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Dissecting the common and compartment-specific
features of COVID-19 severity in the lung
and periphery with single-cell resolution

Kalon J. Overholt,1,5,7,* Jonathan R. Krog,1,5 Ivan Zanoni,2,3,6 and Bryan D. Bryson1,4,6

SUMMARY

Severe COVID-19 is accompanied by rampant immune dysregulation in the lung
and periphery, with immune cells of both compartments contributing to systemic
distress. The extent to which immune cells of the lung and blood enter similar or
distinct pathological states during severe disease remains unknown. Here, we
leveraged 96 publicly available single-cell RNA sequencing datasets to elucidate
common and compartment-specific features of severe to critical COVID-19 at the
levels of transcript expression, biological pathways, and ligand-receptor
signaling networks. Comparing severe patients to milder and healthy donors,
we identified distinct differential gene expression signatures between compart-
ments and a core set of co-directionally regulated surface markers. A majority of
severity-enriched pathways were shared, whereas TNF and interferon responses
were polarized. Severity-specific ligand-receptor networks appeared to be
differentially active in both compartments. Overall, our results describe a
nuanced response during severe COVID-19 where compartment plays a role in
dictating the pathological state of immune cells.

INTRODUCTION

Within months of the identification of the novel coronavirus SARS-CoV-2 in Wuhan, China, in December

2019, the virus had spread to every major country on Earth (Baj et al., 2020; Khafaie and Rahim, 2020;

Wu et al., 2020). The pandemic disease caused by SARS-CoV-2, termed coronavirus disease 2019

(COVID-19), has diverse clinical presentations, ranging from asymptomatic infection to mild symptomatic

infection with possible pneumonia, severe respiratory distress, critical forms of respiratory failure, dissem-

inated inflammation, or multiple organ failure (Baj et al., 2020; Chan et al., 2020; Wu et al., 2020; Wu and

McGoogan, 2020). A hallmark of severe and critical COVID-19 cases is a rampant dysregulation of the im-

mune system concomitant with the development of a hypoxemic respiratory condition widely characterized

as acute respiratory distress syndrome (ARDS) (Gattinoni et al., 2020; Ramanathan et al., 2020; Wilson et al.,

2020; Wu et al., 2020; Xu et al., 2020b). These observations were validated by early serological profiles of

patients with severe COVID-19, which largely resembled the cytokine profile of ARDS driven by diverse eti-

ologies (Wilson et al., 2020) and have been characterized as ‘‘cytokine release syndrome’’ (Blanco-Melo

et al., 2020; Del Valle et al., 2020; Huang et al., 2020; Mehta et al., 2020; Wilson et al., 2020). With this in-

formation a basic understanding of the immune response to COVID-19 was established; however, a

more granular analysis of the immunological features distinguishing severe from mild patients is needed

to better inform treatment options for this disease.

In recent months, observations in hospitals across the world have led to consistent descriptions of COVID-

19 severity at a clinical level (Arentz et al., 2020; Grasselli et al., 2020; Zhou et al., 2020), yet the biological

underpinnings of immune system hyperactivation in severe COVID-19 are still being defined. Cells of the

immune system are already known to be transcriptionally distinct between the lung and periphery during

baseline health (Travaglini et al., 2020), suggesting a model for two immune subsystems that may respond

differently during infection. Bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) studies

have identified stark transcriptional differences between bronchoalveolar lavage fluid (BALF) and periph-

eral bloodmononuclear cell (PBMC) samples in hospitalized patients with COVID-19, indicating that immu-

nological responses may be highly compartment specific (Daamen et al., 2020; Gardinassi et al., 2020;

Xiong et al., 2020; Xu et al., 2020a). However, the critical question of whether severity-specific dysregulatory
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transcriptional states are conserved between compartments has not yet been addressed. The role of inter-

ferons and their subsequent responses is particularly a conundrum, as several groups have shown a down-

regulation of interferon signaling in the blood but an upregulation of interferons in the lungs of patients

with severe COVID-19 (Broggi et al., 2020; Grajales-Reyes and Colonna, 2020; Hadjadj et al., 2020).

Although understanding of the transcriptional responses of immune cells during COVID-19 across the

spectrum of disease severity is growing, it remains unknown whether immunological dynamics between

the lung and blood compartments affect the course of the disease and whether mechanistic differences

between compartments could play a role in the efficacy of therapeutic strategies.

In this study, we examined and compared the immunological features of COVID-19 in the lung and periph-

ery, focusing on severity-specific transcriptional states. We re-analyzed 96 publicly available scRNA-seq da-

tasets from eight published studies containing either BALF or PBMC samples across the spectrum of

COVID-19 severity, allowing us to make comparisons between severe-to-critical patients, mild-to-moder-

ate patients, and healthy donors. Leveraging differential expression data, we compared features of COVID-

19 severity between the lung and periphery at the level of individual transcripts, biological pathways, and

active ligand-receptor signaling networks. Our integrative analysis adds to a growing body of knowledge

around lung and peripheral responses during acute respiratory infections and contributes to a finer under-

standing of the mechanisms that drive ARDS-related immune dysregulation in severe-to-critical COVID-19.

Our findings may guide future work informing potential interventional strategies to improve patient out-

comes as the COVID-19 pandemic continues to unfold.

RESULTS

scRNA-seq datasets contain comparable immune cell types in the lungmicroenvironment and

peripheral circulation

Severe COVID-19 has been shown to result in profound immune dysregulation at both a local (pulmonary)

and systemic (circulatory) level. Here, we performed an analysis of publicly available scRNA-seq datasets to

identify features of COVID-19 severity that are common or specific to these compartments. We used iden-

tical methods to separately analyze scRNA-seq datasets from BALF (three cohorts) and peripheral PBMCs

(four cohorts) obtained from patients with severe-to-critical (referred to as ‘‘severe’’) and mild-to-moderate

(referred to as ‘‘mild’’) COVID-19 as well as healthy control subjects. All BALF and PBMC cohorts were ob-

tained from separate prior studies (Arunachalam et al., 2020; Lee et al., 2020; Liao et al., 2020; Schulte-

Schrepping et al., 2020; Wilk et al., 2020). A BALF cross-control cohort was created by merging data from

two additional studies (Morse et al., 2019; Mould et al., 2021). Detailed information on datasets and clinical

characteristics of patient donors are available in Table 1. We primarily focused on comparing the Liao et al.

BALF and Lee et al. PBMC datasets and used the other datasets for validation (see STAR Methods).

After preprocessing raw gene-barcode matrices from each donor in the study, all BALF and PBMC donor

datasets were merged and integrated using Harmony (Korsunsky et al., 2019). The cells were then clustered

using Seurat (Stuart et al., 2019). The resulting 21 clusters were first labeled by a coarse cell type annotation.

Table 1. Overview of the publicly available datasets used in this study

Author Liao et al. Wauters et al. Morse et al. Mold et al.

