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Multiple sclerosis (MS) and a number of related distinctive dis- 
eases are characterized by the active degradation of central ner- 
vous system (CNS) myelin, an axonal sheath comprised essentially 
of proteins and lipids. These demyelinating diseases appear to arise 
from complex interactions of genetic, immunological, infective, and 
biochemical mechanisms. While circumstances of MS etiology re- 
main hypothetical, one persistent theme involves recognition by the 
immune system of myelin-specific antigens derived from myelin 
basic protein (MBP), the most abundant extrinsic myelin membrane 
protein, and/or another equally susceptible myelin protein or lipid 
component. Knowledge of the biochemical and physical-chemical 
properties of myelin proteins and lipids, particularly their composi- 
tion, organization, structure, and accessibility with respect to the 
compacted myelin multilayers, thus becomes central to the under- 
standing of how and why these antigens become selected during 
the development of MS. This review focuses on current understand- 
ing of the molecular basis underlying demyelinating disease as it 
may relate to the impact of the various protein and lipid components 
on myelin morphology; the precise molecular architecture of this 
membrane as dictated by protein-lipid and lipid-lipid interactions; 
and the relationship, if any, between the protein/lipid components 
and the destruction of myelin in pathological situations. 

KEY WORDS: central nervous system; encephalitogen- 
ic basic proteins; membrane proteins; multiple sclerosis; 
myelin proteins; nuclear magnetic resonance; protein con- 
formation. 

Introduction 

T he central nervous system (CNS) is susceptible to a number of demyelinating diseases which 
are characterized by selective loci of myelin break- 
down (that vary both in their distribution and se- 
verity) with no apparent effects on the underlying 
axon, and subsequent fibrous gliosis or astrocyte 
scarring (1,2). Within this broad classification, there 
exist a number of distinctive diseases such as acute 
disseminated encephalomyelitis, diffuse sclerosis, 
central pontine myelinolysis and multiple sclerosis 
(MS), which for the most part are restricted to the 
white matter, and are classed according to the type 
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and number of lesions, and the particular course of 
the disease. In distinction to those involving hypo- 
myelination (termed leucodystrophies), these condi- 
tions apparently result from the active degradation 
of myelin by the affected individual's lymphocytic 
or phagocytic population. These demyelination dis- 
eases appear to arise from complex interactions of 
genetic, immunological, infective and biochemical 
mechanisms. This review focuses on current theory 
and understanding of the etiological origin(s) of 
demyelinating diseases, particularly on the under- 
lying molecular basis for disease as it may relate to 
the specific proteins and lipids which comprise CNS 
myelin. 

Demye l ina t ing  d i seases  -- mult ip le  sc leros i s  
(MS) 

PATHOLOGY 

MS has been the subject of intense scrutiny over 
the past number of years due principally to its high 
incidence and its continuing elusive and enigmatic 
nature (3-5). Clinically, MS can be subdivided into 
two groups described by: 1) the chronic phase com- 
prised of episodic events coupled with a continuous 
remitting/relapsing cycle; and 2) an acute phase 
which involves a rapid and often fatal progression of 
massive demyelinating foci. Early MS lesions (6) 
develop primarily within the vicinity of small blood 
vessels (i.e., perivascular cuiTmg) which is corre- 
lated with a breaching of the blood-brain barrier as 
detected by computer-assisted tomography (CT) (7). 
These evolving regions of demyelination or plaques 
are distinguished by the infiltration of such cells as 
macrophages, neutrophils and lymphocytes in addi- 
tion to the localization and proliferation of the CNS 
endogenous phagocytic cells, the microglia (8-11). 
Eventually these cell types become so numerous 
that they are readily detectable in the cerebrospinal 
fluid (CSF) (12,13). Of all the invading cell types, 
the phagocytic macrophages constitute the primary 
agents employed by the body in the seemingly 
inadvertent destruction of the myelin sheath. His- 
tological studies (10) have shown that the macro- 
phages repeatedly "peel off" and ingest the outer 
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layers of the myelin until the axon is completely 
stripped of its protective membrane. By comparison, 
myelin within the periplaque region (area immedi- 
ately adjacent to the lesion) has a grossly normal- 
appearing structure (14-16). Thus, based on ultra- 
structural and biochemical criteria, there is no im- 
mediately apparent rationale as to why a particular 
region of myelin is selected for destruction. 

As the lesion begins to progress in size, the plaque 
area becomes crowded with additional T cells, 
phagocytes containing myelin debris, and eventu- 
ally with hypertrophic astrocytes. This process of 
demyelination continues within the white matter in 
alI directions radially from where the original plaque 
was formed until, for some as yet undefined reason, 
the cellular attack is halted. Under normal circum- 
stances most tissues within the body would begin to 
repair this damage, but when myelin is destroyed, 
the situation is instead exacerbated by the inability 
of the CNS to effectively replace or repair the lost 
membranes (17,18). Attempts are made by the sur- 
viving oligodendroglial cells to remyelinate the de- 
nuded axons, but at a much slower rate than normal 
and with a considerably reduced efficiency. The 
factors that control or suppress remyelination re- 
main virtually unknown (19,20) and offer a poten- 
tially important area of research in MS therapy. 

EPIDEMIOLOGY 

MS is not truly a worldwide phenomenon, as its 
distribution is biased towards temperate climates 
and more economically developed countries (21). 
Perhaps most striking is the fact that the incidence 
of MS increases as one moves further from equato- 
rial regions both in a southward and particularly in 
a northward direction. These are not inviolate rules, 
as exceptions do occur (e.g., the high incidence in 
Israel and the relatively low incidence in temperate 
Japan). 

Investigations into populations migrating from 
high-risk to low-risk regions have suggested an age 
dependence where, for instance, adult immigrants 
from the United Kingdom (high risk) to South 
Africa (low risk) had an MS occurrence similar to 
that of the UK population (22). In contrast, South 
African descendants of UK immigrants had a much 
lower incidence. Similar surveys of the movements 
of children aged 0-14 revealed that the risk of 
contracting MS in later life was much lower than 
that of the corresponding adult population. This 
observation led to the suggestion that if migration 
occurred prior to adolescence, the child assumed the 
risk of the new geographical location. 

Further epidemiologic evidence is the observation 
of several putative "epidemics" of MS in certain 
island populations -- most notably in the Faroe Is- 
lands (23,24), Iceland (25) and the Orkney/Shetland 
Islands of Northern Scotland (26). In the Faroe 
Islands, for example, MS was completely unknown 
until a number of cases were conf~med between the 

years 1943 and 1960, but virtually no cases were 
reported either prior to or following this particular 
time span. In correlating these observations with 
the history of the Faroe Islands, this outbreak of MS 
was seen to coincide with the occupation of the 
islands by British troops during the Second World 
War (1940-45). In addition, the garrisoning of the 
British forces was accompanied by an outbreak of 
canine distemper of epidemic proportions. Similar 
observations were made concerning the number of 
reported MS cases, troop occupation and canine 
distemper in Iceland and the Orkney/Shetland Is- 
lands. It has long been known that by virtue of their 
small populations and isolated nature, islands are 
unable to support a perpetual infection and are 
prone to the reintroduction and epidemic spread of 
such viral diseases as measles and canine distemper 
(27). While this does not necessarily imply that 
canine distemper or measles are the causal agents 
of MS, the data do point towards the possibility that 
some MS-causing infectious agent(s) were carried to 
these islands by the occupation forces, and that they 
have a counterpart in the epidemic of canine dis- 
temper. 

