledge, this is the 

first demonstration of a link between behavioral performance and the timescale of 

metastable dynamics in PFdl neurons during a decision.

Comparison with previous studies on error-related activity in prefrontal cortex

The results reported here were obtained via an HMM analysis of ensemble activity. HMM 

analysis and its variations (Blaettler et al., 2011; Chen, 2013) present an ideal method to 

investigate the role of metastable dynamics. HMM allows an unsupervised segmentation of 

the ensemble activity without relying on external triggers, providing a characterization of the 

metastable dynamics during ongoing activity or motor preparation, not just after a stimulus 

(Abeles et al., 1995; Seidemann et al., 1996; Mazzucato et al., 2015). In particular, this 

allows one to pinpoint the moment in time in which an internal deliberation may have 

occurred. This is essential in trying to link behavior to neural activity occurring during 

internal deliberation as done here, and this has allowed us to find neural correlates of trial 

difficulty and behavioral performance that had not emerged from single-neuron analyses 

(Genovesio et al., 2011).

We note that our approach is very different from those of previous HMM studies of error 

activity, wherein an HMM fitted to trials in a given condition (say, S1>S2) was used to 

predict errors in a separate condition (S2<S1) (Ponce-Alvarez et al., 2012; Seidemann et al., 

1996; Jones et al., 2007). In contrast, our ability to predict errors is based on the modulation 

of the dynamics of the same HMM. Our analysis on mean state durations uncovered a 

change in the network dynamics during incorrect trials that manifests itself as a reduced 

transition rate among successive states. Thus, errors are not predicted by the presence of 
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specific “error states” but rather by the slowing down of state sequences that may be the 

same in either condition.

Our approach is also different from previous studies that have examined PFdl activity during 

errors based on the activity of single neurons. From these studies, the picture has emerged 

that PFdl neurons encode the adopted course of action during errors rather than the correct 

course of action. PFdl activity reflected the target chosen during errors in a motion 

discrimination task (Kim and Shadlen, 1999) and in a match-to-sample task for visual 

motion (Zaksas and Pasternak, 2006). Similar results were observed in tasks that required 

learning of action sequences, wherein PFdl neuronal activity reflected either the incorrect 

oculomotor sequence of actions (Averbeck and Lee, 2007) or the incorrect category of turn, 

pull, and push hand movements during errors (Shima et al., 2007). At a more abstract level, 

PFdl neurons appear to encode goal and strategy in a task in which the goal was chosen after 

the selection of either a repeat-stay or a change-shift strategy (Genovesio et al., 2008). These 

strategies required selection of the same or a different goal when a central instruction 

stimulus repeated or changed from the previous trial, respectively. PFdl neurons encoding 

the future goal appeared to encode the chosen goal rather than the correct goal during the 

decision period; however, strategy-coding neurons reflected the strategy adopted (rather than 

the correct strategy) only after the action. In Tsujimoto et al. (2011), a simplified version of 

the strategy task was adopted in which the shape and color of a cue stimulus indicated which 

strategy to use. This task required a more immediate strategy selection that was not based on 

the integration of previous events as in Genovesio et al. (2005, 2008). In this case, during the 

decision period, PFdl neurons encoded the strategy selected and not the strategy that had 

been cued. Interestingly, orbitofrontal neurons in the same task had the opposite behavior.

Finally, previous studies have shown the effect of previous trials on the activity of single 

neurons in the current trial. For example, Donahue et al. (2013) had shown the impact of 

reward on encoding of previous choice in multiple cortical areas, while a recent study by 

Spitmaan et al. (2020) has shown that both reward and choice outcomes are integrated over 

multiple trials to influence behavior and the response of cortical neurons. In the task studied 

here, we had found (Genovesio et al., 2014) that past outcome affected the RTs but not the 

error rates, and only a very small effect of the previous choice on RTs. These results suggest 

that, in our task, past outcome could have an influence on the metastable activity of PFdl 

neurons in the present trial. This influence could be revealed by the presence of coding states 

for the previous outcome. However, although single neurons encode both the previous 

choice and the previous outcome in the earlier part of the present trial before S2 (Genovesio 

et al., 2014), we found no evidence of coding states for previous outcome or choice during 

the temporal window analyzed in this paper (400 ms before S2 until the end of the trial; data 

not shown). This suggests that the slowdown of dynamics between S2 and the GO signal 

reflects the task demands of the present trial in a larger measure rather than the properties of 

the previous trial, although it cannot be ruled out that history effects could emerge in an 