Arunachalam

et al. Wilk et al. Lee et al.

Schulte-

Schrepping et al.

PMID 32398875 33473155 31221805 33079572 32788292 32514174 32651212 32810438

Accession no. GEO:

GSE145926

EGA:

EGAS00001004717

GEO:

GSM3660650

GEO:

GSE151928

GEO:

GSE155673

GEO:

GSE150728

GEO:

GSE149689

EGA:

EGAS00001004571

Compartment BALF BALF BALF BALF PBMC PBMC PBMC PBMC

Healthy control

subjects

3 0 1 10 5 6 4 0

Mild COVID-19

patients

3 2 0 0 3 0 3 5

Severe COVID-19

patients

6 20 0 0 4 7 4 10

Total donors (n) 12 22 1 10 12 13 11 15
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The clusters corresponding to myeloid cells, plasma/B/proliferating cells, NK/T cells, and dendritic cells

were re-integrated in four separate groups and sub-clustered in separate feature spaces. Following anno-

tation of the sub-clusters, cell type labels were transferred back to the original shared space resulting in 20

distinct cell types that were visualized by uniformmanifold approximation and projection (UMAP) as shown

in Figure 1A. UMAPs of the sub-clusters and key marker genes used for annotation are shown in Figure S1.

In total, 96 datasets from lung and peripheral sample donors were successfully integrated via Harmony, as

shown in Figures 1B and 1C. Subdividing the total pool of cells into three categories based on the disease

status of the donors (severe COVID-19, mild COVID-19, and healthy controls) showed that most clusters

appeared in all three conditions (Figure 1D) and no differences between disease states were readily

apparent.

The lung and blood immune compartments demonstrate both common and compartment-

specific perturbations of gene expression in severe COVID-19

Severe COVID-19 is characterized by rampant immune dysregulation in the lung and blood, leading us to

ask to what extent severity-specific transcriptional changes are conserved between consanguineous pop-

ulations of immune cells at the site of local infection and in the peripheral circulation. We began by

comparing patients with severe COVID-19 with healthy controls and identified differentially expressed

genes (DEGs) in most of the cell types common to BALF and PBMCs (Figure 2A). To discern the extent

of conserved differential gene expression, wemade paired comparisons between BALF and PBMC cohorts

to identify DEGs unique to BALF, those unique to PBMCs, those regulated in opposite directions in both

compartments (contra-directional), and those regulated in the same direction in both compartments (co-

directional/overlapping). The relative proportions of these genes served as a metric to evaluate transcrip-

tional similarity between the lung and blood compartments (see STARMethods). Only a small proportion of

all differentially expressed transcripts demonstrated co-directional overlap between the lung and blood in

the same cell types, indicating strong dissimilarity between these gene sets that was robust across the da-

tasets we compared (Figure 2B). In order to obtain a meaningful benchmark for these results, we also made

paired PBMC-to-PBMC cohort comparisons (Figure S3A). The resulting PBMC-PBMC comparisons tended

to reveal higher degrees of overlap than BALF-PBMC comparisons, pointing to disparities between com-

partments at the level of differentially expressed transcripts between severe patients and controls.

To compare dysregulatory transcriptional programs associated with severe as opposed to mild disease

courses, we next analyzed DEGs between severe and mild patients (Figure 2C). Again, severity-specific

DEGs overlapped in cells of the lung and periphery by a narrow margin (Figures 2D and S2A). Comparing

PBMC cohorts to each other (Figure S3B) again showed higher degrees of overlap than inter-compart-

mental comparisons. By contrast, the two BALF cohorts showed very little overlap when directly compared

(Figure S3C), which we attributed to the very few mild patients (n = 2) in the Wauters et al. BALF cohort.

Across all of the cell types analyzed, the sets of transcripts uniquely perturbed in patients with severe

compared with mild COVID-19 showed only a few commonalities between the lung and periphery. This

generally dissimilar trend followed when using an alternative approach to measure dissimilarity by directly

conducting differential gene expression between cells of different compartments (Figure S4A, see STAR

Methods).

To identify the most strongly evidenced differentially expressed transcripts common to both compart-

ments, we used a DEG classification scheme with more stringent p value and fold change thresholds

and explicitly accounted for donor-to-donor variation in the statistical test (see STAR Methods). The strin-

gently selected DEGs that were observed in both the Liao BALF dataset and at least two PBMCdatasets are

given in Table S1. Declines in HLA class II-related gene expression (HLA-DPs, HLA-DRs), upregulation of

calprotectin and calgranulin genes (S100A8 and S10012), and upregulation of the clusterin gene CLU

were common features of severe patients in both the lung and periphery.

A minimal set of surface markers is shared between the lung and blood in severe COVID-19

Cellular surface markers corresponding to clinical categories of COVID-19 have not yet been rigorously

characterized. Furthermore, the extent to which surface proteins on blood leukocytes reflect the immuno-

logical state of immune cells in the lung during a viral infection remains largely unknown. Given our

observation of strong differences between the lung and periphery at the level of differentially regulated

individual transcripts, we sought to determine if any transcripts coding for cell surface markers show similar

regulatory patterns between the compartments. The sets of DEGs studied in Figure 2 (adjusted p < 0.05
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and |log2FC > 1|) were filtered to find transcripts coding for cell surface proteins. Comparing severe pa-

tients to healthy control subjects, we found that myeloid cells tended to share differentially regulated sur-

face transcripts, whereas lymphoid cells did not. Compartmentally conserved downregulated transcripts in

severe donors includedHLA-DPB1 on cDC2s andCD74 on CD14 monocytes (Figure 3A). We found that the

CLU transcript was upregulated in severe donors from both compartments in several cell types, including

A

C

D

B

Figure 1. Single-cell RNA sequencing reveals comparable cell populations in bronchoalveolar lavage fluid (BALF)

and peripheral blood mononuclear cell (PBMC) isolates in healthy controls and across the spectrum of COVID-19

severity

(A) UMAP and annotation of 20 cell types identified from BALF and PBMC samples from healthy, mild COVID-19, and

severe COVID-19 donors. Abbreviations: AM, alveolar macrophage; Mono, monocyte; cDC, conventional dendritic cell;

MP, mononuclear phagocyte; NK, natural killer cell; pDC, plasmacytoid dendritic cell.

(B) UMAP breakdown according to cohort of origin demonstrating the successful integration of the seven cohorts used in

this study. Abbreviations: BALFxControl, BALF cross-control cohort.

(C) UMAP breakdown of the cells according to their compartment of origin. (Left) Lung-derived BALF cells. (Right) Blood-

derived PBMCs. Cells are colored according to their donor cohorts, which strongly overlap as shown in (B).

(D) UMAP breakdown across the spectrum of healthy donors, mild COVID-19 patient donors, and severe COVID-19

patient donors demonstrating that most cell types annotated in (A) are recovered across the spectrum of disease severity.