NEUROIMMUNOLOGY 

While the primary cause of MS remains specula- 
tive, it is suspected that MS is precipitated by an 
autoimmune response (for extensive reviews, see 
28, 29). Immune regulation is a mixture of compli- 
cated interactions between the T lymphocytes, anti- 
gen and the cell surface major histocompability 
complex (MHC) antigens. As a consequence of this 
intricate system and considering the unwarranted 
attack of the immune elements on myelin, it is 
highly probable that one or more of these regulatory 
pathways is circumvented during the development 
of MS. Under such circumstances, the immune sys- 
tem becomes sensitized to a particular organ or 
tissue and consequently stimulates the recruitment 
of cytotoxic elements that eventually leads to the 
destruction of seemingly normal cells. Some of the 
better understood autoimmune diseases are Hashi- 
moto's disease (30), Grave's disease (31), pernicious 
anemia (32) and the most relevant to MS, myasthe- 
nia gravis, which results from the production of 
autoantibodies to acetylcholine receptors located at 
the neuromuscular junction (33,34). A similar series 
of events may induce the recognition of myelin 
antigens and the onset of MS. 

AUTOn~SNE AND VIRAL ETIOLOGY OF MS 

How the immune system could become sensitized 
to myelin antigens is unknown, but in accordance 
with the epidemiological data it has long been 
suspected that this is a result of some infectious 
a g e n t -  possibly a systemic virus (35-37). Viral 
models of demyelinating disease, such as the visna 
virus (38,39) in sheep, have been well documented 
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TABLE 1 
Possible Events Related to CNS Demyelination 

Observed in Multiple Sclerosis 

i. Systemic virus infection, either measles, varicella, 
influenza, etc. 

2. Viral cross-reactivity with MBP (or another myelin 
protein, e.g., proteolipid protein) leading to 
immunization against myelin. 

3. Production of circulating TH cells specific for MBP. 
4. Systemic interleukin-2 and/or ~/-interferon response. 
5. Activation of vascular endothelium, astrocytes and/ 

or microglia. 
6. Expression of MHC Class 2 (Ia) antigens and 

presentation of MBP. 
7. Recognition of Ia-MBP complex by MBP-specific TH 

cells. 
8. TH cell activation coupled with a lack of immuno- 

suppression by Ts cells (reasons unknown). 
9. Invasion of CNS by phagocytic cells, T and B cells 

and active demyelination enhanced by local antibody 
production, circulatory complement, free radical 
formation, etc. 

10. Remission instituted by reactivation of T s cell 
suppression; relapses induced by localized IL-2 or -/- 
interferon production and recurrence of 
inflammatory response caused by Ia-MBP 
presentation. 

and appear to follow an identical course to MS, i.e., 
phagocytosis of myelin by cellular infiltration and a 
clinical appearance that can be either relapsing, 
remitting or acute. The human equivalent of a 
visna virus has been much more difficult to isolate. 
A number of viruses have been implicated such as 
herpes simplex (40), coronavirus (41,42), measles 
(43,44), and Theiler's virus (45,46). More recently, 
the human lymphotropic viruses (HLTV-I and HLTV- 
H) (47-49) and immunodeficiency virus (HIV) asso- 
ciated with acquired immune deficiency syndrome 
(AIDS) (37,50,51) have become the latest in a long 
line of potential MS-causing candidates. Recent stud- 
ies using 3sS-labelled RNA probes prepared against 
genomic RNA sequences of measles virus, canine 
distemper virus, rubella virus and simian virus S 
have failed to provide conclusive evidence to sup- 
port the theory that MS has a viral origin (52). This 
does not, however, preclude the involvement of vi- 
ruses in MS as they may perform a "catalytic" role 
by presenting a myelin cross-reactive antigen. 

Several myelin-specific antigens, both proteins 
and lipids, have been implicated in MS etiology, the 
most thoroughly investigated being the major ex- 
trinsic membrane protein of myelin, the so-called 
myelin basic protein (MBP) (29). As reviewed by 
Oldstone (53), a small percentage of antibodies (ca. 
4%) raised to viral proteins cross-react with host 
determinants from uninfected tissues. Attempts to 
evaluate this viral "mimicry" of host antigens in 
MS have shown that MBP contains a number of 
potential sites with primary sequences similar to 
those of viral proteins (54,55). One specific observa- 
tion (55) in support of this type of mechanism is 

demonstrated by the response of animals to hepati- 
tis B polymerase (HBpol). Innoculation with HBpol 
produces an antigenic response and production of 
sera that recognize MBP, presumably due to simi- 
larities in primary sequence and secondary struc- 
ture. Moreover, animals immunized with HBpol 
show an accumulation of inflammatory cells within 
CNS-localized endothelium similar to the early stages 
of MS lesion development. Therefore, although hep- 
atitis B may not be the "MS virus," these observa- 
tions do support a molecular mimicry model for the 
development of demyelinating foci. Further support 
for a central role of MBP is provided by the obser- 
vation that immunization with MBP leads directly 
to the clinical and pathological condition of experi- 
mental allergic encephalomyelitis (EAE), an in vivo 
model of MS (56-60). MBP is not, however, the only 
potential myelin antigen, as similar arguments have 
been made for the proteolipid protein (61) and lipid 
components (e.g., gangliosides) (62) of myelin. 

Circumstances of MS etiology thus remain hypo- 
thetical. However, the cellular responses summa- 
rized in Table 1 (adapted from Waksman (63)) 
represent the current thinking on the possible course 
of events connected with the CNS demyelination 
observed in MS. One central and persistent theme 
of these postulations is the presentation and recog- 
nition of myelin antigens derived either from MBP 
or some other equally suitable myelin-specific de- 
terminant. Knowledge concerning the physical- 
chemical properties, organization and accessibility 
of the proteins and lipids within the compacted 
myelin multilayers thus becomes central to the 
understanding of how and why these antigens be- 
come selected during the development of MS. The 
unusual structural characteristics and functional 
requirements of the myelin sheath raise a number 
of pertinent biochemical questions concerning: 1) 
the properties of the various lipid and protein com- 
ponents and their impact on the overall myelin 
morphology; 2) the precise molecular architecture of 
the membrane as dictated by protein-lipid, protein- 
protein and lipid-lipid interactions; and 3) the con- 
nection, if any, between the lipid/protein components 
and the destruction of myelin in pathological situa- 
tions such as MS. 

Central nervous system myelin 

Myelin is a lipid-protein membrane construct 
contained within the CNS and peripheral nervous 
systems (PNS) of vertebrates (for comprehensive 
reviews, see 64, 65). Acting primarily as an electri- 
cal insulator, myelin controls and increases the 
speed of signal transmission along the axon from 
the nerve cell body to the synaptic junction. The 
membrane encircles the axon at a number of discon- 
tinuous points or internodes and forms the noncon- 
ducting counterpart to the Nodes of Ranvier. The 
resulting multilamellar membrane arrangement of 
myelin is also seen, for example, in the chloroplast 
(66,67), in the interior of the mitochondria (68,69) 
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Figure 1--Schematic representation of the formation of the myelin sheath surrounding an axon (A) (from Ref. 74). 

and in the disc membranes of the rod outer seg- 
ments (70,71). 

MYELIN FORMATION AND ULTRASTRUCTURE 

The human central nervous system can be di- 
vided into the two general anatomical categories of 
gray and white mat ter  composed, respectively, of 
nerve bodies and myelinated nerve fibers (72). My- 
elin is a product of the oligodendroglial cells which 
can direct processes of their plasma membranes 
often to distant target  axons (73,74). These fragile- 
appearing extensions seek out an axon, establish a 
connection and proceed to envelop the axonal cylin- 
der with a continuous wrapping of compacted mem- 
brane (Figure 1). Formation of myelin follows a set 
pat tern (74,75). Once contact is made between the 
oligodendroglial and axonal membranes,  the glial 
membrane begins to wrap around the axon until a 
complete circuit is accomplished and the extracellu- 
lar faces adhere. At this point, a compaction process 
is initiated within the cytoplasmic space which 
results in the association of the two apposing bilay- 
ers and the creation of a major dense line (so-called 
because of its appearance in electron micrographs). 
Concurrent compaction of the outer leaflets of the 
oligodendroglial plasma membrane forms the in- 
traperiod line which is the less-electron dense ex- 
tracellular counterpart  to the major dense line. The 

resulting mult i layers are thus composed of repeat- 
ing units of [membrane]-cytoplasmic space-[mem- 
brane]-extracellular space-[membrane]. This highly 
ordered spiral array of membrane and aqueous com- 
partments  can, depending on the species, achieve an 
appreciable thickness of 5-20 mult i layers (Fig- 
ure 2). 

