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Abstract

Heterotrophic growth mode is among the most promising strategies put forth to overcome the

low biomass and secondary metabolites productivity challenge. To shedding light on the

underlying molecular mechanisms, transcriptome meta-analysis was integrated with weighted

gene co-expression network analysis (WGCNA), connectivity analysis, functional enrichment,

and hubs identification. Meta-analysis and Functional enrichment analysis demonstrated that

most of the biological processes are up-regulated at heterotrophic growth condition, which

leads to change of genetic architectures and phenotypic outcomes. WGNCA analysis of

meta-genes also resulted four significant functional modules across logarithmic (LG), transi-

tion (TR), and production peak (PR) phases. The expression pattern and connectivity charac-

teristics of the brown module as a non-preserved module vary across LG, TR, and PR

phases. Functional analysis identified Carotenoid biosynthesis, Fatty acid metabolism and

Methane metabolism as enriched pathways in the non-preserved module. Our integrated

approach was applied here, identified some hubs, such as a serine hydroxymethyltransferase

(SHMT1), which is the best candidate for development of metabolites accumulating strains in

microalgae. Current study provided a new insight into underlying metabolite accumulation

mechanisms and opens new avenue for the future applied studies in the microalgae field.

Introduction

Microalgae have become attractive sources for metabolites, such as lipids, enzymes, polymers,

toxins, and pigments production. These components can be utilized as adjuvant drugs, dietary
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supplements, seafood baits, cosmetics, tertiary wastewater treatment, and “green energy” [1].

Productions of above-mentioned metabolites have been optimized using the cultivation of

microalgae on diverse media [2,3]. Microalgae are largely photosynthetic and cultivated in illu-

minated environments. However, biomass productivity and titers in photoautotrophic cultiva-

tion range from 0.055 to 0.061 g/ L/day at the laboratory scale. It is much lower for the

industrial scale, and cannot meet demands of the global market [4].

To overcome the poor biomass accumulation, open ponds that mimic natural environ-

ments of the microalgae are alternative option for the most commercial microalgae [5]. These

cultivation systems present relatively lower construction and operating costs and large ones

can be constructed on nonagricultural lands [6]. Nevertheless, these cultivation systems have

several disadvantages such as expensiveness in the harvesting step, continuous need to clean

water; unfeasibility for the secondary metabolite production; and susceptibility to environ-

mental conditions [6]. To control environmental parameters during cultivation, closed photo-

bioreactors have been designed [7]. However, inefficient light dispersion and fouls biofilm

development in long-term cultures, and high initial investment make them uneconomical for

low-cost end-products [8].

Heterotrophic cultures in closed bioreactors are among the most promising strategies put

forth to overcome this challenge. Heterotrophy is defined as the use of organic carbon such as

acetate and glucose instead of CO2 as substrate and energy sources [9]. The cost-effectiveness,

relative simplicity of operations and daily maintenance are main advantages of the heterotro-

phic cultures. It has been shown that the heterotrophic cultivation improves the production

yield significantly and provides a feasible approach for metabolites production at industrial

level [10].

Differential accumulation patterns of lipids and carotenoids after the transition from pho-

toautotrophic to heterotrophic cultures have been documented in the large body of research

[4]. However, little is known about underlying metabolite accumulations mechanisms at dif-

ferent culture conditions in microalgae.

With the development of high-throughput transcriptome sequencing technologies, the

genes involved in the metabolite biosynthesis in microalgae have been identified [11].

However, previous studies in this field have been typically focused on identifying differen-

tially expressed genes and did not consider the degree of interconnection between genes,

where genes with similar expression patterns may be functionally important [12]. Importance

of the network-based approaches to elucidate transcriptional circuits of metabolic processes

[13] and discovery of key regulators under different environmental conditions [14] have been

highlighted. Co-expression analysis is based on the ‘guilt-by-association’ paradigm, which stip-

ulates two genes displaying correlated expression patterns across different conditions [15]. To

the best of our knowledge, co-expression analysis has not been yet applied in microalga.

In this study, we integrated meta-analysis with weighted gene co-expression network to

identify functionally enriched pathways and network-centric genes associated with secondary

metabolites production after transition to the heterotrophic growth condition in Chlorella

microalgae.