See also Figure S1.
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A

B

C

D

Figure 2. Transcriptional signatures of COVID-19 severity demonstrate minimal overlap between lung and blood

immune compartments in comparable cell types

(A) Differentially expressed genes (DEGs) between severe patients and healthy controls were identified in cell types

originating from BALF and PBMC donors. Volcano plots of DEGs are shown for CD14 monocytes of the lung (left) from the

Liao et al. cohort and blood (right) from the Lee et al. cohort. Genes denoted by red dots met a threshold of p < 0.05 and

|log2FC > 1|. FC = fold change (ratio of severe expression to control expression).

(B) Degree of transcriptional similarity between the lung and blood compartments assessed using overlap metrics for

severe versus healthy control DEGs. Rose plots indicate the fraction of total DEGs significant in the BALF compartment

only (purple), the PBMC compartment only (blue), significant in both compartments but regulated in opposite directions

(green), or significant and co-directional in both compartments (yellow, representing compartmental overlap). Concentric

circles represent fractions of the total number of DEGs from 0 to 1. Each rose plot compares the Liao BALF data to a

different PBMC cohort.

(C) Example volcano plots of DEGs between severe and mild patients for CD14 monocytes of the lung (left) and blood

(right) using the same cohorts as (A).

(D) Degree of transcriptional similarity between the lung and blood compartments in shared cell types assessed using

severe versus mild DEGs. Each rose plot compares the Liao BALF data to a different PBMC cohort.

See also Figures S2–S4, as well as Figure S5 for cohort sequencing depths.
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A

C

D

B

Figure 3. Cell surface marker transcripts associated with COVID-19 severity demonstrate overlap between the

lung and periphery predominantly in myeloid cells

(A) (Left) Transcript expression levels of the cell surface markerHLA-DPB1 in healthy controls (blue violins), mild COVID-19

patients (purple violins), and severe COVID-19 patients (red violins) in cDC2 cells derived from the Liao BALF cohort (top)

and Lee PBMC cohort (bottom). (Right) Expression levels of the surface marker CD74 in CD14 monocytes from the same

BALF (top) and PBMC (bottom) cohorts. *p < 0.05 and |log2FC > 1|.

(B) Transcript expression levels of the surface marker CLU in CD14 monocytes derived from BALF (top) and PBMCs

(bottom).

(C) Compartmental similarity of cell surface markers differentially expressed between severe COVID-19 patients and

healthy control subjects following the format of Figure 2, where yellow segments indicate compartmental overlap.

(D) Compartmental similarity of surface markers differentially expressed between severe and mild COVID-19 patients.

See also Figure S6 and Table S1.
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CD14 monocytes (Figure 3B). These transcript patterns were robust across pairwise comparisons between

cohorts. In general, most myeloid cell types shared at least 5% of differentially regulated surface transcripts

between compartments (Figure 3C).

We next investigated differences in expression of surface marker transcripts between severe and mild pa-

tients. A number of surface markers were markers of severe disease only; these transcripts were differen-

tially regulated between severe and mild patients but not between mild patients and healthy controls.

The HLA-DPB1, CD74, and CLU transcripts discussed above exhibited this property in the same respective

cell types, as shown in Figures 3A and 3B. In addition toHLA-DPB1,many other HLA class II transcripts were

downregulated in a severity-specificmanner. Across the cohorts studied, myeloid cells, NK cells, and B cells

showed high degrees of overlap in severe versus mild surface markers (Figure 3D). Of interest, T cell pop-

ulations did not appear to share surface markers between compartments in any of the analyses in Figure 3.

Overall, the most robust compartmentally conserved surface markers identified were downregulated tran-

scripts for antigen presentation in cDC2s, monocytes, and B cells.

A fraction of severity-specific pathways is polarized between the lung and blood including

type I/III and II interferon responses and TNF-a signaling

To probe the local and systemic immune responses to severe COVID-19 at a broader scale, we sought to uti-

lize the large number of differentially expressed transcripts to identify biological pathways that are altered

across the spectrum of disease severity in the lung and periphery. Applying gene set enrichment analysis

(GSEA) to severe versus healthy control DEGs in the Liao BALF cohort revealed broadly enriched pathways

including the IL-2/STAT5 signaling, IL-6/JAK/STAT3 signaling, IFN-a response, IFN-g response, and TNF-a

signaling via NF-kB pathways, indicating that these pathways are generally active in severe disease across

nearly every immune cell type (Figure 4A). In the Lee PBMC cohort, many of the same enriched pathways

were observed, including IFN-a response, IFN-g response, and TNF-a signaling via NF-kB (Figure 4A). Of in-

terest, the majority of differentially regulated pathways appeared to be conserved between the lung and

blood for most cell types (Figure 4B), and this result was consistent across cohorts (Figures 4B and S7).

To examine pathway-level regulation specific to severe disease courses, we applied the same analysis to

DEGs between patients with severe and mild COVID-19 (Figure 4C). In the lung, a number of broadly en-

riched pathways including IL-2/STAT5 signaling and TNF-a signaling via NF-kB were observed (Figure 4C).

Strikingly, type I/III and type II interferon responses showed mixed enrichment and depletion across lung

cell types, with enrichment tending to occur in myeloid cells (CD14 and CD16 monocytes, cDC2s, neutro-

phils) and depletion tending to occur in lymphoid cells (T cells, B cells, and pDCs). In the blood, more

consistent enrichment of IFN-a and IFN-g responses was observed, without a clear distinction between

myeloid cells and lymphoid cells (Figure 4C). In contrast to the lung, the TNF-a signaling pathway was

significantly depleted in multiple blood cell types including CD4 Treg, CD8 effector and naive T, and

NK cells. Pooling data from all the available cohorts, we observed a similar effect in which the TNF pathway

was more strongly active in the blood compared with lung for healthy and mild donors but more active in

the lung than in the blood for severe donors (Figure S4B, see STAR Methods). As many of the cell types

studied via GSEA showed significant enrichment of both the ‘‘interferon alpha response’’ and ‘‘interferon

gamma response’’ hallmark pathways, we sought to identify whether these pathways had been induced by

the same gene sets. The degree of overlap (Jaccard index of the GSEA leading edge, see STAR Methods)

was less than 50% in the large majority of cell types and conditions (Figure S8). On the whole, alterations in

pathway-level activity differentiating severe from mild patients demonstrated greater than 20% conserva-

tion in most cell types across the cohorts compared in this analysis, but a substantial fraction of contra-

directionally regulated or ‘‘polarized’’ pathways including TNF-a signaling and interferon responses

were detected across all of the cohorts studied (Figures 4D, S7A, and S7B).