As the process of myelin formation continues, the 
previously apparent connection between the main 
cell body of the oligodendrocyte and the compacting 
membranes becomes less and less distinct (74). In 
mature  myelin, the apparent loss of this link may 
be due either to a complete severing of ties or the 
maintenance of a very tenuous connection that  is 
difficult to visualize by electron microscopy. This 
isolation of the compacted myelin from the meta- 
bolic elements associated with the main portion of 
the cell may have profound consequences on the 
ability of the cell to augment  membrane stability in 
the event of external environmental  changes. It has 
also been observed that  unlike the peripheral ner- 
vous sytem, where one myelinating Schwann cell 
envelops one axon, a single oligodendroglial cell 
may synthesize numerous myelin sheaths through 
independent processes (76,77). The evolution of these 
membrane extensions may explain the inability of 
the oligodendrocyte to reinitiate myelination fol- 
lowing membrane breakdown due to the require- 
ment  of an enormous metabolic expenditure (20). In 
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Figure 2--Electron micrograph of mature myelin sheath showing the repetitive multi layers of myelin membrane 
surrounding an axon (contained within the central core) (from Ref. 74). 

addition, the employment of single cells to produce 
ajor portions of myelin lays the entire infrastruc- 
ture open to extensive damage simply through the 
destruction of one cell. These factors may have some 
bearing on the pathological demyelination, as well 
as the inadequate replacement of the membrane, 
during the progression of MS (20,78). 

The stimuli responsible for myelin formation must 
be under strict biochemical control. Initially, the 
axon attains some state conducive to myelination, 
possibly a critical axonal diameter (74), whereupon 
some factors initiate the compaction process. Mye- 
lin-associated glycoprotein (MAG) is a membrane 
protein of central and peripheral nevous system 
myelin sheaths localized in the periaxonal area. 
MAG may be implicated in axon-myelinating cell 
interactions because of its location, as well as the 
developmental regulation of MAG expression in the 
mouse brain (79). Of equal importance must be 
some termination step which retards the oligoden- 
drocyte from encircling the nerve indefinitely. These 
events may be controlled, in part, by feedback mech- 
anisms between the oligodendroglial cells and the 
axons and/or some undefined external input from 
surrounding cell types such as the astrocytes (80,81). 
Current investigations into these and other ques- 
tions should further our understanding of the cellu- 
lar events relating to myelination, and may eventually 

lead to the development of therapeutic tools with 
which to combat demyelinating diseases. 

LIPID--PROTEIN COMPOSITION 

Dehydrated myelin is made up of approximately 
75-80% lipid and 20-25% protein by dry weight 
(Table 2) (82-84). Within these two distinct groups, 
there exist a number of molecular species ranging 
from myelin basic protein to the major intrinsic 
hydrophobic proteolipid protein (PLP) among the 
proteins, and from cerebrosides to plasmalogens 
among the lipids. Each of these molecules has its 
own distinct chemical make-up and physical proper- 
ties that contribute to the formation, stabilization 
and possibly the pathogenesis of the myelin mem- 
brane (vide infra). 

Myelin basic protein (MBP) 

SEQUENCE --  MICROHETEROGENEITY 

Myelin basic protein (MBP) is a water soluble 
extrinsic membrane protein with a molecular mass 
of 18.5 kDa (for reviews, see 84-86). MBP accounts 
for approximately 25-30% of the total myelin pro- 
tein and is the second most abundant species after 
the proteolipid proteins. Labelling studies have shown 
that MBP is contained exclusively within the cyto- 
plasmic spaces of myelin (87). MBP can be readily 
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TABLE 2 
Lipid and Protein Composition of Central Nervous System Myelin c 

% Total Dry Weight 

Lipid 75.0 
Protein 25.0 

Protein 

Myelin basic protein (MBP) 
Proteolipid proteins a 

PLP/lipophilin 
Other LH-20 components 
Thioethanol soluble 
Others (Wolfgram, glycoproteins, etc.) 

% Total Protein Weight 

22.5 

30.0 
17.5 
2.5 

27.5 

Lipid % Total Lipid 
Weight 

Cholesterol 27.7 
Cerebroside 22.7 
Cerebroside sulfate 3.8 
EthanolAmlne phospholipids 15.6 
Phosphatidylcholine 11.2 
Plasmalogens b 12.3 
Sphingomyelin 7.9 
Phosphatidylserine 4.8 
Phosphatidylinositol 0.6 
Gangliosides (primarily GM 1 and GM4) <1.0 

~The proteolipid fraction is a family of proteins that can be isolated 
on Sephadex LH-20 in acidified choloform-methanol. The major 
homogeneous protein has been termed proteolipid protein (PLP) or 
lipophilin. 

~l'ae plasmalogens are ether-linked (as opposed to ester-linked) 
lipids composed primarily of ethanolamine phosphatides and, to a 
lesser extent, choline and serine phosphatides. 

CAdapted from Refs. 82-84. 

isolated in its lipid-free form by acid extraction of 
chloroform/methanol-solubilized myelin. As shown 
in Figure 3, human MBP contains 170 amino acids 
including 12 lysine, 19 arginine, 2 glutamic acid 
and 9 aspartic acid residues. This gives the protein 
a net  charge of +20 at physiological pH and, conse- 
quently, a high isoelectric point (>10). The majority 
of these basic and acidic amino acids are evenly 
distributed throughout the primary sequence and 
are interspersed with polar uncharged and hydro- 
phobic residues. MBP contains one tryptophan res- 
idue [position 116], but  no cysteine (and therefore 
no disulfide bonds). The amino acid sequences of 
several species (88-92) have been determined, and a 
great deal of sequence conservation (underlined re- 
gions in Figure 3) has been noted. One implication 
of this observation is that  these portions of the 
molecule may have important functions in the MBP- 
directed myelin formation. 

Further  features of the primary structure of MBP 
include an acetylated N-terminal, a number of phos- 
phorylation sites [for example: Ser-7; -12; -56; -110; 
-115; -151; -165 and Thr-34; -98] (93-99), two carbo- 
hydrate  acceptor sites [Thr-95; -98] of N-acetylga- 

lactosamine (GalNAc) (100,101 and references therein), 
a methylated Arg residue [107] which occurs in both 
the mono- and di-methylated form (102), two likely 
deamidation sites [Gin-103; -147] (103,104), a possi- 
ble C-terminal modification (i.e., loss of Arg) (105), 
an unusual  tri-proline region [residues 99-101] which 
has been highlighted as an important structural  
feature (88) similar to tha t  contained in immuno- 
globin G (IgG) (106), and sequences homologous to 
cholera toxin A and B subunits  [residues 102-118 
and 67-77 in human MBP] which may possibly be 
involved in GM1 ganglioside and GTP binding as 
well as ADP ribosylation of MBP (107). 