Materials and methods

Data collection

European Nucleotide Archive (ENA) database was used as a source of RNA-seq data collec-

tion. Datasets with biological samples for both autotrophic- and heterotrophic growth condi-

tions were collected. The datasets belonged to Auxenochlorella protothecoides. The first dataset

(PRJNA289168) contains 3 samples of A. protothecoides grown in photoautotrophic condition
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(in Bristol’s salts plus 0.1% (w/v) proteose peptone) and 9 samples of heterotrophic cultures

(Bristol’s salts plus 12.5% (v/v) Rainbow papaya juice). The photoperiod was 24 h: 0 h (light:

dark).The second data set, PRJNA484804, contains 3 samples of photoautotrophic cultures.

For photoautotrophic cultivation, cells were maintained in a photoautotrophic medium con-

taining basal medium (0.7 g KH2PO4, 0.3 g K2HPO4, 0.3 g MgSO4 7H2O, 0.3 mg FeS-

O4_7H2O, 0.01 mg vitamin B1, and 1 mL A5 trace mineral solution) adding 5 g/L glycine

under illumination of 60 μmol photons�m−2 s−1. Moreover, this dataset contains 9 samples of

heterotrophic cultures. For heterotrophic cultivation, cells were maintained in a heterotrophic

medium containing basal medium adding 30 g/L glucose and 0.5 g/L glycine under dark con-

dition [4].

In both data sets, samples were harvested with three biological replicate during the logarith-

mic growth phase in autotrophic growth mode. In heterotrophic growth condition, samples

were harvested at logarithmic phase, transitional point between growth and metabolite biosyn-

thesis phase hereafter we called transitional phase, and during peak of metabolite biosynthesis,

production peak.

Data preprocessing

Quality control of the raw reads was done using FastQC v0.11.5 (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Then, low quality (below 30) reads were removed with

Trimmomatic software v0.32 [16] using the following parameters: TRAILING:3, SLIDING-

WINDOW:4:20, MINLEN: 40. Finally, reads were aligned to the A. protothecoides version

ASM73321v1 reference genome (accessed from https://www.ncbi.nlm.nih.gov/genome) with

TopHat2 version 2.0.12 [17] using the default parameter.

Differential gene expression analysis and meta-analysis

Expression counts of the A. protothecoides gene annotation [18] were quantified for each sam-

ple using Bioconductor RSubread package version 1.6.5 [19]. Differential gene expression was

analyzed using the Bioconductor DESeq2 package version 1.10.1 [20]. Comparisons were per-

formed using Wald’s test to determine the log2-fold change. Then, False discovery rate (FDR)

[21] correction was used to account for multiple testing (p.adjust value cutoff of<0.05). Three

comparisons (Auto vs. Logarithmic phase, Auto vs. Transition phase, and Auto vs. production

phase at heterotrophic growth condition) were performed to identify DEGs.

To reduce the batch effects between the two datasets, the empirical Bayes algorithm was

applied [22]. Then, common genes between two datasets were selected based on the transcrip-

tome meta-analysis according to the prescribed in previous studies [11]. Finally, identified

meta-genes subjected to additional analysis (Fig 1).

Weighted Gene Co-Expression Analysis (WGCNA)

Scale-free weighted co-expression networks of meta-genes were constructed using the

WGCNA algorithm implemented in R WGCNA package [23]. Briefly, similarity co-expression

matrix was calculated with Pearson’s correlation cor (i,j) for meta-genes. Then, adjacencies

between meta-genes were calculated using soft threshold power beta function [24] using the

following formula:

aij ¼
�

0:5 �
�
1þ corði; jÞ

��b

where aij represents the adjacencies between DEGs as a connection strengths index.
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In the power of beta = 12, linear regression model fitting index R2 was higher than 0.8.

Therefore, we selected this parameter as a satisfying scale-free topology criterion [12]. Finally,

the adjacency was transformed into a topological overlap matrix (TOM) and corresponding

dissimilarity matrix (1−TOM). Module identification was carried out with the dynamic tree

cut method by hierarchically clustering genes using the dissimilarity matrix as the distance

measure with a deep split value=2 and a minimum size cutoff= 60. The dissimilarity of eigen-

genes (MEs) higher than 0.75, indicating the similar expression profiles of containing genes,

were selected as a cut-off to merge initial modules. Module visualization and further analysis

were performed with Cytoscape software.

To evaluate the module preservation after the transition to heterotrophic condition, module

preservation function implemented in the WGCNA R package was applied. As prescribed in

previous studies, Zsummary < 5 or medianRank > 8 was used as criteria for consideration of

a module as a non-preserved module[25].