Ligand-receptor analysis suggests differentially active signaling between the lung and blood

immune environments

Following the identification of common and compartment-specific pathway regulation in the lung and pe-

riphery of patients with severe COVID-19, we sought to examine transcriptional signatures of cytokine

signaling by constructing a putative network of cell-cell interactions across and within compartments. Spe-

cifically, we aimed to identify DEG signatures or ‘‘footprints’’ in each compartment that could be induced

by ligand-receptor interactions, then to identify which compartment(s) upregulate the inducer ligands dur-

ing severe disease. We leveraged this information to predict whether transcriptional signatures were likely
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induced through intra-compartmental signaling or whether the data were consistent with cross-compart-

mental signaling, termed ‘‘cross talk’’ (see DISCUSSION for alternative mechanisms). Briefly, differentially

expressed ligands (DELs) were identified using NicheNet through (1) a data-driven unbiased approach

A

C D

BA

C D

B

Figure 4. Pathway-level signatures of severe COVID-19 demonstrate varying degrees of overlap between lung

and blood immune compartments

(A) (Left) Hallmark gene sets detected by gene set enrichment analysis (GSEA) indicate enrichment of molecular pathways

in severe patients compared with control subjects for BALF cell types from the Liao et al. cohort. Normalized enrichment

score is shown by a blue-red color scale and dot size is proportional to -log10(p), with the smallest dot size indicating non-

significant adjusted p values (p < 0.05). (Right) Enrichment of molecular pathways in severe patients compared with

control subjects for PBMC cell types from the Lee et al. cohort.

(B) Degree of compartmental similarity of significantly enriched or depleted pathways between severe patients and

healthy control subjects in cell types shared between lung and blood. The Liao BALF cohort was compared with three

PBMC cohorts. Rose plots follow the format of the plots in Figure 2, where yellow segments indicate compartmental

overlap and green segments represent polarization.

(C) Enrichment of molecular pathways in severe compared with mild patients for BALF cell types from the Liao cohort (left)

and PBMC cell types from the Lee cohort (right).

(D) Degree of compartmental similarity of significantly enriched or depleted pathways between severe and mild patients

in cell types shared between lung and blood. The Liao BALF cohort was compared with three PBMC cohorts.

See also Figures S4, S7, and S8.
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searching for ligands differentially expressed between the conditions of interest that act broadly to induce

differential gene expression "footprints" in over one-third of cell types in a receiver compartment and (2) a

targeted approach to find specific transcripts of interest (see STAR Methods). Following the identification

of DELs, we categorized each according to whether their ‘‘footprint’’ in a given compartment could be ex-

plained by the DEL’s upregulation in the same compartment (suggesting intra-compartmental signaling),

the opposite compartment (suggesting cross talk), or both compartments.

The DEL profile for differential gene expression between severe patients and healthy controls is shown in

Figure 5A and is schematically represented in Figure 5B. TNF-induced differential expression signatures

along with upregulation of TNF occurred in both compartments, suggesting intra-compartmental

signaling. Upregulation of genes including TGFB1, CCL2, and SPP1 was observed only in the lung. How-

ever, over one-third of cell types in the blood bore differential gene expression signatures induced by these

ligands, indicating potential lung-to-blood cross talk via these secreted factors. On the other hand, gene

expression signatures downstream of IFN-g and IL-1a were widespread in the lung, but IFNG and IL1A

were only upregulated in the blood, suggesting blood-to-lung cross talk.

Using the same analysis pipeline to examine differential gene expression programs between severe and

mild disease (Figure 5C, schematically represented in Figure 5D) showed broadly acting signaling activity

in both compartments. Most of the gene expression signatures in the blood were only traceable to DELs in

the lung, with the exception of TNF. In the lung, a number of broadly acting ligands including CCL2, CCL3,

CCL8, and IL15 appeared to enact their severity-specific functions locally. Other factors such as SPP1 and

IFNG induced severity-specific signatures in both compartments but were only upregulated in the blood.

Altogether, this analysis revealed that the lung and blood compartments are marked by distinct broadly

active receptor-ligand interactions. In addition, certain ligands including IFNG were differentially ex-

pressed in a single compartment, yet induced gene expression in both compartments, suggesting a

possible mechanism of lung-blood cross talk. Furthermore, ligand-receptor analysis provided orthogonal

evidence for a modulated type II interferon response between severe andmild patients in over one-third of

the cell types in both compartments.

DISCUSSION

Severe COVID-19 is characterized by extreme states of immune dysregulation affecting immune cell pop-

ulations at the local site of infection and in the peripheral circulation, from which a coordinated response is

necessary to resolve a viral infection. Given the distinct stimuli and environmental contexts affecting im-

mune cells in the lung and blood, we sought to understand how states of dysregulation in severe-to-critical

COVID-19 may differ or demonstrate conservation between these compartments. We leveraged publicly

available scRNA-seq data from 96 patients and controls who contributed either peripheral blood or

BALF samples to compare transcriptomic responses across the spectrum of COVID-19 severity in consan-

guineous cell types, with the main analyses focusing on differentially regulated transcripts between severe

COVID-19 donors and either mild COVID-19 donors or healthy controls.

We identified a small degree of overlap between the lung and blood at the level of individual differentially

expressed genes in the majority of the common cell types tested. The degree of similarity between BALF

and PBMC cohorts was lesser than if two PBMC cohorts were compared directly, indicating that distinct tran-

scriptional mechanisms are likely at play. Filtering the overlapping gene sets to preserve the most strongly

evidenced differentially expressed transcripts revealed that severe COVID-19 is characterized by compart-

mentally conserved downregulation of MHC class II genes, upregulation of calprotectin and calgranulin-

related genes, and upregulation of clusterin. Of importance, our analysis predicted that MHC class II

molecules, the invariant chain, and clusterin may be useful for immunophenotyping patients with COVID-

19, as the status of these markers in the blood may also reflect the status of these markers in the lung. The

severity-specific decreases we observed in HLA-DRs, HLA-DPBs, and CD74 across antigen-presenting cell

types agree with reports of decreased antigen presentation in patients with severe COVID-19 (Bost et al.,

2020; Giamarellos-Bourboulis et al., 2020; Kuri-Cervantes et al., 2020; Schulte-Schrepping et al., 2020; Wilk

et al., 2020; Xu et al., 2020a). However, the upregulation of CLU has not been as widely reported and this

work adds to the growing understanding of the role of this gene in severe COVID-19.

Despite compartmental differences at the level of individual transcripts, differentially expressed gene sets

converged on a core set of pathways that appeared to be highly conserved, with the exception of a small
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number that were polarized between the lung and periphery. The conserved pathways tended to include

apoptosis, hypoxia, IL-2 signaling, IL-6 signaling, and hypoxia. The polarized pathways, ostensibly of more

interest, included the response to type I/III and type II interferons as well as TNF-a signaling. The pattern of

A

C D

B

Figure 5. Ligand-receptor analysis reveals putative signaling networks involved in severe COVID-19 including

cross-compartmental signaling between the lung and blood

(A) Cross-compartmental, intra-compartmental, and co-compartmental activity of differentially expressed ligands (DELs)

upregulated in severe patients compared to control subjects. (Left) Heatmap intensity indicates the extent to which DELs

(rows) explain differential expression programs observed in each lung ‘‘receiver’’ cell type (columns) using a NicheNet-

defined Pearson correlation coefficient. Heatmap colors show DELs originating in the lung only (intra-compartmental,

brown), lung and blood (co-compartmental, gray), and blood only (cross-compartmental, teal). (Right) Signaling

interactions acting on blood ‘‘receiver’’ cells based on DELs originating in the blood only (intra-compartmental, brown),

lung and blood (co-compartmental, gray), and lung only (cross-compartmental, teal). Broadly acting DELs identified

through an unbiased approach are adjacent to the lavender bar, whereas interferon, inflammasome-related, and TNF

superfamily DELs are adjacent to the violet bar.