HMM analysis performed in an earlier portion of the trial or in datasets containing larger 

numbers of neurons.
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Link between single neurons and metastable ensemble activity

The studies reviewed earlier focused on the activity of single neurons taken individually 

rather than on ensemble dynamics, as done here. It is natural to assume a link between the 

activity of single neurons and the sequence of states of the ensemble activity. We propose 

here one possibility based on our previous work on the evolution of goal representation in 

this task (Marcos et al., 2019). After the GO signal, we observed an abrupt reconfiguration 

of the prefrontal activity, in which the goal signal passed from one population to another as 

the trial proceeded from the delay period to the action period; only a smaller subset of 

neurons coded goals across both periods, and about half of these neurons switched goal 

preference between trial periods (“switch neurons”). These results were modeled by a 

network of heterogeneous cell assemblies with bistable local dynamics. In the model, the 

switch neurons showed a higher level of bursting activity than the other neurons, indicating 

that these neurons tended to jump more easily from high to low firing states, and vice versa. 

The switch neurons appeared also to have a leading role in the network reconfiguration after 

the GO signal, showing an earlier transition time in activity switch. It is possible that, when 

analyzed in terms of switching ensemble states via an HMM, the switch neurons could play 

an important role in igniting state transitions and could act differently in correct versus error 

trials. The important connection between single-cell and ensemble dynamics is left for future 

studies.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information should be directed to and will be fulfilled by the Lead 

Contact, Aldo Genovesio (aldo.genovesio@uniroma1.it)

Materials availability—This study did not generate new unique reagents.

Data and code availability—The in-house code developed during this study is publicly 

available in the author’s GitHub repository at https://github.com/danilobenozzo/

hmm_neurofis. The dataset has not been deposited in a public repository but is available 

from the Lead Contact author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study we used two adult (aged 9 and 11 years old), male rhesus monkeys (Macaca 

mulatta). Monkey 1 weighed 8.5 kg, and monkey 2 weighed 8.0 kg. All procedures followed 

the National Institutes of Health Guide for the Care and Use of Laboratory Animals (1996) 

and were approved by the National Institute of Mental Health Animal Care and Use 

Committee.

METHOD DETAILS

Behavioral task—In each trial, two visual stimuli were presented in sequence on a 

computer screen, separated by a temporal delay (Figure 1A). Each stimulus could be either a 

blue circle of 3° diameter or a red square of 3×3° dimension. If the first stimulus (S1) was 

the red square then the second stimulus (S2) was the blue circle and vice versa. Each 
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stimulus remained on screen for 1000 ms. Each trial started when the monkeys pressed the 

central of three switches, which caused the appearance on the screen of a central stimulus 

(reference point). After 400 or 800 ms the central stimulus was followed by the onset of S1. 

S1 was always located at a distance of 8–48 mm (in steps of 8 mm) above or below the 

reference point. After the disappearance of S1, there was a first delay (D1) of 400 or 800 ms 

before the presentation of S2. S2 appeared above the reference point if S1 had appeared 

below, and below the reference point otherwise. Its distance was as for S1, i.e., 8–48 mm (in 

steps of 8 mm) above or below the reference point, but it never equaled the distance of S1. 

Both S1 and S2 were presented for 1000 ms. The disappearance of S2 was followed by a 

second delay (D2) of 0, 400 or 800 ms, which in turn preceded the reappearance of the two 

stimuli, which served as a “GO” signal. Each stimulus was pseudo-randomly chosen to be 

located either 40 mm to the right or 40 mm to the left of the central stimulus. The monkeys 

were required to select, within 6 s, the stimulus presented farther from the reference point. 