A further aspect of MBP is that  this 18.5 kDa 
species exists as a number  of different chemical 
forms ("microheteromers") (103,108). Separation of 
the microheteromers by means of ion exchange 
chromatography (103) results in the elution of a 
number  of MBP components (designated C1-C8) 
which vary in their  cationic potential. The three 
most cationic species, components 1, 2 and 3 (i.e., 
those components dissociated from the column at 
high salt concentration), tend to differ in their 
degree of phosphorylation (component 3) and the 
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i [POj  10 [PO4] 20 
Ac-ala-ser-g•n-•ys-arg-pro-ser-g•n-arg-his-g•y-ser-•ys-tyr-•eu-ala-thr-a•a-ser-thr- 

30 [PO4] 40 
met-asp-his-ala-arg-his-gly-phe-leu-pr•-arg-his-arg-asp-thr-g•y-i•e-leu-asp-ser- 

50 [PO4] 60 
ile-gly-arg-phe-phe-g•y-g•y-asp-arg-gly-a•a-pr•-•ys-arg-g•y-ser-g•y-•ys-asp-ser- 

70 80 
his-his-pro-ala-arg-thr-a•a-his-tyr-gly-ser-•eu•pro-g•n-lys•ser-his-g•y-arg-thr- 

[GalNAc] 
90 [GalNAc] [PO4]  100 

g•n-asp-glu-asn-pro-va•-val-his-phe-phe-•ys-asn-i•e-va••thr-pro-arg•thr-pro-pro- 
[Glu] [Me] [PO4] [PO4] 120 

pro-ser-gln-gly-lys-gly-arg-gly-leu-ser-leu-ser-arg-phe-ser-trp-gly- ala-glu-gly- 

130 140 
gln-arg-pr•-gly-phe-g•y-tyr-gly-gly-arg-a•a•ser-asp-tyr-lys-ser-ala-his-•ys-g•y- 

[Glu] 150 [PO4] 160 
phe-•ys-g•y-va•-asp•a•a•gln-gly-thr-•eu-ser-lys-ile-phe-lys-leu-gly-gly-arg-asp- 

[P04] 170 
ser-arg-ser-gly-ser-pro-met-ala-arg-arg 

Figure 3--Primary sequence of human myelin basic protein (MBP). Residues that 
undergo modification are shown in bold face with the respective chemical changes 
shown in parenthesis. Underlined segments are regions of conserved sequence (see also 
Refs. 84, 86, 248). 

presence of deamidated residues (component 2) com- 
pared with component 1 (the most cationic and thus 
originally termed the unmodified or "native" pro- 
tein). Additional investigations have pointed to C- 
teminal Arg loss and also Met-sulfoxide formation 
as further sources of charge reduction (109); the 
conversion of methionine to methionine sulfoxide 
has been shown to be a further factor leading to 
noncharge microheterogeneity. Component 8 has 
been shown to contain six citrulline (Cit) residues at 
positions 25, 31, 122, 130, 159 and 170, apparently 
resulting from the deimination of 6 Arg residues of 
component C1 (110). Cit is a post-translational me- 
tabolite of Arg, which contains a neutral side chain 
urea moiety rather than the positively charged Arg 
gnanidino-group. The precise nature of these vari- 
ous microheteromers as well as their specific func- 
tions, if any, remains an area of active investigation. 

Phosphorylation 

A number of studies have demonstrated that MBP 
can be phosphorylated both in vitro and in vivo and, 
in its isolated form, MBP contains approximately 
0.2 moles of phosphate distributed among several 
Ser and Thr residues situated throughout the amino 
acid sequence (104,111). The presence of numerous 
kinases and phosphatases in myelin (e.g., cAMP- 
dependent kinase (112), Ca2+/calmodulin-dependent 
kinase (113), protein kinase C (96); ganglioside- 
mediated kinase (114) and ATP/Mg2+-dependent 

phosphatase (115,116)) has led to speculation as to 
an in vivo function of MBP phosphorylation. Ulmer 
and Braun (117) originally investigated the func- 
tion of phosphorylated MBP (p-MBP) using intra- 
cranial injections of radiolabelled 32p coupled with 
immunoprecipitation of the protein at different stages 
of myelin development. It was determined that the 
concentration of p-MBP was maximal during the 
early stages of myelination (i.e., less than 5 days of 
age) which decreased progressively with the matu- 
ration of the myelin sheath even though the total 
MBP concentration was increasing. Further pulse- 
chase experiments (118) revealed that the p-MBP is 
rapidly turning over (in the order of minutes) and 
may therefore represent a dynamic and possibly 
functional feature within the cell, e.g., a recognition 
signal for the initiation of myelin formation or 
compaction. Studies of endogenous phophorylation 
of MBP have suggested that less compact myelin 
fractions possessed higher levels of protein kinase 
activity than more compact myelin fractions (119). 

Vartanian et al. (120) have recently provided 
supporting evidence for this proposal using in vitro 
cultures of myelin-producing oligodendroglial cells 
grown on a poly-lysine substrate. Results from this 
investigation indicated that adherence of the oligo- 
dendroglial plasma membrane to the substrate acti- 
vated both synthesis and protein kinase C-mediated 
phosphorylation of MBP. Several additional lines of 
investigation point to the involvement of protein 
kinase-C (PKC) in MBP phosphorylation, namely 1) 
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Figure 4--Primary transcripts (mRNA) of MBP derived from (A) mouse and (B) human sources. Exons coding for the 
various regions of the MBP primary sequence are labelled 1-7 (from Ref. 132). 

peptide analogues of MBP are specific inhibitors of 
PKC (121); 2) the existence of a potential link 
between the phosphoinositol pathway and the phos- 
phorylation of MBP (122); 3) the observation that  
MBP phosphorylation can be downregulated by 
cAMP -- a known inhibitor of PKC (98). 

Methylation 

Isolation and analysis of MBP revealed that  it 
contains a methylated Arg residue [position 107] 
that  is present both in mono- and di-methylated 
forms (102) (mono, 0.4-0.8 mol/mol MBP; and di, 0.2 
mol/mol MBP). Investigations into this feature of 
MBP (123) have suggested that  methylation may 
represent an important step in the formation of 
myelin as seen primarily by the observation that,  in 
cultured oligodendroglial cells, inhibitors to the 
methyl-transferase enzymes produce a significantly 
less compact myelin (124). 

Developmental studies using radioactive tracers 
have shown that  methylation of MBP occurs during 
the formative stages of myelination and, as with 
phosphorylation, this modification may constitute 
an initiation signal (123). The consequences of 
methylation may manifest  themselves through an 
increase in the hydrophobicity of this region of MBP 
and, accordingly, increase protein-protein or pro- 
tein-lipid interactions that  may be necessary for 
MBP function. The in vitro investigations of Young 
et al. (125) have indeed demonstrated that  the de- 
gree of methylation correlates with an increased 
interaction of the protein with lipid vesicles. 

Glycosylation 

Although MBP is not recovered from myelin as a 
glycosylated derivative, the protein is a natural  
acceptor of N-acetylgalactosamine (GalNAc) when 
incubated in the presence of a suitable galactosyl- 
transferase and UDP-GalNAc (101). The major sites 
of modification are Thr-95 and Thr-98 (O-glycosidic 
bond) which are in the vicinity of the unusual  

tri-proline region 99-101. These proline residues 
have been found, through the use of synthetic pep- 
tides, to represent  an essential sequence for the 
transfer of the GalNAc group and may possibly 
confer a preferential conformation upon this region 
of MBP (126-128). However, the function, if any, of 
this modification is as yet  unknown and it remains 
to be determined if this glycosylation process occurs 
in vivo. Persaud et al. (129) have used in vitro 
glycosylated MBP spin-labelled with Tempoamine 
to study the effect of glycosylation on the secondary 
structure of MBP. These authors found that  glyco- 
sylated MBP complexed with phospholipid vesicles 
was less susceptible to digestion by endoproteinase 
Lys-C than nonglycosylated MBP and suggested 
that  glycosylation may affect MBP-membrane in- 
teractions. 