(B) Schematic representation of putative signaling interactions detected within the lung compartment, within the blood

compartment, and between compartments using differential expression between severe patients and healthy control

subjects.

(C) Compartmental activity of DELs upregulated between severe and mild patients following the format of (A).

(D) Schematic of putative signaling interactions using differential expression between severe and mild patients following

the format of (B).
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type I/III and type II interferon signatures observed in this study raise the question of why myeloid cells in

the lung show signs of responding more sensitively to interferons during a severe COVID infection than a

mild one, while lung lymphoid cells become desensitized. It also remains unknown why interferon re-

sponses are homogenously enriched in the blood but show mixed enrichment and depletion in the

lung. The broad enrichment of the TNF-a signaling via NF-kB pathway across all cells in the lung but deple-

tion of the pathway in T and NK cells in the blood is an interesting feature that also indicated a lymphoid-

myeloid dependence. These results suggest that, as immune cells experience a barrage of dysregulatory

cues during severe COVID-19, their compartment-specific behavior depends partly on their lineage. This

effect could be the result of a dysregulated myeloid-lymphoid axis in which compartment-specific cues

cause lymphoid cells to become unresponsive to certain stimuli while myeloid cells respond uniformly

across compartments.

To probe cytokine responses further using an orthogonal tool, we conducted ligand-receptor analysis on cells

of the lung and blood compartments together and in isolation. This analysis revealed severity-specific ligand-

receptor interactions with increased activity in severe patients compared with milder patients. A subset of

these ligands was predicted to act broadly on immune cells of both the lung and periphery, including

IFNG, IL15, SPP1, TGFB1, and TNF. These ligandsmay serve as pan-regulators of the severity-specific immune

response during COVID-19. Other ligands, includingCCL2,CCL3, andCCL8 appeared to be broadly active in

the lung alone.Of interest, someof the gene expression signatures observed in the bloodwere explained only

through upregulation of their matching ligand in the lung, suggesting potential cross talk between compart-

ments. An alternative explanation to compartmental cross talk could be that certain ligand proteins follow

transient expression kinetics in the blood compartment yet leave long-lasting transcriptional signatures on

blood immune cells. Of note, severity-specific type I and III interferon signaling networks were not detected

in either compartment, potentially pointing to a deficiency of these factors that has been the subject of

ongoing investigation (Arunachalam et al., 2020; Broggi et al., 2020; Grajales-Reyes and Colonna, 2020; Had-

jadj et al., 2020; Lee et al., 2020; Major et al., 2020; Schulte-Schrepping et al., 2020; Silvin et al., 2020). Alter-

natively, the IFNA, IFNB, and IFNL transcripts may not be well captured via scRNA-seq.

Altogether, the results of this work suggest both common and unique mechanisms for severity-associated

immune dysregulation in the lung and blood compartments. This study also suggests that severity-specific

interferon and TNF responses to SARS-CoV-2 infection depend on the lineage of immune cells as well as

their compartment. Consideration of the distinct transcriptional states of immune cell populations in the

lung and blood will likely be crucial in the development of immunomodulatory COVID-19 therapies such

as immune blockades and interferon supplementation to aid in patient recovery.

LIMITATIONS OF THE STUDY

The study is subject to several limitations. First, our study does not include a cohort in which cells of the lung

and the blood have been analyzed in the same patients, although this type of cohort would be ideal for vali-

dating our predictions. Next, the ability to use healthy BALF data as a reference point remains limited

without conducting differential gene expression tests between cohorts collected by separate investigators

in separate studies. In addition, the set of publicly available mild COVID-19 patient BALF scRNA-seq sam-

ples remains small and limits our ability to make entirely orthogonal comparisons between the lung and

blood in this study. Finally, this study does not contain experimental validation of the putative ligand-recep-

tor networks predicted to be active in the lung andbloodor thepotential cross talk between these networks.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Kalon Overholt (overholt@mit.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Multi-donor datasets from eight separate studies were used in this work and these can be found under

the following accession numbers: GEO: GSE145926 (Liao et al., 2020), GEO: GSE149689 (Lee et al.,

2020), EGA: EGAS00001004717 (Wauters et al., 2021), GEO: GSM3660650 (Morse et al., 2019), EGA:

EGAS00001004571 (Schulte-Schrepping et al., 2020), GEO: GSE150728 (Wilk et al., 2020), GEO:

GSE155673 (Arunachalam et al., 2020), GEO: GSE151928 (Mould et al., 2021). See Table 1 and the key re-

sources table for additional information on publicly available data. All of the code used for analysis in this

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

COVID-19 Patient BALF scRNA-seq data Liao et al., 2020 GEO: GSE145926

COVID-19 Patient PBMC scRNA-seq data Lee et al., 2020 GEO: GSE149689

COVID-19 Patient BALF scRNA-seq data Wauters et al., 2021 EGA: EGAS00001004717

COVID-19 Patient PBMC scRNA-seq data Schulte-Schrepping et al., 2020 EGA: EGAS00001004571

COVID-19 Patient PBMC scRNA-seq data Wilk et al., 2020 GEO: GSE150728

COVID-19 Patient PBMC scRNA-seq data Arunachalam et al., 2020 GEO: GSE155673

Healthy control BALF scRNA-seq data Morse et al., 2019 GEO: GSM3660650

Healthy control BALF scRNA-seq data Mould et al., 2021 GEO: GSE151928

Software and algorithms

Computational analysis pipeline This paper https://github.com/uberholzer/2021_iScience_

Overholt_Krog_COVID

R (v. 4.0.2) Free Software Foundation/GNU https://www.r-project.org/

Python (v. 3.7.3) Python Software Foundation https://www.python.org/

Seurat (v. 3.1.5) Stuart et al., 2019 https://satijalab.org/seurat/

Harmony (v. 3.8) Korsunsky et al., 2019 https://github.com/immunogenomics/harmony

fgsea (v. 1.12.0) Korotkevich et al., 2016 https://github.com/ctlab/fgsea

DoubletFinder (v. 2.0.3) McGinnis et al., 2019 https://github.com/chris-mcginnis-ucsf/DoubletFinder