Note that, not knowing the location of the stimuli, the monkeys could not plan any motor 

response before the GO signal. Correct choices were rewarded with 0.1 mL fluid, whereas 

an acoustic feedback followed the errors. All task variables, such as the duration of D1 and 

D2, the color and the shape of the two stimuli, were pseudorandomly determined. For more 

details about the behavioral task see Genovesio et al. (2011).

Data collection—We monitored and recorded eye position with an infrared oculometer 

(Arrington Recording, Scottsdale, AZ, USA) and recorded single cells using quartz 

insulated, platinum-iridium electrodes (0.5–1.5 MΩ at 1 kHz), positioned by a 16-electrode 

drive assembly (Thomas Recording, Giessen, Germany). The electrodes were arranged 

within a concentric head with 518 mm spacing. Spikes were discriminated online using the 

Multichannel Acquisition Processor (Plexon, Dallas, TX, USA) and confirmed with the 

Offline Sorter (Plexon) based on principal component analysis, minimal interspike intervals, 

and well differentiated waveforms inspected individually for each isolated neuron.

Surgery—We implanted the recording chambers over the exposed dura mater of the left 

frontal lobe, along with head restraint devices. We used Aseptic techniques together with 

isofluorane anesthesia (1%–3%, to effect). Monkey 1 had two, 18 mm diameter chambers, 

and Monkey 2 had a single, 27×36 mm chamber.

Histological analysis—Before the end of the recordings, electrolytic lesions (15 mA for 

10 s, anodal current) were made at selected locations. After 10 days, the animal was deeply 

anesthetized and then perfused through the heart with formaldehyde-containing fixative 

(10% Formalin in 0.9% saline). We plotted recording sites on Nissl-stained coronal sections 

by reference to the recovered electrolytic lesions and the marking pins inserted during 

perfusion, and structural magnetic resonance images taken at various stages after the 

beginning of the recordings. Recordings were predominantly taken from area 8, area 46 and 

a small population of area 12.

HMM analysis—An HMM was used to study the dynamics of neural ensembles, with 

methodology similar to Ponce-Alvarez et al., (2012) and Mazzucato et al. (2015, 2016, 

2019). The sessions included in the analysis comprised at least 4 simultaneously recorded 
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neurons, each with a mean trial activity ≥ 1 spk/s, and with at least 5 completed trials of each 

type, i.e., correct and incorrect. These selection rules left about 20% of the sessions for 

further analysis, out of the 361 initially recorded. Since many PFC neurons code for 

stimulus position (Genovesio et al., 2011), trials of the same session were divided according 

to the up or down position of the second stimulus, and were analyzed by fitting separate 

HMMs (in the analysis of trial difficulty of Figure 6, similar results were obtained when 

fitting the same HMM to all correct trials in each session, see “Analysis of neural dynamics 

versus trial difficulty”). In addition, in the analysis of correct versus error trials (Figures 2, 3, 

4, and 5), HMMs were also fitted separately to correct versus error trials in each session (see 

“Analysis of neural dynamics in correct versus error trials” below). In all HMM analyses 

described below, the vector of the neurons’ average firing rates across trials was used to 

initialize the emission rates for the first state. The same vector was then randomly permuted 

and assigned to the next state, until all states’ emission rates were initialized. In addition to a 

random permutation, a random Gaussian component with zero mean and 0.02 std was added 

to each emission rate. The transition matrix Pij, expressing the transition rates from state i to 

state j in each 5 ms bin, was initialized to 1 for the diagonal entries and |0.02x| off the 

diagonal, where x is a standard random variable; the rows of the matrix were then 

normalized to obtain probabilities. This initialization corresponds to a model where the 

probability is much larger to remain in the current state than to make a transition to another 

state in the next time bin. The fitting procedure was repeated 5 times with a maximum 

number of 500 iterations. The model with the smallest Bayesian Information Criterion (BIC) 

score, BIC = − 2 LL + [M(M – 1) + MN]lnT, was selected as the model for further analysis, 

where LL is the log-likelihood of the model given the data, M is the number of hidden states, 

N is the number of neurons in the ensemble, and T is the number of observations in each 

session (number of trials × number of 5 ms bins per trial). A cross-validation procedure as 

performed e.g., in Maboudi et al. (2018) gave similar results (not shown).