Molecular Forms 

Determination of MBP function within myelin is 
further  complicated by the observation that,  de- 
pending on the species, MBP is present in several 
molecular forms (i.e., proteins of differing molecular 
weights) (130,131). Thus, human  MBP occurs in 
three forms which have been cloned and their  amino 
acid sequences determined (132). These include 21.5, 
18.5 and 17.2 kDa forms which differ by the addi- 
tion of a 26-residue peptide within the N-terminal  
region (21.5 kDa) and the loss of an l l - res idue 
peptide within the C-terminal portion (17.2 kDa). 
The 18.5 kDa protein is the major native species 
expressed in myelin: The additions and deletions 
correspond to specific exons within the coding se- 
quence (exons 2 and 5, respectively) and appear to 
result  from alternative splicing of the pr imary tran- 
scripts (see Figure 4). A similar situation occurs in 
mouse MBP (133), with the additional occurrence of 
a 14 kDa species that  may result  from the splicing 
of exon 6. More recent investigations (134) have 
suggested a fifth molecular form of MBP expressed 
in the mouse. In general, the al ternate forms (i.e., 
those found in addition to the 18.5 kDa protein) are 
present in relatively minor concentrations and, al- 
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though their conservation indicates a degree of 
importance, there is at present no unique function 
known for these MBP isoforms. 

SECONDARY AND TERTIARY STRUCTURE 

While the conformation adopted by MBP in aque- 
ous solution does not appear to have any conven- 
tional secondary structure (i.e., helix or beta), it also 
apparently does not form a completely "random 
coil." The protein appears to maintain some ordered 
tertiary structure, likely within the mid-sequence of 
the protein, viz., the tri-proline region found at 
~Hositions 99-101 (for reviews, see 84, 86). 13C and 

nuclear magnetic resonance (NMR) studies re- 
vealed that in water, the resonances of MBP main- 
tain distinct chemical shifts that are indicative of 
different chemical environments which could be 
produced by folded portions of the protein (135- 
137); these chemical shift disparities could be elim- 
inated in 6 M guanidinium hydrocholoride which 
would effectively unfold the protein and thus give 
rise to essentially average chemical environments 
for each residue. Some question has been raised as 
to the possibility that the method of purification of 
MBP using organic solvents and acid may produce 
MBP in a "denatured" state. However, when basic 
protein was purified using 0.2 M CaC12 instead of 
the traditional solvents, it was found to be predom- 
inantly a "random coil" structure with only limited 
segments of secondary structure, therefore agreeing 
with previous structural studies (138). 

The notion that MBP forms a nonrandom struc- 
ture is also supported by the immunological studies 
of Whitaker et al. (139) who employed an antibody 
raised to an internal peptide of MBP [residues 
43-88]; in solution, this antibody specifically recog- 
nized the isolated peptide but was unable to produce 
a complex with the intact protein. Thus it was 
postulated that the inaccessibility of this peptide to 
the antibody was the result of internalization of this 
region within the ordered core of the protein. Addi- 
tional investigations (140-142) into conformational 
aspects of MBP by calorimetric and fluorescence 
techniques determined that MBP undergoes a re- 
versible enthalpic transition that is associated with 
changes in the hydrophobic nature of the protein 
and is therefore consistent with some type of folded 
structure. 

As mentioned, a notable aspect of the MBP con- 
formation in aqueous solution is the absence of a 
significant degree of secondary structure as mea- 
sured by circular dichroism (CO) (143-146) and 
classically by optical rotatory dispersion (ORD) (147,148) 
(see also Stoner (149)). These results have recently 
been confirmed by Fourier-transform infrared (FT- 
IR) experimentation (150). In addition, Deber et al. 
(151) specifically enriched the two Met residues 
situated near opposite ends of the protein [positions 
21 and 167 for human MBP] with 13C-methyl groups 
and observed that the motion of these labelled 

residues was virtually unrestricted in water. The 
free rotation of these groups similarly argues against 
interaction of the N- and C-terminals with other 
portions of the protein. 

MBP-LIPID INTERACTIONS 

Several diverse sources of information have indi- 
cated that MBP-lipid interactions play a critical 
role in the formation of myelin. These include: 1) 
the in vitro ability of MBP to bind small lipid 
vesicles and reform the lipid into stable multilamel- 
lar layers reminiscent of the in vivo myelin sheath 
((84) and references therein); 2) the fact that MBP 
possesses greater bilayer-stabilizing properties in 
dioleoylphosphatidylethanolamine (DOPE) systems 
than other basic proteins (calf thymus histone, lysozyme, 
melittin) as determined by 31p-NMR and X-ray 
diffraction techniques (152); 3) the demonstration 
by X-ray techniques that isolated myelin displayed 
infinite swelling on the extracellular space in the 
presence of excess water but that the intracellular 
space (i.e., the location of MBP) remained tightly 
compacted (153); 4) the existence of several dysmy- 
elinating mutants specific for MBP (e.g., shiverer 
mouse) which are incapable of producing large quan- 
tities of stable CNS myelin (154,155), and any 
myelin that is formed does not contain the intracel- 
lular major dense line (156); 5) the fact that synthe- 
sis of MBP during development is an essential step 
in the construction of mature myelin membranes 
(157-159); 6) the fact that following demyelination 
by hepatitis virus, MBP transcripts are increased 
dramatically within the areas most greatly affected, 
a result which also correlated with the formation of 
new myelin sheaths (160). These and other observa- 
tions have led to speculation that MBP is responsi- 
ble for initiating the compaction process within the 
myelin cytoplasm as well as maintaining the closely 
apposed multilayers in the mature structure. 

Physical-chemical studies of the interaction of 
MBP with phospholipids (146,161-163), and those 
examining binding of basic protein to phospholipid 

1 13 3IT membranes as monitored by H, C and P NMR 
spectroscopy (151,164-167), have confirmed that the 
attraction between MBP and lipid is largely electro- 
static. However, the amino acid sequence of MBP 
shows that approximately 25% of the total Amino 
acids have hydrophobic side chains. Complemen- 
tary studies (84,145,166,168-171) have therefore 
suggested a hydrophobic component of MBP/lipid 
binding and accordingly, the penetration of some 
residues or "regions" of the protein into the hydro- 
phobic membrane interior. An example of the hy- 
drophobic aspect of MBP is its capacity to increase 
the permeability of lipid vesicles (163) while poly- 
lysine (a poly-cation that interacts exclusively by 
electrostatic interactions) is incapable of producing 
a similar result. From such results, it was suggested 
that MBP-related permeability arises from the hy- 
drophobic interactions of protein side chains pene- 
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Figure 5--Encephalitogenic peptides of MBP and their species dependency (from Ref. 84). 

trating the membrane and distorting the lipid packing. 
Support for MBP hydrophobic interactions is also 
provided by intrinsic fluorescence studies of the 
single Trp residue, which displayed an increased 
fluorescence in the presence of lipid, consistent with 
its movement from a polar to nonpolar environment 
(172). There is some debate as to the extent to which 
MBP can penetrate the lipid acyl chains of a bi- 
layer, as demonstrated by unsuccessful attempts to 
label native MBP chemically using a hydrophobic 
probe (87). Further evaluation by X-ray diffraction 
(173) and NMR (174) have indicated that the un- 
charged residues of MBP interact primarily within 
the head group region of the lipid bilayer with no 
significant penetration of extensive segments of the 
protein into the hydrophobic core of the membrane. 

Two general molecular models can explain the 
membrane-adhesive qualities of MBP (reviewed in 
84, 85). These include 1) a unimolecular model 
where the N- and C-terminals of monomeric MBP 
bind on apposing sides of the myelin bilayers to 
bridge the intracellular space, and 2) a bimolecular 
(or perhaps multimolecular) situation in which MBP 
compacts myelin multilamellae by protein-protein 
as well as protein-lipid interactions. The latter 
model is supported by Golds and Braun (175,176) as 
a result of cross-linking studies of intact myelin 
which indicated that a large fraction of the protein 
was isolated in the dimeric form. In addition, sedi- 
mentation analysis has demonstrated that the pro- 
tein-protein association of MBP is enhanced in the 
presence of lipid/detergents (177). These interac- 
tions are most probably dependent upon hydropho- 
bic interactions, as shown by the pH investigations 
of Moskaitis et al. (178) which revealed that MBP 
self-association could be achieved only in the ab- 
sence of protonated His residues. 