Plotly (v. 4.10.0) Plotly Technologies Inc., 2015 https://plotly.com/

EnrichR (v. 2.1) Kuleshov et al., 2016 https://maayanlab.cloud/Enrichr/

Nichenetr (v. 0.1.0) Browaeys et al., 2020 https://github.com/saeyslab/nichenetr

MAST R package (v. 3.11) Finak et al., 2015 https://www.bioconductor.org/packages/release/

bioc/html/MAST.html

Other

Human Protein Atlas Regev et al., 2017 https://www.proteinatlas.org/=

Cell Surface Protein Atlas Bausch-Fluck et al., 2015 https://wlab.ethz.ch/cspa/

Immune Cell Atlas Regev et al., 2017 http://immunecellatlas.net/
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study is available in a public GitHub repository at https://github.com/uberholzer/

2021_iScience_Overholt_Krog_COVID.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The sample sizes and clinical status of human subjects analyzed in this study are given in Table 1. The age,

sex or gender, and other demographic data for these subjects are available in the source publications

(Arunachalam et al., 2020; Lee et al., 2020; Liao et al., 2020; Morse et al., 2019; Mould et al., 2021;

Schulte-Schrepping et al., 2020; Wilk et al., 2020).

METHODS DETAILS

Patient severity definitions

We provide the following operational definitions of COVID-19 clinical severity levels in order to harmonize

the use of patient data from 6 separate studies as well as control data from an additional 2 studies. We

define ‘‘mild’’ COVID-19 patients as SARS-CoV-2+ individuals experiencing mild or moderate symptomatic

infection as noted by the original investigators at the time of sample collection. ‘‘Severe’’ patients are

defined as SARS-CoV-2+ individuals experiencing severe or critical disease as noted by the original inves-

tigators at the time of sample collection. We also refer to this group as severe-to-critical patients in this

manuscript. Severe-to-critical patients may or may not have required invasive mechanical ventilation or

been diagnosed with ARDS. For patients who were sampled at multiple timepoints in the disease course

by the original investigators, we used only the sample collected most proximally to infection, i.e. the

earliest time point, to better capture infection-related immune dynamics.

Data acquisition

All single cell RNA-sequencing data used in this analysis were obtained from publicly available datasets. A

summary of the 96 single-cell datasets used in this paper obtained from 8 separate studies (cohorts) is given

in Table 1. In this analysis, we frequently focused on comparing two particular cohorts, the Liao et al. BALF

cohort (Liao et al., 2020) and the Lee et al. PBMC cohort (Lee et al., 2020), since these cohorts both con-

tained mild and severe COVID-19 patients as well as healthy control subjects. We noted that the number

of severe patients in the Liao and Lee cohorts who were in critical condition at the time of cell sampling was

roughly comparable (3 of 4 severe patients in the Lee cohort and 5 out of 6 severe patients in the Liao cohort

were mechanically ventilated).

To set up a more comprehensive analysis and mitigate confounders in our investigation that could arise

from batch effects, we incorporated 4 cohorts consisting of COVID-19 patients and healthy controls

when provided (Arunachalam et al., 2020; Schulte-Schrepping et al., 2020; Wauters et al., 2021; Wilk et

al., 2020) as well as an additional cohort for cross-control assembled from 2 studies containing healthy

BALF donors (Morse et al., 2019; Mould et al., 2021). These additional BALF and PBMC cohorts, shown

in Table 1, were used to provide additional granularity and increase the number of possible BALF-PBMC

comparisons to be made. Among these additional cohorts, only the Arunachalam et al. PBMC cohort con-

tained healthy, mild, and severe donors all from the same study (Arunachalam et al., 2020). Notably, the

severe patients in the Arunachalam study were not as directly comparable to the Liao BALF cohort as

the donors from the Lee study (only 1 of 4 severe patients in Arunachalam et al. was admitted to the inten-

sive care unit). The makeup of the cohorts that we utilized in the present study as well as the data accession

numbers and publication PubMed IDs are available in Table 1.

Data preprocessing, dimensionality reduction, multi-donor integration, and clustering

Gene-barcode matrices obtained from the GEO were preprocessed using Seurat (v. 3.1.5) (Stuart et al.,

2019) in R (v. 4.0.2). Matrices were filtered to preserve cells with a unique molecular identifier (UMI) count

over 1,000, gene count between 200 and 6,000, and expression of less than 10% mitochondrial RNA. Cells

were additionally filtered to preserve cells expressing less than 20% 18S RNA and less than 20% 28S RNA.

Next, expected doublets were removed in each matrix using DoubletFinder (v. 2.0.3) (McGinnis et al., 2019)

setting an expected doublet formation rate of 7.5% and automatically generating parameters using the

paramSweep option. All of the doublet-filtered gene-barcode matrices for the donors used in this study

were then merged into a single object, which was log-normalized using the ‘NormalizeData’ function

and the 2,000 most highly variable genes (features) were identified via the ‘FindVariableFeatures’ function

with the variance stabilizing transformation method. The highly variable genes were scaled using the
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‘ScaleData’ function regressing the percentage of mitochondrial transcripts and UMI count depth, and the

list of highly variable genes was filtered to remove mitochondrial, ribosomal, and rRNA transcripts. The

merged dataset was dimensionality-reduced using principal component analysis (PCA) acting on the num-

ber of principal components (PCs) calculated above, then integrated using the standard Harmony (v. 3.8)

integration workflow (Korsunsky et al., 2019) using the highly variable gene list with theta = 2. The number of

PCs to use for Harmony was determined using the point at which the ‘‘first difference’’ in standard deviation

between two PCs was less than 0.05% of the total standard deviation from the first 100 PCs, then adding 5

PCs to this number. Clustering was conducted by first performing UMAP on the calculated number of PCs

using the ‘harmony’ reduction, finding nearest neighbors using the ‘FindNeighbors’ function in Seurat

acting on this number of dimensions, then running the Louvain algorithm via the ‘FindClusters’ function

with a resolution parameter of 0.5. The resulting jointly integrated and clustered datasets from BALF

and PBMC samples were visualized together by UMAP. We verified that large-scale dataset integration us-

ing Harmony is in agreement with best current practices for data integration (Luecken et al., 2020).

Cell type annotation and iterative data integration

Cell type annotation was conducted using the resultant clusters. Clusters were annotated according to

scaled average expression levels of canonical marker genes identified in the original papers for the

BALF and PBMC datasets, the broader literature, and the Human Protein Atlas (Regev et al., 2017). Clusters

deemed identical by similar presence of marker genes were merged during annotation. Following one

round of coarse cell type annotation, major clusters of interest were isolated, separately re-integrated,

and sub-clustered. We performed re-integration and sub-clustering separately on four disjoint groupings

of cells: myeloid cells; plasma cells, B cells, and proliferating cells; NK and T cells; and dendritic cells. Re-

integration was peformed using Harmony as explained above, but for myeloid cells the PCs were calcu-

lated using the point where the first difference in standard deviation was less than 0.1% to produce the

cleanest clustering result. Cell types were then annotated using scaled expression levels of canonical

marker genes as explained above. Figure S1 shows the levels of key marker genes for the sub-cluster

analysis.