Functional enrichment analysis

Pathway enrichment of initial sets of meta genes and non-preserved modules was performed

using Kyoto encyclopedia of genes and genome (KEGG) database [26]. P-value < 0.05 was

set as the cut-off criterion. Moreover, to identify potential transcription factors (TFs), tran-

scriptional regulator (TRs), and protein kinases (PKs), amino acid sequences of meta genes

were used to BLASTX search against the iTAK database version 1.6 [27] with a cut-off of

E� 10−5.

Fig 1. Flow chart of applied systems biology approach in current study.

https://doi.org/10.1371/journal.pone.0225677.g001
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Identification and validation of hub genes

Hub genes were defined based on intra-module connectivity in non-preserved modules. Then,

to validate and evaluate hub genes efficiency on different stages of discrimination, leave-one-

out cross validation (LOOCV) was implemented based on expression values of hub genes [28].

Results and discussion

Transcriptomic changes after the transition to heterotrophic at different

phases

Optimization of cultivation systems is one of the promising approaches to overcome the large-

scale metabolite production challenges in microalgae. Dual-culture systems comprising het-

erotrophic growth followed by photoautotrophic cultivation are proposed as an effective issue

for secondary metabolites production in some microalgae [29]. It has been proposed that mul-

tiple genes are involved in metabolites accumulation after the transition to heterotrophic

growth modes, which may be interacted with each other to activate some signaling cascades

[18]. Therefore, understanding the secondary metabolites accumulation underlying molecular

mechanisms is important issues for optimization of this growth system to industrial levels pro-

duction of secondary metabolites. Most of the previously studies only focus on screening of

differentially expressed genes [4]. Nevertheless, it has been established that the integration of

transcriptome meta-analysis with weighted co-expression network analysis is effective

approach to shed light on complexity of biological processes. Using this approach, a set of

responsible pathways and hub genes for secondary metabolites accumulation was determined

that enabled us to propose some candidate genes for development of engineered microalgae

strains. In this regards, 24 samples of RNA sequence data of A. protothecoides were retrieved

from ENA database. The Meta genes abundance of A. protothecoides at three developmental

stages (LG: logarithmic, TR: transition, and PR: production) during the transition from auto-

trophic to heterotrophic cultures was analyzed using the deep transcriptome RNA-sequencing.

Venn diagram was used to show the meta analysis results at three developmental stages after

the transition to heterotrophic condition (Fig 2). Transcriptomic Changes at three develop-

mental stages viz, LG, TR and PR were analyzed using the integrated systems biology approach

(Fig 1).

As shown in Fig 2, at LG phase, 2962 meta genes between two datasets was identified which

1380 genes of them were down-regulated and 1582 of them were up-regulated after transition

from auto- to heterotrophic condition (Fig 2A). It is whilst; the number of meta genes during

the transition from auto to heterotrophic condition at theTR phase was increased to 3472 with

1666 down-regulated and 1806 up-regulated meta gene (Fig 2B). With the progress to the PR

phase, meta DEGs between two data sets were 3577 which 1713 and 1864 of them is down and

Fig 2. Identified meta genes in two data sets at logarithmic (A), transition (B) and production peak (C) phases after the transition from

autotrophic to heterotrophic growth mode.

https://doi.org/10.1371/journal.pone.0225677.g002
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up regulated, respectively (Fig 2C, S1 Table). This result demonstrates that with the progress to

developmental phases after the transition to heterotrophic growth condition, most of the bio-

logical processes is up-regulated, which lead to the change of genetic architectures and pheno-

typic outcomes such as secondary metabolites accumulation [4].

Pathway enrichment of identified meta genes

The functional analysis of meta genes shows that some common and specific pathways are

enriched at different phases (S2 Table). Results indicate that metabolic pathways are the main

enriched pathways at developmental phases (S3 Table). In particular, a large number of genes

were assigned to the metabolic pathways and biosynthesis of secondary metabolites. Although

these pathways are found in all three phases, however, the changes in the number of up-regu-

lated and down-regulated genes observed, suggesting the significant rearrangement in micro-

algae metabolism at different phases. Carbon metabolism is another enriched pathway. This

observation confirms that of Martinez et al., [30], who showed that the metabolic pathways of

carbon assimilation, size of the cells, volume densities of storage materials are changed after

the transition to heterotrophic condition. Fatty acid biosynthesis pathway was found as

another enriched pathway. In line with our finding, it has been reported that the increased

amount of sugars in heterotrophic growth culture lead to accumulation of fatty acid [9].