The conformation that MBP adopts when associ- 
ated with a membrane is perhaps more pertinent 
than its conformation in aqueous solution as de- 
scribed above. CD measurements of MBP bound to 
detergent micelles (143,179-181) or lipid vesicles 
(145) have indicated varying amounts of a-helix 
(15-20%), ~-structure (10-15%) and random coil 
(40-50%). The more recent FT-IR investigations of 
Surewicz et al. (150) have indicated that the degree 
of ~-sheet formation may in fact be greater than 
previously suspected (>50%). However, as the co- 
presence of large amounts of lipids tends to inter- 
fere with spectroscopic determinations, the conforma- 
tional details of the lipid-bound MBP remain to be 

resolved in detail. 
Studies on the interactions of the various micro- 

heteromers (components C1-C8) by liquid X-ray 
diffraction (182,183), aggregation assays (110,183,184) 
and vesicle permeability (185) have shown that the 
cationic character (i.e., extent of positive charge) is 
directly proportional to the ability of the protein to 
interact favourably with lipids. This was demon- 
strated both with the naturally occurring compo- 
nents (C1-C8), as well as for isomers of altered 
charge produced by in vitro phosphorylation. 

In the case of MBP derived from brain tissue of 
MS subjects, isolation of the various components 
has indicated that in comparison to normal MBP, 
the MS protein is often less cationic (as determined 
by the relative NaC1 concentrations required to 
elute the various MBP samples from the ion ex- 
change column) and relatively less efficient (vs. 
normal MBP) in its ability to bind lipids (183). 
Further insight into the lipid binding characteris- 
tics of MS-MBP has been provided by the NMR 
studies of Deber et al. (174), which revealed that 
normal MBP, but not the MS protein, was capable 
of effectively altering the mobility of the head group 
region of phosphatidylglycerol vesicles by means of 
electrostatic interactions. Although these observa- 
tions may imply some relationship between the 
behaviour of MBP in native myelin and disease 
activity, it is probably premature to surmise that 
alterations of MBP represent a primary event in the 
etiology of MS. 

ENCEPHALITOGENIC ACTIVITY OF MBP 

Innoculation of test animals (e.g., guinea pigs) 
with MBP results in experimental allergic enceph- 
alomyelitis (EAE) which has clinical manifestations 
indistinguishable from those of MS (for a review, 
see 57). Sensitization of the immune system to MBP 
is followed by a recruitment of helper T-cells and 
eventually the activation of cytotoxic elements such 
as macrophages that produce demyelinating lesions 
within the CNS (186,187). This experimental "mul- 
tiple sclerosis" exhibits a chronic relapsing/remit- 
ting type as well as an acute form. As with MS, 
recovery from EAE is related to the ability of the 
host to produce effective suppressor T-cells to down- 
regulate the cytotoxic side of the immune reaction 
(188). That the encephalogenic response can also be 
generated passively by the introduction of T-cell 
clones sensitized to MBP provides convincing evi- 
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Figure 6--Primary sequence of human proteolipid protein (PLP) or lipophilin. Segments of the protein which 
are thought to be embedded in the membrane are underlined; acylation site (Thr-198) appears in bold face 
(from Refs. 193,195). 

dence that MBP autoantigenicity has dire conse- 
quences for myelin (189). Since similar events may 
be occurring in the development of human MS, 
these observations have prompted investigations 
into whether MBP represents the essential antigen 
responsible for the immune attack on myelin. 

Evaluation of MBP tryptic fragments has re- 
vealed that the peptide Phe-Ser-Trp-Gly-Ala-Glu- 
Gly-Gln-Arg[Lys] [human (bovine) MBP residues 
114-122] is a minimal sequence that can produce 
EAE (in guinea pigs). Ostensibly, this portion of 
MBP may be accessible in myelin to the immune 
system and thereby participate in the immune reac- 
tion. Peptides that induce an EAE reaction were, 
however, found to be highly species-dependent (Fig- 
ure 5). While these results could conceivably reflect 
varying accessibility of MBP within each species, 
they are more likely attributable to genetic differ- 
ences in the species or strain immune response. 
Nuclear Overhauser effect (NOE) data (a nuclear 
magnetic resonance technique which can measure 
distances between neighbouring atoms and hence 
help identify regions of folded structure) on the 
heptadecapeptide comprising the segment encepha- 
litogenic in Rhesus monkey suggested the existence 

of three structured regions in the solution confor- 
mation of the peptide (190). 

Proteol ipid protein  (PLP) 

STRUCTURE AND FUNCTION 

The proteolipid protein (PLP), also called lipophilin 
because of its propensity to bind lipid (191), is an 
intrinsic membrane protein with an approximate 
molecular mass of 30 KDa and constitutes the sin- 
gle most abundant protein of myelin (for a review, 
see 84). Following its initial isolation by Folch and 
Lees (192), subsequent investigations have led to 
the determination of its amino acid sequence (193,194); 
cloning of the PLP gene (195-197); and the uncov- 
ering of potential ]inks between PLP and MS (198,199). 
Tentative molecular models of PLP and speculation 
on its possible role in the stabilization of the myelin 
sheath have been presented (200,201). The possibil- 
ity that PLP specifically interacts with MBP in the 
formation of the myelin sheath has recently been 
investigated by Edwards et al. (202) using a microti- 
tre well-binding assay and a ligand-blot overlay 
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Figure 7--A proposed structure for PLP in the myelin membrane (from Ref. 200). T1, T2, and T3 are homologous, 
a-helical transmembrane segments; C1 and C3 are homologous cis-membrane segments; and El, E2, E3, CI', and C3' are 
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technique. These investigators found that MBP bound 
PLP in a saturable, reversible manner and that this 
binding was much greater for MBP than for other 
basic proteins. 

The standard isolation procedure for PLP involves 
chromatography on a Sephadex LH-50 column in an 
acidified chloroform-methanol solvent. The elution 
profile indicates that the myelin proteolipid protein 
is actually a family of integral membrane proteins 
comprised principally of PLP (30 kDa) and DM20 
(25 kDa), along with a collection of minor compo- 
nents of various molecular masses (84). These addi- 
tional fractions have not been well characterized, 
but it has been proposed from cDNA studies that all 
of the integral proteins arise from a common gene 
and result from segmental deletions of the primary 
transcripts (195). Specific observations concerning 
the relationship between PLP and DM20 by Simons 
et al. (203) have confirmed this postulation. Using a 
PLP cDNA probe from a human retinal library, it 
was shown that DM20 contained the coding se- 
quence of PLP with the exception of a deletion 
within a putative aqueous domain. These studies do 
not provide direct insight into the function of PLP 

and its subsets but do open the possibility that the 
different integral protein components could have 
different functions during the development and main- 
tenance of the cohesive myelin structure. Milner et 
al. (195) have argued against any functional neces- 
sity for the lower molecular weight PLP compo- 
nents, since mouse and monkey code only for the 
large PLP protein but are still capable of producing 
viable myelin. 

Organization of PLP within the membrane on a 
molecular level has been investigated by a number 
of physical-chemical methods. Evidence from label- 
ling experiments (87) has shown that, unlike MBP, 
regions of PLP are exposed on the extracellular side 
of the myelin membrane as well as being deeply 
intercalated within the hydrophobic core of the 
bilayer. Based on the amino acid sequence (see 
Figure 6) and other evidence, a membrane profile of 
PLP was constructed (200,204) that consists of three 
transmembrane or trans segments [residues 59-90; 
151-177; and 238-267] which completely traverse 
the bilayer and two additional cis segments [resi- 
dues 9-35 and 205-218] which are imbedded in the 
lipid but enter and exit on the same side of the 
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bilayer (Figure 7). A similar model has been pro- 
posed by Stoffel et al. (201) which these workers 
later confirmed using antipeptide antibodies (205). 
In  vitro experimental details for the distribution of 
PLP between membrane and aqueous domains have 
been given by Kahan and Moscarello (206) through 
investigations using photolabelling reagents and 
selective proteolytic cleavage. 

