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Abstract

Background Depression is one of the most significant health conditions in personal, social, and economic impact.
The aim of this review is to summarize existing literature in which machine learning methods have been used in com-
bination with Electronic Health Records for prediction of depression.

Methods Systematic literature searches were conducted within arXiv, PubMed, PsycINFO, Science Direct, SCOPUS
and Web of Science electronic databases. Searches were restricted to information published after 2010 (from 1st Janu-
ary 2011 onwards) and were updated prior to the final synthesis of data (27th January 2022).

Results Following the PRISMA process, the initial 744 studies were reduced to 19 eligible for detailed evaluation. Data
extraction identified machine learning methods used, types of predictors used, the definition of depression, classifi-
cation performance achieved, sample size, and benchmarks used. Area Under the Curve (AUC) values more than 0.9
were claimed, though the average was around 0.8. Regression methods proved as effective as more developed
machine learning techniques.

Limitations The categorization, definition, and identification of the numbers of predictors used within models

was sometimes difficult to establish, Studies were largely Western Educated Industrialised, Rich, Democratic (WEIRD)
in demography.

Conclusion This review supports the potential use of machine learning techniques with Electronic Health Records
for the prediction of depression. All the selected studies used clinically based, though sometimes broad, definitions
of depression as their classification criteria. The reported performance of the studies was comparable to or even bet-
ter than that found in primary care. There are concerns with generalizability and interpretability.
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Background

Depression is the most common mental health con-
dition globally, with one-year global prevalence rates
ranging from 7 to 21% [1]. Quality of life can be seri-
ously impaired by this disorder, with depression ranking
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of depression, there is a significant economic cost. For
example, in 2007 alone, total annual costs of depression
in England were £7.5 billion, of which health service costs
comprised £1.7 billion and lost earnings £5.8 billion [6,
7]. More recently, in 2019, it was estimated that mental
health problems cost the UK £ 118 billion per year, of
which 72% were due to lost productivity and other indi-
rect costs. At 22% prevalence depression was identified
as the third highest contributor to these costs [8, 9].

Depression, like most mental health disorders, can be
difficult to diagnose, especially for non-specialist clini-
cians [10, 11]. Assessment by primary or secondary care
clinicians typically relies on the World Health Organisa-
tion’s International Catalogue of Diseases version 10 or
11, ICD-10/11 [12], the Diagnostic and Statistical Manual
of Mental Disorders DSM [13], or by using an interview
script such as the Composite International Diagnostic
Interview (CIDI) [14, 15]. Diagnosis can also be aided by
garnering self-reported symptoms in response to stand-
ardised questionnaires such as the Hospital Anxiety and
Depression Scale (HADS) [16], Beck Depression Inven-
tory (BDI) [17, 18] and Patient Health Questionnaire-9
(PHQ-9) [19, 20]. The PHQ-9 is considered a gold stand-
ard [21] for screening rather than standalone clinical
diagnosis [22] and has been validated internationally [20].
As such it sets a sound benchmark for sensitivity (e.g.,
0.92) and specificity (e.g., 0.78) that is a good comparator
for assessing alternative methods [23].

Considering mental health care pathways, benefits
to patients could be provided by early diagnosis, open-
ing the possibility to early interventions. For example,
Bohlmeijer et al. [24] observed reduced symptoms of
depression for patients who engaged in acceptance and
commitment therapy (ACT) as an early intervention
compared to those on a wait list, both initially and at a
three month follow up. Furthermore, a meta-analysis by
Davey and McGorry [25] showed a reduction in the inci-
dence of depression by about 20% in the 3 to 24 months
following an early intervention. At the same time, late
diagnoses of depression can result in longer term suffer-
ing for the patient in terms of symptoms experienced and
disorder trajectory together with increased resource con-
sumption [10, 26].