Modulation of cellular energy state is another adaptation mechanism at heterotrophic cul-

tures. Oxidative phosphorylation lead to produce ATP and NADH for maintenance and bio-

synthesis under the dark condition and carbon skeleton for biosynthesis under any growth

condition [31]. Comparison of up-regulated genes involved in oxidative phosphorylation indi-

cates that meta genes which encode the core subunits of mitochondrial complex I putatively,

up-regulated at all phases. Nevertheless, some others which encode conserved non-core sub-

units of mitochondrial complex I, up-regulated specifically at PR phase. An example of non-

core subunits which specifically up-regulated at the PR phase is ACP1 (encodes acyl carrier

protein) a matrix-resident protein that has a key role in conformational regulation of mito-

chondrial complex I under different physiological condition [32]. It has been demonstrated

that ACP homologs are key components in the production of polyketides and nonribosomal

peptides [33], highlighting the roles of ACP in secondary metabolites accumulation at PR

phases.

As expected, most of the photosynthesis-related meta genes such as PSAD-2 encoding the

Photosystem I reaction center subunit II, PSBO1 encoding the Oxygen-evolving enhancer pro-

tein 1 of photosystem II, and PSAN encoding the Photosystem I reaction center subunit N are

down-regulated at the LG, TR and PR phases. Down regulation of other photosynthesis-

related genes at heterotrophic growth conditions has been previously demonstrated [4].

Identification of the transcription factors (TFs), transcriptional regulators

(TRs) and protein kinases (PKs)

TFs are master transcriptional regulators in different physiological conditions [34,35]. As

shown in Fig 3 and S3 Table, SBP, C3H and MYB_related, GARP-G2-linke, C2C2-GATA,

EP2/ERF-AP2, and bZIP are the top large classes of TFs, which are contributed in transcrip-

tional regulation transcriptome circuits at LG, TR, and PR phases. Most of these transcription

factors families, especially SBP and C3H families were reported to be up-regulated at second-

ary metabolites accumulation circumstances [36]. Therefore, engineering these TFs would be a

potential approach to develop new strain with improved secondary metabolites accumulation

ability. There is also evidence that SBP is implicated in redox clean up [37]. Moreover, many

TFs related to photosynthetic carbon fixation such as MYB-related TFs is up-regulated with
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the same pattern across developmental phases. It has been demonstrated that Myb-related

transcription factor is involved in phytochrome signal transduction pathway leading to up-

regulation of lchb (light-harvesting chlorophyll b) gene in Arabidopsis [38,39]

Transcriptional regulators (TRs) are at the interface between sensing and responding to

environmental conditions [40]. Results indicated that GNAT (GCN5-related-N-acetyltransfer-

ase), SNF2 (sucrose non-fermenting 2), and SET families are top classes of TRs at three phases

(S3 Table). Interestingly, some TRs such as PHD shows different expression pattern at LG

phase in comparison with TR and PR phases. It is apparent from data in Fig 3 that all of the

TRs belong to PHD family are up-regulated at PR and TR phases. Prior study has indicated

that SBP, bHLH, GNAT are involved in regulation of nitrogen assimilation, transportation

and incorporation of ammonium into carbon skeletons via the glutamine synthetase/gluta-

mate synthase cycle [41]. Moreover, a regulatory impact of SET families on major lipid droplet

protein (MLDP1), which is contributed to TAG regulation, has been approved previously [41].

PKs play important roles in signaling networks including the perception of biotic agents,

light quality and quantity, phytohormones, and various environmental conditions [42]. Fifty-

seven (29 up-regulated and 28 down–regulated), sixty-two (43 up-regulated and 19 down-reg-

ulated), and fifty (43 up-regulated and 17 down-regulated) PKs were identified among the

meta genes at LG, TR, and PR phases, respectively (S3 Table). Result illustrated that PKs

mostly are up-regulated with the progress of PR phases at the heterotrophic conditions. More-

over, TKL (Tousled protein kinase), CMGC, and CAMK families are among the main

Fig 3. Distribution of TFs, TRs, and PKs families identified in meta genes. The number TF families (A, B and C), TRs families (D, E, and F), PKs families (G, H, and

I) in meta genes at LG, TR and PR phases, respectively.

https://doi.org/10.1371/journal.pone.0225677.g003

Systems biology approach identifies functional modules and regulatory hubs related to secondary metabolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0225677 February 21, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0225677.g003
https://doi.org/10.1371/journal.pone.0225677


contributed PKs at heterotrophic conditions (Fig 3). The genes encoding TKL was dominantly

up-regulated under the heterotrophic condition. As evidenced by genetic analyses of Arabi-
dopsis mutant, TKL group play important role in the regulation of ethylene signaling [43] and

accumulation of secondary metabolites [44] at heterotrophic condition.