The training phase of the model, consisting in the estimation of the transition and emission 

probability matrices, was performed using the Baum-Welch algorithm. The states were then 

decoded from the posterior state probabilities P(St|Xt) of having state St in the presence of 

data Xt (spike trains) in a 5 ms time bin centered around time t. We assigned a state to a 

chunk of data only if its posterior probability was greater than 0.8 for at least 50 consecutive 

ms, as this requirement reduces the chance of overfitting the data (Mazzucato et al., 2015, 

2016).

All analyses were performed using custom software written in Python and MATLAB 

(Statistics and Machine Learning Toolbox, ©The Mathworks). The code is available at 

https://github.com/danilobenozzo/hmm_neurofis.

Coding states—The presence of a coding state, meaning a state that codes for a specific 

task condition, was evaluated by a χ-squared test of the frequency of appearance of each 

state in a given task condition during a time window of interest. The frequency table was 

computed by reporting the frequency of occurrence of each state in the two task conditions 

to be compared. As task condition, we considered the relative distance of the two stimuli 

from the center based on stimulus features (blue circle versus red square) and order of 

presentation (S2 farther versus closer), and position of the target at GO (right versus left; the 
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target is the stimulus previously presented farther from the center). As for the time window 

of interest, we chose the S2 presentation period for states coding for relative distance based 

on stimulus features or order, and the time interval from GO to RT for the target position.

Shuffled datasets—The HMM analysis was validated via comparison with shuffled data. 

Three types of shuffling procedures were applied in each session: a circular shuffle, a swap 

shuffle, and class label shuffle. In the latter, the class labels associated with each trial type 

(S1> S2 versus S2>S1) were randomly shuffled. Circular shuffle (Maboudi et al., 2018) 

consisted of independent random time shifts of the spike trains in each trial. This procedure 

kept the single neuron autocorrelations intact but disrupted the cross-correlations across 

neurons and, in particular, instances of co-activation. Swap shuffles (Maboudi et al., 2018) 

randomly permuted the temporal bins, i.e., the vectors of spike counts, in each trial. This 

procedure preserved the neurons’ cross-correlations but removed the neurons’ 

autocorrelations, in addition to the order of the sequential patterns that might be present in 

the data. Note that neither procedure changed the overall firing rates of the neurons in each 

trial. The HMM fits of the shuffled datasets were compared with the fit of the original 

dataset in terms of BIC score and optimal number of states. For the sake of visualization, in 

Figures 3A–3C time has been uniformly warped in the main task epochs (e.g., S2 

presentation, delay D2, reaction time) by a normalization with respect to each epoch length 

in order to align the related events across trials.

Analysis of neural dynamics in correct versus error trials—To compare state 

durations in correct and error trials, the HMM was fitted to all data inside a time window of 

variable size starting 400 ms before S2 and ending at the beginning of the following trial. 

Trials of the same session were divided according to the up or down position of the second 

stimulus and into correct versus error, and were analyzed by fitting four separate HMMs in 

each condition (56 sessions in total). In each session, we used models with 2 to N – 1 states, 

where N is the number of neurons in the session (the number of states was kept lower than 

the number of neurons to help prevent overfitting). The optimal number of states in each 

session, M, was chosen so as to minimize the BIC score (see formula reported above). Two 

separate HMMs were fitted to correct and incorrect trials in the same session given the 

stimulus position. After decoding the data according to the posterior state probabilities P(St|

Xt) as described above, we compared the session-averaged state durations in correct versus 

error trials in two different time epochs, from offset of S2 to GO, and from GO to END, by 

performing a 2-way ANOVA with factors trial type (correct versus error) and time epoch. To 

validate the analysis with a balanced number of trials in each trial type (correct versus error), 

we randomly selected a number of correct trials matching the number of error trials in each 

session. The HMM analysis was performed on the trial-matched sessions as described 

above, and the mean state durations in correct versus error trials across all sessions were 

obtained. This procedure was repeated 20 times, each time with a new pseudo-random 

selection of correct trials. These same trial-balanced datasets were then analyzed after 

circularly shuffling each spike train (see Section “Shuffled datasets”). Swap-shuffling the 

data drastically reduced the number of states and transitions and resulted in only a handful of 

trials with at least 2 transitions in each session, precluding a meaningful analysis of the state 

durations in this case.