Based largely on comparisons with other mem- 
brane proteins (e.g., bacteriorhodopsin) (207), it has 
been suggested that the PLP transmembrane seg- 
ments maintain an a-helical conformation (200). 
This is a reasonable assumption considering that: 1) 
helical structure allows for the formation of in- 
tramolecular hydrogen bonds that can insulate the 
protein backbone from the low dielectric medium of 
the bilayer; and 2) the average length of PLP trans- 
membrane regions is 30-31 residues which would 
be sufficient to span the 45°/~ myelin bilayer (as- 
suming a helix pitch of 1.5 A/residue (208)). These 
hydrophobic regions would be connected by polar 
aqueous linker domains. Confirmation of a high 
helix content in PLP has been provided by FT-IR 
investigations which indicate approximately 55% 
a-helix, along with 36% B-structure (209), a mea- 
surement which did not appear to be dependent 
upon the transition state of the lipid. Alternatively, 
CD measurements have suggested an increased he- 
lix content of approximately 75% compared with a 
~-content of only 10% (210). It is difficult to discern 
which set of figures is the more accurate as each 
technique has unique error factors in estimating 
secondary structure (e.g., light scattering, the choice 
of reference compounds, and integration errors). 

PLP binds lipids primarily through interactions 
with its hydrophobic side chains (211-213) and it 
has been suggested that the positively charged aque- 
ous domains are also capable of electrostatic inter- 
actions with the negatively charged head groups of 
phospholipids (162). In addition to its ability to bind 
lipid, the proteolipid fraction of myelin (PLP and 
DM20) coisolates with a small percentage of fatty 
acid (2-3%) that may be covalently bound (214,215). 
PLP-specific fatty acid acylation has since been 
demonstrated using a tritiated palmitic acid which 
was either incubated with a cell-free system or 
injected directly into the brain (216,217). Further 
investigations have determined that the acyl chain 
is linked through an O-ester bond to Thr-198 in vivo 
(see Figure 7) and is present primarily as palmitic 
acid, with some stearic and oleic acids (218). Isola- 
tion at various intervals has indicated that this is a 
relatively late post-translational modification that 
occurs at or near the myelin plasma membrane 
(217). In an interesting set of experiments, Bizzo- 
zero et al. (219) have demonstrated that incubation 
of isolated PLP with palmitoyl-CoA resulted in the 
formation of an acylated protein. These observa- 
tions have led to the suggestion that PLP is an 
autocatalytic enzyme (i.e., transfer of the acyl group 

is due to properties inherent in PLP with no contri- 
bution from an additional enzyme); this property is 
a characteristic of several membrane proteins (220). 
However, other than added hydrophobicity, the spe- 
cific function that the attached fatty acid may per- 
form in vivo remains to be elucidated (see also 217). 

The PLP gene has been isolated, cloned and se- 
quenced. It appears to be comprised of seven exons 
and six introns where each exon (with the exception 
of the first and last) codes for one membrane do- 
main (either cis or trans) plus the sequentially 
adjacent aqueous domain (221). Hybridization ex- 
periments have shown that the human and mouse 
PLP gene is located on the X chromosome (196). 
These investigations have also shown that the PLP 
sequence is highly conserved between species. For 
example, rat and human PLP were found to be 
essentially identical, differing at position 95 (Ser in 
rat, Ala in human), while only four substitutions 
appeared in the bovine protein. In genetic studies of 
actively myelinating animals, the transcriptional 
rate of PLP (as well as MBP) is coincident with the 
appearance of compact myelin within the CNS (195). 
This observation emphasizes the important rela- 
tionship between myelin compaction and the ap- 
pearance of the major myelin proteins. 

The discovery of several hypomyelinating mu- 
tants also supports a role for PLP in the compaction 
or stabilization of myelin. The jimpy mouse, an 
X-linked mutant which is thought to result from 
incorrect construction of the primary PLP tran- 
scripts, displays a reduced degree of myelination 
and a less compact extracellular space (222,223). 
The human counterpart is described by an inherited 
X-linked myelin disorder known as Pelizaeus-Merz- 
bacher disease (196). In addition, Duncan et al. 
(224) have described a similar X-chromosome mu- 
tant in the rat which has a reduced PLP mRNA 
content that correlates with an abnormally com- 
pacted myelin in which the extracellular spaces or 
interperiod lines are markedly expanded. 

ENCEPHALITOGENIC ACTIVITY OF PLP 

Innoculation with PLP appears to be associated 
with an encephalitogenic response similar to MBP- 
induced EAE. These observations have met with 
some opposition due to suspicions that the response 
was produced by a contaminating quantity of MBP 
(225), but these appear to have been discounted 
through the use of highly purified PLP preparations 
which produce a chronic progressive and relapsing/ 
remitting disease when injected into guinea pigs (in 
its aqueous form consisting of an aggregate of pro- 
tein molecules (199,226,227). As with MS lesions, 
this condition corresponds to an accumulation of 
cellular infiltrates within the CNS and active de- 
myelination. Conclusive evidence of a PLP-medi- 
ated demyelination has come from the immunological 
studies of Yamamura et al. (198), who demonstrated 

CLINICAL BIOCHEMISTRY, VOLUME 24, APRIL 1991 125 



D E B E R A N D R E Y N O L D S  

o 
I I I I I I I | _1 .  

t :..~.:i..',: ~ ; " : ' .  : . . . - . . -  o , . . . .. : . ' 

I/:~;!!~!ii!:::i:i:i: ~ ~ r o X " ~ ~  z ~ : ~ O - o  - : 
:~  . . . .  . . : . . . : ' , . : ? .  K ~ , %  ~ ~ . . .  . • . 

.: ' . - '  ; . '  " .~  ~ N ~ ' "  " " • 
"~,.~ . ' : : . : ' . : : ' . "  0 " ' 0  0 ' ' " ' 

t ::.C:.:::.',:.~., I:.?.=: . : .  . . . .  , =  0"% . .  ;. : . :  
• i,:-..~ ~:'!=i:'::.::.,:o . . . . .  o o " ' :  : '  " • .  

¢~ [:'~;:.".' :..::: .....:... o" b o ~ ' ~ v v v ~  < , ~  ~ ~ x _  ; . . . • ~ .. " .- • 
~'::.?~:.?::.'.:~!:.:"~i~:'.":. • " . . . .  - -  - -  ~ r ~ - ~ : ~  0"°. , i " . . . " ,  : ' : . ( . : ' !  ":' 
C O  : . ~ . : . , "  : : : " : ' ; ' : * ' . "  ' ' . :  "~".': O O N-  . . - : . . ' .  : ' :  , . ; "  ." .. " 

t~-!.~;.;:!i;!;;:!:::.i~.,.::, : ° - o o  ~ ; ~ ^ ~ , Y ' ° ' ~ : ;  ~:.i.. , :  :. ~: 
o r.~/,.-'!:: :.".'-~::,~:.;: o-~.ogr - ~ ~ ~ - " • : ; ' -. , ' ,  ,-::. '. , 

I./:~ " : : : : : ~ : 2 "  : ~. : " " " " O .  , ~ v - ~ ,  - ¢ - t  " " " " " " " " " 

~:~::::';?'::.i::~..::.""o, ~o ~ " g - ,  -"-, ,-., ~,x,~.=~o o o i : :  ...""..;.', ; . ::::::::::::::::::: ; .:  . ?  " 
¢;'?'::;.:':~::':..-" , , ' : .  o ~ ^ ^ =  , - /  , - J ~  ~ " ~ o ~ '  ... : ; ' " . . ' . ; ; :  ". 
~i:::.. ' : . ; : : : . : .  :: " . : , : " ' .  o Y v v  " ~ '  L / v , , , -  - - o  . . . : . . ~ . ; . ! : , : :  . . .  . "  : :  
; . . . .~  . : ~ : ~ . , , , , , . . . ' . . . , . ~  ; . : :  , . . . .  