Identification of functional modules related to developmental phases

The details of the signed weighted gene co-expression network construction are prescribed in

[45]. By using the steps described in Materials and Methods section, three separate networks

of highly correlated meta genes at LG, TR and PR phases were constructed. Shortly, weighted

adjacency matrices were created using the soft threshold power. In this study soft threshold

power =9 was selected. Then, transformed dissimilarity matrices was applied for average link-

age hierarchical clustering with method implemented in flashClust R package [46]. The den-

drograms obtained from the preliminary analysis are shown in Fig 4. The structures of the

dendrograms are changed at different phases after transition to the heterotrophic growth

mode. To further inspection of the network pattern changes at different developmental phases,

modules of dendrogram were defined using the dynamic branch cutting method, which is dis-

played by different colors (Fig 5). Using the mentioned parameter setting, the branch-cutting

method resulted 15 co-expressed modules with an average size 235, 12 of which were signifi-

cant. After generating co-expressed modules, we compared the results with the corresponding

set of modules in different developmental phases. As shown, four modules were identified in

the LG network. The yellow and turquoise modules as the smallest and largest modules con-

tained 212 and 810 genes, respectively. In the TR co-expression network, seven modules were

assigned (Fig 5) with a size range from 72 (black) to 1,422 (turquoise) genes. At the PR phase,

four modules were identified with a size range from 223 genes (yellow modules) to 1053 genes

(turquoise module). Preservation analysis showed that three modules viz, blue, turquoise, and

yellow has persevered between three phases. However, the brown module showed non-preser-

vation between different phases (Table 1). Since the connectivity and expression patterns of

Fig 4. Hierarchical cluster constructed with WGCNA at LG (A), TR (B), and PR (C) phases. Each vertical line (leaf) represents

the corresponding genes.

https://doi.org/10.1371/journal.pone.0225677.g004
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the co-expressed genes at non-preserved modules are altered [25], they may be related to the

over-production of secondary metabolites at the PR phase. Because Grey and Gold modules

contain the genes that not assigned to any modules, these modules were excluded from the

analysis. Corresponding genes for each defined modules were presented in S4 Table.

Functional annotation of non-preserved module

To unravel the potential mechanisms responsible for the accumulation of secondary metabo-

lites at heterotrophic growth condition we focused on the non-preserved module. As pre-

sented, the brown module was determined as a non-preserved module in three phases. In the

non-preserved module, expression patterns and connectivity characteristics of the genes vary

across three phases (Fig 6). Functionally enrichment analysis identified “Biosynthesis of sec-

ondary metabolites” as a functionally enriched KEGG pathway in the brown module. Other

significantly enriched pathways in brown module were “Carotenoid biosynthesis”, “Fatty acid

metabolism”, “Methane metabolism”, “Ascorbate and aldarate metabolism”, “Peroxisome pro-

liferator-activated receptors (PPARs) signaling pathway” and “Adipocytokine signaling path-

way” (Table 2). Prior studies have also highlighted the variation of the carotenoid biosynthesis,

fatty acid metabolism and Pentose phosphate pathway underlying genes in the autotrophic-

heterotrophic cultivation transition culture mode [4,47,48]. However, hub genes identification

and their connectivity have not been surveyed. There are several genes shared by several path-

ways such as ACS2 (Acetyl CoA synthetase) (eight pathways), LACS7 (Long-chain acyl-CoA

synthetase 7) (four pathways), SHMT1 (Serine hydroxymethyltransferase) (four pathways).

This also validates the relevance of the selected module for the detection of important players

in metabolite accumulation [12]. Interestingly, Protein- Protein interaction network (PPI)

analysis and connectivity measurement using a soft connectivity algorithm confirms that these

genes are highly connected in the PR phase generated from the brown module, while there is

Fig 5. Visual representation of the changes in the module structure between LG (A), TR (B), and PR (C) phases. Modules are illustrated with

different colors.

https://doi.org/10.1371/journal.pone.0225677.g005

Table 1. Details of conservation analysis of defined modules at different developmental phases with permutation=200.

Module name Module size medianRank Zsummary

Blue 469 2 32.56

Brown 184 8 4.26

Turquoise 681 3 34.39

Yellow 155 1 19.05

https://doi.org/10.1371/journal.pone.0225677.t001
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Fig 6. PPI networks of co-expressed meta genes in brown module at LG (A), TR (B), and PR (C) phases. Changes in intra-module connectivity are highlighted at

different phases.

https://doi.org/10.1371/journal.pone.0225677.g006

Table 2. Functional enrichment of non-preserved module based on KEGG database.