Benozzo et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROC analysis—We used the distributions of mean state durations from S2 to GO obtained 

as described in Section “Analysis of neural dynamics in correct versus error trials” to predict 

the performance (correct versus error) in single trials. To do so, we treated the task of 

predicting performance as a fictitious two-alternative forced choice (2AFC) task in which we 

are presented with a correct and an error trial, and for each such pair, we predict that the 

error trial is the one with longer mean state duration. Performance in this task can be 

obtained by computing the area under the receiver operating characteristic (ROC) curve 

(Dayan and Abbott, 2005). The latter is the curve plotting the fraction of true positives (hits) 

versus the fraction of false positives (false alarms) obtained as the decision threshold varies 

from + ∞ to − ∞, where the task is to classify single trials and each decision is based on 

whether the trial’s mean state duration is above or below the threshold. Note that this 

analysis is analogous to that performed in Britten et al. (1992) for decoding motion direction 

from single neurons’ firing rates. However, in Britten et al. (1992) the authors aimed to 

decode the stimulus while we aimed to decode the monkeys’ performance (correct versus 

error). In the latter case, the prediction of a correct trial corresponds to matching the 

monkeys’ behavior in that trial. Thus, our average decoding performance also gives the 

probability of predicting the monkey’s behavior on a trial-by-trial basis.

Analysis of neural dynamics versus trial difficulty—For this analysis, we fitted an 

HMM to the data inside a 1400 ms time window (400 ms before the presentation of S2 until 

its removal), and the number of states was set to 2 (Ponce-Alvarez et al., 2012). Only correct 

trials were used, divided according to the up or down position of the second stimulus, and 

then analyzed by fitting separate HMMs (however, similar results were obtained when fitting 

the same HMM to all correct trials in each session; not shown). We defined the time until the 

first transition after S2 (fTaS2) as the period of time between S2 onset and the time at which 

the posterior probability of the current state decreases below 0.8 (see Figure 6 for examples). 

fTaS2 times were regressed with |S2–S1| as described in Results. In this analysis, only 

sessions with significant decoding performance by the HMM were considered (41 out of 61 

sessions with S2 up and 34/61 sessions with S2 down), according to the following procedure 

(Ponce-Alvarez et al., 2012). We divided each session in testing and training sets in a 3-fold 

cross-validation framework. For each trial in the testing set, its log-likelihood was computed 

both by a model fitted in the training trials of class S1>S2 (model λ1) and by a model fitted 

in the training trials of class S2>S1 (model λ2; here, “S1>S2” means that S1 was more 

distant than S2 from the central stimulus). The tested trial was assigned to class S1>S2 if 

model λ1 had the larger log-likelihood on this trial, and to class S2>S1 otherwise. The 

session was kept for further analysis if the decoding performance of the above method, 

measured by balanced accuracy, was significantly larger than chance. Balanced accuracy 

was defined as the average of recall obtained on each class, i.e., 1=2(TP/P+TN/N), and was 

used because in most sessions the two classes S1>S2 and S2>S1 were unbalanced (i.e., there 

were an unequal number of trials in each class; see Brodersen et al., 2010 for details). Here, 

TP means “true positives,” TN means “true negatives,” and P, N stands for positive (i.e., 

elements of class S1>S2) and negative (elements of class S2> S1), respectively. Significance 

of the decoder’s balanced accuracy was computed by a binomial test at the 5% significance 

level. The same analysis was performed after shuffling the data as described in Section 

“Shuffled datasets.”
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QUANTIFICATION AND STATISTICAL ANALYSIS