Cluster quality control

We took multiple steps to improve the purity of sub-clusters. Following cell type annotation, clusters

labeled as putative doublets (positive for multiple lineage markers) were removed from the analysis. Addi-

tionally, cells containing more than 5% total hemoglobin (HBA, HBB, HBD) transcripts or more than 1%

PPBP transcripts were considered to be erythrocytes, platelets, or contaminated cells and these cells

were removed prior to downstream analysis. Additionally, cells were removed from the analysis if they

had coarsely clustered with myeloid cells, NK/T cells, or dendritic cells but had total immunoglobulin per-

centages (IGH-, IGK-, IGL-) greater than 5%, since these might represent plasma cells of uncertain status or

contaminated cells. Filtering on immunoglobulin genes was only conducted after sub-clustering since

these genes provided important information to delineate sub-clusters and improve purity.

Differential expression analysis between severity conditions (main pipeline, Figures 2, 3, 4,

and 5)

Differential expression analysis was performed in Seurat using the ‘FindMarkers’ function utilizing model-

based analysis of single-cell transcriptomics (MAST) statistical framework through the ‘‘MAST’’ R package

(v. 3.11) (Finak et al., 2015) using the cellular detection rate (UMIs per cell) as a covariate. A number of dif-

ferential expression schemes were used for the different analyses in this paper. For the main differential

expression tests (Figures 2 and 3 and underlying the results of Figures 4 and 5), we isolated cells belonging

to one cohort only, then performed differential expression between cell populations pooled across donors

from the disease severity conditions of interest. To examine differential gene expression across the spec-

trum of disease severity, we conducted three types of differential expression tests: severe vs. mild, mild vs.

control, and severe vs. control. Significantly differentially expressed genes (DEGs) are were classified by

MAST adjusted p < 0.05, although more stringent filtering was applied in some downstream analyses

(described in the next section).

Identification of stringent DEGs between severity conditions (Table S1)

To identify the highest-confidence DEGs using stringentmethods, the same differential expression analysis

was employed as in the main pipeline with modifications to the MAST algorithm and DEG classification
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thresholds. In addition to using the UMI count as a numerical covariate in MAST, the donor from whom the

cells originated was incorporated as a categorical covariate in the ‘latent.vars’ variable of the ‘FindMarkers’

function. This allowed us to explicitly model donor-to-donor variation using a fixed effects model. Addi-

tionally, genes were only classified as ‘‘stringent DEGs’’ if they showed adjusted p < 0.01, and |log2FC| >

1.5 (FC = fold change) and were present in at least 25% of the cells in one of the categories tested.

Differential expression analysis between compartments (Figure S4)

In the supplementary analyses of Figure S4, we desired to study transcriptional differences between com-

partments for a given cell type in a given severity condition (e.g. severe neutrophils in BALF vs. severe

neutrophils in PBMCs). To do this, it was necessary to conduct differential gene expression tests between

donors who had been sequenced as part of different studies. We used the following method to attempt to

mitigate the issue of batch effect. First, all BALF donors from the severity condition of interest were com-

bined into a single pool and all PBMC donors from that condition were combined into a separate pool.

Next, we conducted differential gene expression between these pools in a given cell type using the ‘Find-

Markers’ function in Seurat implementing the MAST algorithm. In addition to using the UMI count depth as

a numerical covariate in MAST, we also used the study of origin as a categorical covariate in the ‘latent.vars’

variable of the ‘FindMarkers’ function. This allowed us to explicitly model the batch effects between studies

using a fixed effects model. As a result, the DEG list was shorter than if the same approach had been used

without considering the study of origin as a covariate. In Figure S4, we considered DEGs that were robust to

study-to-study batch variation with adjusted p < 0.01, |log2FC| > 1, and expression in at least 10% of cells in

one of the conditions tested.

Surface marker identification

The identification of cell surface markers indicative of severe disease was performed by cross-referencing

the previously established DEGs for all cell types in a given dataset with entries in the Cell Surface Protein

Atlas (CSPA) (Bausch-Fluck et al., 2015). DEGs were considered to be differentially expressed surface

markers if they were included in the ‘high confidence’ CSPA category and showed significant differential

expression (adjusted p < 0.05 and |log2FC| > 1). Differentially expressed surfacemarkers were further exam-

ined for constitutive expression in cell types of interest by cross referencing with the Immune Cell Atlas hu-

man bulk RNA sequencing data (Regev et al., 2017).

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) was performed using the ‘‘fgsea’’ package

(v. 1.12.0) (Korotkevich et al., 2016) in R using the ‘multilevel’ option. Differentially expressed gene lists

generated using MAST were ranked by log2(FC), since -log10(p) values became arbitrarily large. GSEA re-

sults were interpreted according to normalized enrichment score (NES) and an adjusted p value, with a p <

0.05 threshold for defining significance. Pathways with positive NES were defined throughout the text as

‘‘enriched’’ and pathways with negative NES were defined as ‘‘depleted’’.

Leading edge analysis (Subramanian et al., 2005) was conducted for cell types in which the ‘‘interferon

alpha response’’ and ‘‘interferon gamma response’’ were both enriched or both depleted to determine

the extent to which the same genes contributed to these pathways. The leading edge subsets for both

pathways were compared with identify unique and common genes. Overlap was quantified using the Jac-

card similarity index (intersection of leading edge subsets/union of leading edge subsets). The Jaccard in-

dex and the genes uniquely contributing to either pathway were visualized for each cell type (Figure S8).

Compartmental comparisons for main pipeline (Figures 2, 3, 4, and 5)

In Figures 2, 3, 4, and 5, we established DEGs separately for each cohort between three conditions of

COVID-19 status (healthy, mild, and severe). Compartmental comparisons were performed for all DEGs,

surfacemarker DEGs, and significantly enriched/depleted pathways using the following scheme. Following

separate statistical tests for each compartment, the intersecting set of genes or pathways that were

significantly upregulated in both compartments or significantly downregulated in both compartments

was identified and termed ‘‘co-directional’’. The intersecting set of genes or pathways that were

significantly regulated in different directions between compartments was identified and termed

‘‘contradirectional’’. The remaining genes not part of the intersection were termed ‘‘BALF only’’ or

‘‘PBMC only’’. A modified Jaccard similarity index was developed to describe the degree of overlap
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between co-directional and contradirectional genes or pathways between compartments. Briefly, the co-

directional Jaccard index was defined as the number of co-directional intersection elements divided by the

number of elements in the union. The contra-directional Jaccard index was defined similarly. The relative

fractions of co-directional, contra-directional, BALF only, and PBMC only genes or pathways summed to 1,

such that the degree of overlap could be shown in a polar rose plot. Rose plots were created in Python

(v. 3.7.3) using the ‘‘plotly’’ (v. 4.10.0) package (Plotly Technologies Inc., 2015).