KEGG Pathway p-value Genes

Biosynthesis of secondary

metabolites

0.0003 ATHMT1,HMT1,ATSK1,SK1,FBA2,HEMA1, AtGNA1,GNA1,GME,CSY2,HEMC, CHLM,CLA,CLA1,DEF,

DXPS2,DXS, BCE2,DIN3,LTA1,LYC,ALB1V,ALB1,CHLD,PDE166,V157,DHNS,ECHID,PORA, DHDPS2,HCEF1,

ACS2,PDE226,PDS,PDS3,ATCAO,CAO,CH1,ALDH2B,ALDH2B7,SHM1,SHMT1,STM,AGT,AGT1,SGAT,

EMB2778,FKP1,HMGS,MVA1,HISN5B, CCR2,CRTISO,NOL,AtSS2,SS2,HEMG1,PPO1,PPOX,DELTA,OAT,

ACSF,CHL27,CRD1,PFK5,ATUGD1,UGD1,LUT2,PCK1,PEPCK,CAC2,EMB2728,RPE

Photosynthesis 4.4304E-7 CF0 ATP synthase subunit II precursor,PSAO,OE23,OEE2,PSBP-1,PSII-P,PETE1,PSAF,PPL1,PSAL,PSB28,PSAD-

2,PETC,PGR1,PSB27

Methane metabolism 0.0175 FBA2,HCEF1,ACS2,SHM1,SHMT1,STM,AGT,AGT1,SGAT,HCEF1,PFK5

Carbon fixation 0.0009 FBA2,RBCS1A,HCEF1,GAPB,SBPASE,PRK,HCEF1,SBPASE,PCK1,PEPK,EMB2728,RPE

Microbial metabolism in diverse

environments

0.0226 FBA2,RBCS1A,CSY2,DHDPS2,HCEF1,ACS2,ALDH2B,ALDH2B7,SHM1,SHMT1,STM,GAPB,AGT,AGT1,SGAT,

SBPASE,MLS,PRK,HCEF1,PFK5,SBPASE,PCK1,PEPCK,CAC2,EMB2728,RPE,MLS

Porphyrin and chlorophyll

metabolism

0.0003 HEMA1,HEMC,CHLM,ALB1V,ALB1,CHLD,PDE166,V157,PORA,ATCAO,CAO,CH1,NOL,HEMG1,PPO1,

PPOX,ACSF,CHL27,CRD1

Glyoxylate and dicarboxylate

metabolism

0.0075 RBCS1A,CSY2, SHMT1, AGT,SGAT,MLS

Ascorbate and aldarate metabolism 0.0058 GME,MIOX1, ALDH2B, MDAR1, UGD1

Valine, leucine and isoleucine

degradation

6.7763E-

10

BCE2,DIN3,LTA1,MCCB, ALDH2B, ALDH2B7,MCCA, FKP1, CHY1, MCCB

Peroxisom 0.0063 IBR1,SDRA,ATLACS7,LACS7,ATLACS7,LACS7,ATDCI1,DCI1,AGT,AGT1,SGAT,DECR,SDRB,ACX4,ATG6,

ATSCX

Fatty acid metabolism 0.0211 ACS2,LACS7, ALDH2B,ALDH2B7, ACX4,ATG6,ATSCX

PPAR signaling pathway 0.0103 ATLACS7,LACS7, GLI1,NHO1,ACX4,ATG6,ATSCX

Adipocytokine signaling pathway 0.0042 TOR,AS2,LACS7, F751_2317

Protein export 0.0065 PLSP1, ALB3,CPFTSY,FRD4,APG2,PGA2,TATC,UNE3,54CP,CPSRP54,FFC,SRP54CP, AGY1,AtcpSecA

Bacterial secretion system 7.5531E-6 ALB3,CPFTSY,FRD4,APG2,PGA2,TATC,UNE3,54CP,CPSRP54,FFC,SRP54CP,AGY1,AtcpSecA

Carotenoid biosynthesis 0.0097 LYC,PDE226,PDS,PDS3,CCR2,CRTISO,LUT2

Pantothenate and CoA biosynthesis 0.0472 ATHAL3,ATHAL3A,HAL3,HAL3A,PYD2

Mismatch and base excision repair 0.0117 ATMLH1,MLH1,ATLIG1,LIG1,POLD3,ATPCNA1,PCNA1,RFC3,RFC5,EMB2780

Synthesis and degradation of

ketone bodies

0.0372 EMB2778,FKP1,HMGS,MVA1, g.47156

https://doi.org/10.1371/journal.pone.0225677.t002
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low or no such connection were found in the corresponding module at LG and TR phases.