• HMM analysis: discrete time HMM with Poisson emission probability, model 

estimation solved by the iterative Baum-Welch algorithm as implemented in the 

MATLAB functions hmmtrain and hmmdecode, and with BIC method to select 

the optimal number of states (see Figure 2);

• Shuffling procedure to validate the HMM results: circular and swap shuffling 

(see Shuffled datasets in Section STAR Methods for details and Figure 3);

• Coding state: χ-squared test applied on the frequency of appearance of each state 

in a given task condition during a time window of interest (see Figure 4);

• Analysis between correct and error trials: two-sided Mann-Whitney U test, 

Spearman’s rank correlation, Wilcoxon signed-rank test and two-way ANOVA 

(see Figure 5);

• Relation with trial difficulty: Jonckheere’s trend test and linear regression slope 

(see Figure 6).

Further statistical details are indicated in each figure legend and in Section Results.
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Highlights

• Prefrontal activity in monkeys performing a distance discrimination task is 

metastable

• Duration of metastable states is longer before errors

• Latency of state transition is longer in correct difficult trials

• States may code for relative distance based on stimulus features or 

presentation order
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Figure 1. Experimental paradigm and neural recordings sites
(A) Sequence of task events within a trial. Each trial started when the monkey touched the 

central switch, leading to the appearance of the central stimulus (reference point), which 

lasted for 400 or 800 ms (pre-stimulus; pre-S). After this pre-stimulus period, the first 

stimulus (S1) was presented. S1 was followed by a variable delay (first delay; D1) of 400 or 

800 ms, which lasted until the second stimulus (S2) appeared. S2 was followed by a second 

delay (D2) of 0, 400, or 800 ms. Both S1 and S2 were presented for 1,000 ms and placed 

either above or below the reference point at 8 to 48 mm (8-mm step) from the reference 

point. After both stimuli reappeared (placed horizontally), the monkey had to touch the 

switch below the stimulus that appeared farther from the reference point (the blue circle in 

the example trial). Correct responses were rewarded with 0.1 mL fluid, while errors were 

followed by an acoustic feedback. The stimulus feature (blue circle/red square), position 

(above/below the reference point), distance, and target position (left/right) were pseudo-

randomly selected.

(B) Penetration sites. Composite from both monkeys, relative to sulcal landmarks. See 

STAR Methods for details.
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Figure 2. Representative trials of a neural ensemble of simultaneously recorded cells
Each raster plot indicates the spiking activity of each recorded neuron from 400 ms before 

S2 presentation until the beginning of the following trial. Colored curves represent the 

posterior state probabilities, and the assigned states are indicated with colored areas. Insets 

(bottom panels) indicate firing rate vectors associated with each state (same color code as in 

corresponding top panels). (A) Correct trials. (B) Error trials. Note that similar colors in (A) 

and (B) do not correspond to similar states, since the HMMs were performed independently 

on correct and error trials (see STAR Methods). D1, first delay (after S1); S2, second 

stimulus; D2, second delay; GO, appearance of targets on screen; RT, reaction time.
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Figure 3. Comparison of HMM state sequences for original and shuffled datasets
(A–C) Comparison of HMM state sequences for original and shuffled datasets in one 

representative session (only trials with S2 in the UP position are indicated; similar plots are 

obtained in other conditions). Trials were grouped according to the relative distance based 

on stimulus features (blue circle versus red square), and the separation between the two 

groups is indicated by the black horizontal line with borders marked by triangles (with red 

trials above the line). The time in each trial has been warped (stretched or shrunk; see STAR 

Methods) so as to align the 4 events S2, D2, GO, and RT. (A) HMM model of original data 

reveals (1) the presence of a coding state for relative distance based on stimulus features (the 

yellow state appearing between S2 and D2 only in trials above the group separation line, 

coding for “red square farther”) and (2) reliable state transitions at relevant event times. (B) 

HMM model of circularly shuffled data indicated in (A). As a consequence, state sequences 

appear scrambled, and the coding states are lost. (C) HMM model of swap-shuffled data 

indicated in (A). Compared to (A), sequences are not orderly, despite the presence of fewer 

states. (D) Boxplots of the difference in BIC score between the fits to the original data and 

shuffled data across sessions (p < 0.001, Wilcoxon signed-rank test). A smaller score 

indicates better fit.