To generate the rose plots in Figures 2 and 3, we considered only DEGs with adjusted p < 0.05 and

|log2FC| > 1 that were expressed in at least 10% of cells in one of the conditions tested. Additionally, we

filtered mitochondrial, ribosomal, hemoglobin, immunoglobulin, lncRNA, and T cell receptor genes out

of the list as these genes are often assumed to represent technical artifacts of little biological relevance

(Wauters et al., 2021). However, we did not filter these genes prior to conducting GSEA as the GSEA algo-

rithm requires the total gene set as input (Subramanian et al., 2005).

Analysis of between-compartment DEGs

In Figure S4, we established DEGs between compartments for a given cell type in a given severity condi-

tion. For example, a differential expression test was conducted between severe neutrophils in the lung and

severe neutrophils in blood. These DEG lists were first filtered as described above to remove genes that

could represent technical artifacts. For each condition tested (healthy, mild, severe), rose plots were con-

structed representing the fraction of differentially expressed genes out of the total number of genes tested

(after filtering) in that cell type. Next, we conducted GSEA on the unfiltered DEG lists. The differential

expression test represented fold change as the ratio of expression in BALF to expression in PBMCs; hence,

GSEA results with a positive NES represent pathways enriched in the lung while those with a negative NES

represent pathways enriched in the blood. Finally, we sought to characterize the biological roles of DEGs

between the lung and blood during severe disease but not during baseline health, or during severe but not

mild disease. To do this, the ‘‘set difference’’ between severe DEGs and either mild or healthy control DEGs

was extracted, and this gene set was subjected to gene ontology analysis using EnrichR (described below).

Gene ontology (GO) analysis

Further analysis of significantly differentially expressed genes was performed using the ‘‘EnrichR’’ (v. 2.1)

(Kuleshov et al., 2016) package in R. Gene ontology (GO) analysis was conducted on the set difference be-

tween severe DEGs and either mild or healthy control DEGs. The set difference was calculated for upregu-

lated (log2FC > 0) and downregulated (log2FC < 0) separately. The GO analysis was conducted using the

‘‘biological function’’ annotations representing large scale biological programs. GO results were ranked

based on the EnrichR ‘Combined Score’ metric and significance was determined using an adjusted p value

threshold of p < 0.05.

Ligand-receptor network analysis

To investigate cell-cell interactions potentially contributing to the observed differential gene expression in

severe patients, we employed the ligand-receptor interaction tool NicheNet via the ‘‘nichenetr’’ package

(v. 0.1.0) in R (Browaeys et al., 2020). Studying differential expression in a compartment of interest entailed

first designating a ‘‘receiver cell’’ population in the compartment. Next, ligand-expressing ‘‘sender cells’’

were defined as all cells within the compartment of interest (to investigate intra-compartmental signaling)

or all cells in the other compartment (to investigate cross-compartmental signaling). Briefly, we generated a

list of ligands expressed in the assigned sender population with the potential to induce the observed dif-

ferential gene expression in each receiver cell population in the compartment of interest. This procedure

(described below) was iterated over all receiver populations in the compartment of interest. The list of li-

gands inducing differential expression in the compartment of interest was filtered using two approaches:

an unbiased data-driven approach filtering for broadly-acting differentially expressed ligands (DELs) ex-

plaining differential gene expression in over one-third of the cell types in the compartment, and a targeted

approach filtering specifically for interferon DELs, inflammasome-activated DELs, and TNF superfamily

DELs.

For the unbiased approach, all ligands identified by NicheNet to act on cells in given compartment were

assigned a NicheNet-calculated Pearson correlation coefficient quantifying how strongly the ligand activity

explained differential gene expression in each cell type for a given comparison (severe vs. mild, severe vs.

healthy control, mild vs. healthy control). Only ligands with a Pearson coefficient greater than 0.08 in over
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one-third of the cell types in the receiver compartment were preserved. This list of ligands was filtered

further to preserve only ligands that were differentially upregulated (adjusted p < 0.05, log2FC > 0) in at

least one cell type in the sender compartment of interest. These ligands were classified as broadly-acting

DELs. For the targeted approach, ligands of interest were found by searching the list of DELs for transcripts

beginning with ‘IFN’, ‘IL1’, ‘IL18’, and ‘TNF’.

DELs explaining differential gene expression in a given compartment might: 1) originate in sender cells of

the same compartment only (termed ‘‘intra-compartmental signaling’’), 2) originate in sender cells of the

opposite compartment only (termed ‘‘cross-compartmental signaling’’), or 3) originate in sender cells of

both compartments (termed ‘‘co-compartmental signaling’’). We used these classifications of DELs to

construct putative ligand-receptor interaction networks.

Iterative NicheNet procedure

The following standard NicheNet procedure (Browaeys et al., 2020) was looped iteratively through the

receiver cell populations in the receiver compartment of interest. Differentially expressed target genes be-

tween conditions of interest (severe vs. mild, severe vs. healthy control, mild vs. healthy control) in each

receiver cell population were identified using the ‘FindMarkers’ function in Seurat with criteria of p <

0.05, average natural log FC > 0.25, and expression in over 10% of the receiver cell population in severe

patients. Concurrently, a list of potential receptors expressed in over 10% of cells in the severe patient

receiver population was generated using NicheNet. A list of ‘‘sender’’ cells was created comprising all

cell types in: 1) the receiver compartment, or 2) the opposite compartment. For each sender cell popula-

tion, potential ligands were inferred using the NicheNet ‘‘high-confidence’’ ligand-receptor network

applied to genes expressed in over 10% of the ‘‘severe’’ cells in the sender population. All ligands identified

through this procedure were subjected to downstream analysis to identify DELs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differential gene expression was analyzed using the ‘‘MAST’’ package statistical framework through the

‘FindMarkers’ function in Seurat, always implementing the UMI count per cell as a numerical covariate as

a proxy for the cellular detection rate. Additional categorical covariates were implemented where indi-

cated. Differential expression statistical significance was qualified using the MAST false discovery rate

(FDR) adjusted p value, always using a significance threshold of at least p < 0.05. More stringent p value

thresholds are indicated where they are used. Pathway enrichment was analyzed using the ‘multilevel’

GSEA method in the ‘‘fgsea’’ package. Statistical significance of normalized enrichment scores was quali-

fied using the fgsea FDR adjusted p value, with a significance threshold of p < 0.05. Differential gene

expression relevant to ligand-receptor interactions was evaluated using the NichNet pipeline implement-

ing the Wilcoxon rank-sum test through the ‘FindMarkers’ function in Seurat. Statistical significance was

qualified using the ‘FindMarkers’ Bonferroni-adjusted p value, with a significance threshold of p < 0.05.

GO analysis was conducted using the ‘‘EnrichR’’ package, and statistical significance was qualified using

the EnrichR adjusted p value based on Fisher’s exact test with a significance threshold of p < 0.05.
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