The potential of nodes with high intra-module connectivity as key and determinant genes in

the different biological processes has been approved previously [25]. Moreover, it has been

suggested that important nodes in large networks are often not among the whole-network

hubs and selection of the hubs in sub-networks (modules) is more efficient than a whole-net-

work. Based on these findings, we hypothesized that the nodes with high intra-module connec-

tivity may play important roles in secondary metabolites over-production at the PR phase after

the transition to heterotrophic conditions.

ACS2 encoding a chloroplastic acetyl-CoA synthetase catalyzes the conversion of acetate to

acetyl-CoA. Experimental evidence has proved that ACS is a key enzyme in the biosynthesis of

acyl glycerides [49]. Moreover, ACS allows consumption of the acetate and increase the carbon

flux towards the synthesis of fatty acids to enhance biosynthesis and accumulation of lipid at

fermentative growth condition [50]. High connectivity of this gene in the PR network and

increased expression levels in the PR phase, may be highlighted the importance of ACS in lip-

ids accumulation at heterotrophic conditions.

Another interesting hub gene that is part of the tightly connected cluster in the brown mod-

ule is SHMT1, which encodes the Serine hydroxymethyltransferase. SHMT1 simultaneously

catalyzes the reversible conversions of l-serine to glycine and tetrahydrofolate to 5,10-methy-

lene tetrahydrofolate. Contribution of tetrahydrofolate in cellular one-carbon (C1) pathways

and ROS generation at stress condition has been reported previously [51]. Moreover, prior

study have proved that SHMT1 switch nitrogen and carbon metabolism to secondary metabo-

lite biosynthesis [11], validating the results of current study. An earlier study also showed that

the overexpression of the SHMT1 increases biomass production [52].

There are other interesting hub genes (top 30 hub genes) in the brown module, which are

presented in S5 Table. We found that these genes are related to ribosome biogenesis, fatty acid

metabolism, carotenoid biosynthesis, sulfur relay system.

Ribosome biogenesis is a central process in the growing cells. A recent study has indicated

the translational regulation of ribosome biosynthesis in response to carbon depletion [53].

Among different ribosome biogenesis involved genes, EIF3I was demined as a key gene for

metabolite accumulation, based on the connectivity analysis. In agreement with our findings,

the core functionality of eIF3 has been confirmed in a previous study [54]. At heterotrophic

growth condition, the inorganic carbon is sufficiently supplied and marked increasing of ribo-

some biogenesis is needed to the biosynthesis of proteins and metabolites [30].

Further analysis of connectivity in the none-preserved module at the PR phase reveals

another gene, LACS7, a part of peroxisome proliferator-activated receptors (PPAR) and Adi-

pocytokine signaling pathways [55], as another important gene. Newly synthesized free fatty

acids (FAs) need to activate to acyl-CoA form by LACS to involves in the glycerolipid meta-

bolic pathways, indicating the critical roles of LACS in FA metabolism [56]. In Arabidopsis, a

family of nine genes encoding LACS protein has been identified to play their roles in various

aspects of lipid metabolism at different subcellular localizations. Among these LACS isoforms,

peroxisomal LACS6 and LACS7 are involved in fatty acid β-oxidation [57]. The results of our

analysis indicated that LACS7 is up-regulated during the LG and TR phases. However; marked

down-regulation is shown at the PR phase. Consequently, inhibition of β-oxidation would pre-

vent the loss of TAG during the PR phase. These findings clearly show that the lipids accumu-

lations are dominantly related to decreased lipid catabolism at the PR phase. In agree with our

findings, it has been reported that inactivation of the LACS6 and LACS7 lipid breakdown [58]

Another interesting gene that shows a large difference between connectivity in PR versus

LG and TR brown module is LCE (Lycopene epsilon cyclase) which is involved in the caroten-

oids biosynthesis. Transcriptional variation of LCE during the lutein and beta-carotene
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accumulation circumstances has been reported [11] [4]; however, the changes in the connec-

tivity pattern have not shown up yet, highlighting the efficiency of our integrative approach.