Recently, attempts to support early medical diagnoses
have benefited from a) growing availability of electronic
healthcare records (EHRs) that contain patients’ longi-
tudinal medical histories and b) new advances in predic-
tive modelling and machine learning (ML) approaches.
The use of EHRs in primary care in the developed world
is well established. For example, in the USA, UK, Neth-
erlands, Australia and New Zealand, take up in primary
care has exceeded 90% [27, 28]. The wide availability of
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proprietary EHR systems such as SNOMED (Systema-
tized Nomenclature For Medicine) in the UK [29] are
enabling rapid and global implementation and their use
for disorder surveillance [30]. For example, ML tech-
niques with EHR data have led to predictive models for
cardiovascular conditions [31, 32] and diabetes [33].
These studies have led to cardiovascular risk prediction
becoming established in routine clinical care and the UK
QRISK versions 2 and 3 show significant improvements
in discrimination performance over the Framingham
Risk Score and atherosclerotic cardiovascular disease
(ASCVD) score methods [34] that preceded them. Many
of the recent advances were facilitated by the growing
popularity of ML in medical data science. As a subfield
of artificial intelligence (AI), ML allows computers to be
trained on data to identify patterns and make predictions.
This approach is well suited for developing algorithms to
predict the likelihood of a patient having a disorder by
analysing large volumes of medical data. Once trained,
these algorithms can then be tested on new data to
assess their performance outside of the training envi-
ronment. There are a variety of ML techniques, but the
two most common include supervised and unsupervised
methods. In supervised learning data are labelled with
desired outcome. In unsupervised learning the data are
not labelled, and the algorithms look for patterns within
the data without external guidance. Further information
on these methods in relation to mental health and EHRs
is provide in Cho et al. [35] and Wu et al. [36] but here
we note that many existing applications combine some
unsupervised and supervised methods to train algo-
rithms on datasets with large numbers of predictors. A
scoping review by Shatte et al. [37] on the general use of
ML in mental health identified the use of ML with EHRs
for identifying depression as a research area. Similarly,
Cho et al. [35] included depression amongst the condi-
tions they identified in their “Review of Machine Learn-
ing Algorithms for Diagnosing Mental Illness” In the
examples they cite, which are also covered in the results
of this systematic review, ML algorithms were trained
on EHRs data that included a variety of symptoms and
conditions. These algorithms were then assessed on their
ability to distinguish between those who did/did not
have clinical depression. If EHR/ML methods are to be
considered, a suitable benchmark comparator is needed.
Studies assessing diagnosis of depression in primary care
suggest that approximately half of all cases are missed at
first consultation but that this improves to around two
thirds being diagnosed at follow up [38—40]. This would
be a useful minimum comparator for any diagnostic
system based on a combination of ML and EHRs data.
There exists the potential to develop predictive models
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of depression using EHR/ML applications and it is nec-
essary to critically evaluate models developed in recent
years. This is particularly important in the context of rap-
idly developing ML techniques, and the growing acces-
sibility and richness of EHRs health data. Our starting
point for this systematic review was, “Is there a case for
using EHRs with machine learning to predict/diagnose
depression?” From this we derived the objectives to iden-
tify and evaluate studies that have used such techniques.
As part of the evaluation, we specifically focus on iden-
tifying key features of the data and ML methods used.
Accordingly, our primary focus is to provide a compre-
hensive overview of the types of ML models and tech-
niques used by researchers, as well as types of data on
which these models were trained, how the models were
validated and, where done, how they were then tested. By
summarizing the data used, identifying and summarising
predictors used, describing diagnostic benchmarks, and
outlining what types of validation and testing approaches
were used, our review offers an important source of infor-
mation for those who wish to build on existing efforts to
improve predictive accuracy of such models.

Methods

Search strategy and search terms

Systematic literature searches were conducted within
arXiv, PubMed, PsycINFO, Science Direct, SCOPUS
and Web of Science electronic databases. Searches were
restricted to information published after 2010 (from
1% January 2011 onwards) and were updated prior to
the final synthesis of data on 27" January 2022. Initial
searches were made based on titles/key words (where lat-
ter available) and papers were selected based on the inclu-
sion criteria summarised in Table 1. These were searched
as (#1) AND (#2) AND (#3) AND (#4). These papers were
evaluated by reading the Abstract, and then by evaluating
main body of each manuscript. Next, a backward citation
search for all the selected papers was completed as both
a) a quality check to see if other selected papers were
included and b) to identify any missing papers. The last
search step was a forward search pass where papers that

Table 1 Search terms for study identification
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cited the selected papers were identified; again, identify-
ing any missed papers. The same time period and inclu-
sion/exclusion criteria were applied to these additional
searches. The initial searches together with primary
assessment for inclusion were conducted by DN. 10% of
the searches were sampled by LW. The inclusion/exclu-
sion results for the selected papers were audited by LW,
and joint discussions were held to resolve any issues. In
the event of this not being possible CT would have been
involved as final arbiter.