(E) Optimal number of inferred states across sessions for original data (left), circular-

shuffled data (middle), and swap-shuffled data (right). Note that similar color in panels a-c 

does not imply the same state.
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Figure 4. Examples of sessions with significant coding states
(A) Coding states for relative distance based on stimulus features (blue circle versus red 

square) during S2 (red box) in correct trials for 2 example sessions. Coding states are the 

dark green and yellow states in the left panel and the dark green and gray states in the right 

panel.

(B) Coding states for relative distance based on order of presentation during S2 (S2 farther 

versus S2 closer) in correct trials for 2 example sessions. Coding states are the dark green, 

orange, and gray states in the left panel and the yellow state in the right panel. In both 

panels, trials were grouped according to the coded variable (as in Figure 3A) and highlighted 

by the red box. The same colors in different panels do not imply the same state.
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Figure 5. Comparison of RTs and mean state durations between correct and incorrect trials
The mean values ± SEM are reported. ***p < 0.001, two-sided Mann-Whitney U test. 

Correct trials are indicated in green; incorrect trials are indicated in red.

(A) Reaction times (RTs).

(B) Mean state durations.

(C) Comparison of mean state durations in the S2-GO versus the GO-END intervals, divided 

into correct and error trials. The plot indicates the interaction plot of the two-way ANOVA, 

with factors Trial Type (p <10−12, F(1) = 50.9) and Temporal Window (p = 0, F(1) = 363.6 

p(interaction) <10−5, F(1) = 16.3).

(D) Left: distributions of mean state durations across sessions in the S2-GO period in correct 

and error trials. Right: distributions of state durations in 4 example sessions (green, correct 

trials; red, error trials).

(E) Same as in (D) for the GO-END period.
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Figure 6. Analysis of first transition time after S2 (fTaS2)
(A) Example trial with rasters and HMM segmentation of a neural ensemble of 6 cells 

recorded simultaneously for one difficult trial, with |S2–S1| = 16. Each raster plot indicates 

the spiking activity of each recorded neuron from 400 ms before S2 until the end of the 

stimulus presentation. Same conventions as in Figure 1. The triangle on the horizontal axis 

marks the fTaS2. Vertical dashed line indicates S2 onset.

(B) Same trial as in (A), analyzed with an HMM around the GO signal. A time window of 

1,400 ms was used: 400 ms before and 1,000 ms after the GO cue.

(C) Same as in (A), for an example of an easy trial with |S2–S1| = 40.

(D) Same as in (C), with HMM analysis around the GO signal.

(E) fTaS2 versus |S2–S1| plot (mean ± SEM) indicates a significant trend of fTaS2 with trial 

difficulty (p = 0.006, Jonckheere’s trend test).
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(F) First transition time (means ± SEM) after the GO signal versus |S2–S1|. No significant 

trend test, p = 0.06.

(G) RTs (means ± SEM) versus trial difficulty, |S2–S1|. No significant trend test, p = 0.10.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Primate: Rhesus monkeys (Macaca mulatta) National Institute of Mental Health, 
Bethesda, US

N/A

Software and Algorithms

Multi-channel Acquisition Processor Plexon Inc https://plexon.com/

Off Line Sorter Plexon Inc https://plexon.com/

MATLAB MathWorks https://www.mathworks.com/

Python 2.7.0 Python Software Foundation https://www.python.org/

In-house developed code This paper https://github.com/danilobenozzo/hmm_neurofis

Other

Infrared eye-tracker system Arrington Research, Scottsdale, USA http://www.arringtonresearch.com/

Quartz-insulated platinum-iridium electrodes Thomas Recording https://www.thomasrecording.com/

Adaptive Multi-Electrode Positioning System 
(AMEP)

Thomas Recording https://www.thomasrecording.com/

Neural recording data acquisition system Plexon Inc https://plexon.com/
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