Some identified hub genes such as F751_5997, F751_3508, and F751_4289 were not anno-

tated, whereas they should be considered as potential candidates for future studies. As above-

mentioned, the efficiency of hub genes in different phase’s discrimination was assessed using

the LOOCV method. Identified hub genes have discriminated different phases with 90.48%

accuracy, validating the identified hub genes (S1 Fig).

Conclusion

In summary, our results show that the integration of transcriptome meta-analysis with

WGCNA, along with connectivity analysis and functional enrichment can be used to identify

modules associated with secondary metabolite accumulation in microalgae. Identified mod-

ules are used for exploratory analysis of contributed pathways in metabolite accumulation, as

exemplified by the identified pathways such as “Methane metabolism”, “Ascorbate and alda-

rate metabolism” and “ PPARs”. Moreover, the integrated approach was applied here, pro-

posed some candidate target genes, such as SHMT1, for the development of metabolites

accumulating strains in microalgae. However, future efforts should be made to further investi-

gation of the modules and candidate genes associated with secondary metabolites

accumulation.

Supporting information

S1 Fig. Validation of hub genes based on LOOCV method.

(TIF)

S1 Table. Identified meta genes in three phase of transition from auto- to heterotrophic

condition.
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phic growth condition.

(XLSX)
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(XLSX)
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(XLSX)
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40. López Garcı́a de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, et al. (2015) Transcriptional

program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol

Biofuels 8: 207. https://doi.org/10.1186/s13068-015-0391-z PMID: 26633994

Systems biology approach identifies functional modules and regulatory hubs related to secondary metabolites

PLOS ONE | https://doi.org/10.1371/journal.pone.0225677 February 21, 2020 14 / 15

https://doi.org/10.1093/biostatistics/kxj037
http://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1186/s12918-017-0420-6
http://www.ncbi.nlm.nih.gov/pubmed/28403906
https://doi.org/10.3389/fgene.2018.00453
http://www.ncbi.nlm.nih.gov/pubmed/30369943
https://doi.org/10.1093/nar/gkt1076
https://doi.org/10.1093/nar/gkt1076
http://www.ncbi.nlm.nih.gov/pubmed/24214961
https://doi.org/10.1016/j.molp.2016.09.014
http://www.ncbi.nlm.nih.gov/pubmed/27717919
https://doi.org/10.1016/j.pbiomolbio.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30802474
https://doi.org/10.1016/j.bbabio.2016.01.009
https://doi.org/10.1016/j.bbabio.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26801215
https://doi.org/10.1139/o07-109
http://www.ncbi.nlm.nih.gov/pubmed/18059524
https://doi.org/10.1016/j.febslet.2015.09.023
https://doi.org/10.1016/j.febslet.2015.09.023
http://www.ncbi.nlm.nih.gov/pubmed/26454178
https://doi.org/10.1186/s12866-016-0839-8
http://www.ncbi.nlm.nih.gov/pubmed/27669744
https://doi.org/10.3389/fpls.2016.00700
https://doi.org/10.3389/fpls.2016.00700
http://www.ncbi.nlm.nih.gov/pubmed/27379102
https://doi.org/10.1105/tpc.9.4.491
https://doi.org/10.1105/tpc.9.4.491
http://www.ncbi.nlm.nih.gov/pubmed/9144958
https://doi.org/10.1093/jxb/err315
https://doi.org/10.1093/jxb/err315
http://www.ncbi.nlm.nih.gov/pubmed/22143917
https://doi.org/10.1186/s13068-015-0391-z
http://www.ncbi.nlm.nih.gov/pubmed/26633994
https://doi.org/10.1371/journal.pone.0225677


41. Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, et al. (2015) Identification of regulatory network

hubs that control lipid metabolism in Chlamydomonas reinhardtii. J Exp Bot 66: 4551–4566. https://doi.

org/10.1093/jxb/erv217 PMID: 26022256

42. Sun J, Li L, Wang P, Zhang S, Wu J (2017) Genome-wide characterization, evolution, and expression

analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae

genomes. BMC Genomics 18: 763. https://doi.org/10.1186/s12864-017-4155-y PMID: 29017442

43. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the

ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell

72: 427–441. https://doi.org/10.1016/0092-8674(93)90119-b PMID: 8431946

44. Ke S-W, Chen G-H, Chen C-T, Tzen JTC, Yang C-Y (2018) Ethylene signaling modulates contents of

catechin and ability of antioxidant in Camellia sinensis. Botanical Studies 59: 11. https://doi.org/10.

1186/s40529-018-0226-x PMID: 29616373

45. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis.

Stat Appl Genet Mol Biol 4: Article17.
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