I0  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0 ~  

,. • . . .  . 

, i . . . . . .  ~ ' ' " !  . -  
' , ~ ' ~  P ro te in  + W A T E R  
I 

: l,,- Polor ._~ 
.,F-----.-,' g r o u p  , 
", Cholesterol l 

' , ' S h f  f C h a i n  I I 

i i i 

i i i 

i 

, ~ - P r o t e i n  +,WATER--~, '  ', 
I I 

I i ,~_ Polor . . .~  
, g r o u p  '. 
i ' C h o l e s t e r o l  ,,r--Phont Choln- 
' ' , * S t ' f f  C h o i n ,  
I 
IK  , , L , r l U -  
I i , 

m 

f - -  

c ~  

Figure 8--Organization of lipids within myelin and the dimensions of the bilayer (from Ref. 228). 

a passive transfer of the PLP encephalitogenic ac- 
tivity. Using PLP-sensitized lymphocytes obtained 
from cultured lymph nodes exposed to the protein 
which were then reinjected into rats (ca. 107 cells), 
CNS inflammatory sites, myelin lesions and the 
accompanying clinical signs of demyelination were 
produced. In another study, Shaw et  al .  (61) have 
compared the sequence of PLP with the sequences of 
a number of viral proteins and identified several 
primary sequence similarities with, for example, 
Epstein-Barr virus, influenza A, HIV and adenovi- 
rus polypeptides. Thus, it is possible that the EAE 
response observed to PLP is a reflection of a poten- 
tial autoimmune response similar to the relation- 
ship proposed between MBP and infecting viruses. 

Myelin lipids 

MOLECULAa ORGANIZATION 

The myelin membrane itself is composed of a 
diverse collection of lipids and proteins. The lipids 
are arranged in a typical bilayer or bimolecular 
("lamellar") form with an inner (cytoplasmic) mono- 
layer and a corresponding outer ( extracellular ) monolayer 
(228) having a total thickness of ca. 40-45 A (Fig- 

ure 8). The lipid molecules are positioned such that 
the hydrophilic portions provide the interface be- 
tween the aqueous spaces -- both intra- and extra- 
c e l l u l a r -  and the hydrophobic core produced by 
the acyl chains. The bilayer dimensions remain 
relatively constant throughout myelin whereas the 
aqueous spaces differ in their degree of compaction, 
i.e., the intracellular space is ca. 20-25/~ while the 
extracellular space is ca. 25-30 /L It has been 
suggested that this asymmetrical packing may be a 
reflection of both the protein composition and differ- 
ent protein-lipid interactions. 

The lipid composition of myelin is given in Table 
2 (for reviews, see 82, 83). Cholesterol comprises the 
single most abundant lipid species and in normal 
white matter occurs in the unesterified form (83). 
Although there are no myelin-specific lipids p e r  se, 
the glyco-ceramides (cerebrosides) are diagnostic of 
myelin in the brain such that the quantity of cere- 
broside is roughly proportional to the amount of 
myelin present (82). Another distinctive category of 
myelin lipids is the plasmalogens, which represent 
approximately 30% of the phospholipids present and 
occur primarily as ethanolamine phosphatides with 
a smaller percentage of serine and choline phos- 
phatides (229). The plasmalogens contain fatty al- 
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dehydes that  are linked to the glycerol backbone as 
alkyl ethers or ~,~-alkenyl ethers and contain pre- 
dominantly saturated 16:0 and 18:0 acyl chains. 
The nonplasmalogen phosphatidylethanolamines 
(PE) contain fatty acid acyl groups (18:1, 20:1, 20:4 
and 22:4) which are linked via esters to the glycerol 
backbone. The remaining phospholipids, phosphati- 
dylcholine (PC) and phosphatidylserine, contain es- 
ter-linked fatty acids of 16:0, 18:0, 18:1 and 18:0, 
18:1, 20:4 chains, respectively (230). Cerebrosides 
and cerebroside sulfates occur in both the hydroxy- 
lated and nonhydroxylated forms with the major 
fatty acid species (aside from the ceramide portion) 
being 24:0 and 24:1 chains (231). Sphingomyelin 
fatty acids appear largely as 24:1, 18:0 and 24:0. 
Myelin also contains several minor lipid species 
(totalling < 5%) such as the gangliosides (GM4 and 
GM1) (232) and phosphatidylinositol (233). 

Myelin undergoes marked developmental changes 
in its lipid composition as seen by the increases in 
cholesterol, cerebroside, phosphatidylserine, etha- 
nolamine plasmalogens, and sphingomyelin, and a 
concurrent decrease in PC content with advancing 
age (234-236). The most rapid changes are observed 
in neonates (up to 6 months) followed by slower 
changes to a final adult or homeostatic stage that  in 
general is not achieved in humans  until  15-20 
years of age. Since the myelin membrane is com- 
posed largely of lipids, these developmental changes 
may reflect a need to accommodate the physical 
alteration in the membrane organization while still 
maintaining the structural  stability of the myelin 
sheath. 

Lmms AND DEMYELINATION 

Numerous investigations have stressed the in- 
volvement of lipids in demyelination both as poten- 
tial autoantigens (62,237-239) and as structural  
variants arising from differences in the molecular 
species of normal vs. MS tissue (240). While there 
appears to be no consensus for differences, if any, of 
the noninvolved or grossly normal white mat ter  
between normal and MS tissue, there are some lipid 
abnormalities within the MS plaque and periplaque 
regions. The most apparent of these is a decrease in 
total lipid, which is consistent with the degree of 
myelin loss (241). The demyelinat ing regions also 
show a consistent increase in the amount  of choles- 
terol esters (242,243), a specific decrease in PE 
concentration (244), and significant changes in gan- 
glioside concentrations (particularly GM4) (245). It 
remains uncertain whether  these lipid variations 
represent  a pr imary demyelination mechanism, or 
are primarily a reflection of post-breakdown events. 

In examining the potential of lipid to induce 
demyelination in the peripheral nervous system, 
Low et al. (246) found that  interneural  injections of 
lyso-PC (a micelle-forming derivative of PC itself), 
could specifically promote demyelination as detected 

by severely a t tenuated electrical transmissions. In 
a related study, exogenous lipases derived ei ther 
from macrophages (phagocytic cells seen at develop- 
ing and expanding plaque regions) or from serum 
were found to be highly effective in producing de- 
myelination (244) and were lipid-specific (i.e., PE 
was affected to a greater  extent). It is interesting 
and possibly significant tha t  periplaque regions show 
similar decreases in PE concentrations (vide infra). 

Apart  from the sensitivity of myelin to lipid deg- 
radation products, lipid-induced demyelination may 
also proceed via an immune response. Carroll et al. 
(238) demonstrated that  intraneural  injections of 
cerebroside antisera produce a proportional demy- 
elination such that  low levels of serum create only 
slight lesions with partial remyelination, while larger 
doses produce extensive lesions with additional ax- 
onal degeneration. As with MS, the introduction of 
the anticerebroside antibodies was associated with 
myelin vesiculation and the presence of invading 
macrophages. Given the fact that  cerebrosides are a 
major component of myelin and are localized on the 
extracellular side of the bilayer (247), they may 
constitute a pr imary element in init iating demyeli- 
nation. Support for the in vivo participation of an- 
ticerebroside antibodies is provided by the observation 
that  similar antibodies have been found in the 
cerebro-spinal fluid (CSF) of MS patients (62). An 
al ternate glycolipid family tha t  may be associated 
with the MS immune responses is the gangliosides, 
which constitute the major surface lipid antigens of 
myelin. As with the anticerebroside, antibodies to 
GM 4 -- a myelin specific lipid in the CNS (232) -- 
are also found in the CSF of MS patients (62). 

Ganglioside characterizations in MS pathology are 
very limited to date, and as such comprise a poten- 
tially exciting area of future research. 
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