This systematic review was prospectively registered
with Prospero international database of systematic
reviews (# CRD42021269270) [41].

Inclusion/exclusion criteria

Table 2 shows the inclusion and exclusion criteria that
were adopted to define the publications that came within
the scope of the review.

Data extraction

Data extraction was informed by requirements detailed
in: “Transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD)
[42]; ‘Critical Appraisal and Data Extraction for Sys-
tematic Reviews of Prediction Modelling Studies: The
CHARMS Checklist’ [43], and ‘Protocol for a systematic
review on the methodological and reporting quality of
prediction model studies using machine learning tech-
niques’ [44]. Table 3 details the data extraction catego-
ries. Primary data extraction was conducted by DN this
was then validated by LW.

Quality of studies

The Oxford Centre for Evidence-Based Medicine
(OCEBM) system [45] was used to assess quality, previ-
ously used for a systematic review about artificial intel-
ligence and suicide prevention by Bernert et al. [46] as
many of the models were developed and evaluated in a
clinical setting and so merit a level of formal assessment.
This ranked the evidence on a scale of 1 to 5, lowest to
highest. The results were added to the data extraction

Component Area Search terms

#1 Artificial Intelligence/
Machine Learning

(artificial intelligence) OR (machine learning) OR (data mining) OR (supervised learning) OR (unsupervised
learning) OR (predictive analytics) OR (reinforcement learning) OR deep learning)

(screening, including: screen*; identif* detect®) OR (diagnosis including diagnos*) OR (Classification)

#2 Screening/Diagnosis

OR (prediction including: predict®)
#3 Depression Depression OR Depressive
#4 Electronic Health Records

records) OR Clinical notes)

(Electronic Health Records, including EHR) OR (Electronic Medical Records, including EMR) OR (Clinical

Note 1, The symbol "*" in search terms indicates match the core text followed by any valid suffix, e.g., "ing"
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Table 2 Inclusion/exclusion criteria
Inclusion Exclusion

Screening/Prediction/Diagnosis of depression in the undiagnosed with/
without comorbidities

Artificial Intelligence/Machine Learning techniques
Used EHRs/Clinical notes derived data as primary source

Ethically approved

Took place after 01/January/2011
Available in English

Published in a peer reviewed journal/recognised publisher/conference
paper

Involved interventions/trials or delivery/monitoring of interventions

Used additional unproven, experimental, bespoke or laboratory technology

Used additional high cost/specialist technology such as fMRI (functional
Magnetic Resonance Imaging) scanners, ECG (electrocardiogram), EEG
(electroencephalogram), PET (Positron Emission Tomography) scans,
radiography etc

Involved invasive procedures such as blood tests, CSF (Cerebrospinal Fluid)
assays

Required additional activity to obtain predictor data e.g,, clinical interviews
Review/Summary paper

Table 3 Data extraction summary

Category Description/example

Title

Journal/ Conference

Title of journal/conference entry
Publisher
Outcome Benchmark for depression

How outcome was measured (e.g., PHQ-9 (Patient Health Questionnaire 9), ICD (International Classification

of Diseases) code, HADS (Hospital Anxiety and Depression Scale)

Demographic
Data Source type
Data Specifications
Predictors

Characteristics of the participant pool including age, gender, ethnicity etc. where specified

EHRs (Electronic Health Records), EMRs (Electronic Medical Records), Clinical Notes, Clinical Records

Nature and source of data (e.g., types of codes used, organisation that provided the data)

Types of predictors used by models and identification of any groupings or subsets they might fall into. The term

“predictors”is considered interchangeable with “features”and “exposure variables” or other related terms

Study Design

Sample Size Training or Total
Sample Size Testing/Validation
Missing Data

Model Development Pre-Process

Case/Control, Case Series, Cohort etc

Number included in training/total dataset

Number included in test/validation dataset

Explanation of how instances of missing data were addressed

Information relating to the methods used for pre-processing, preparing, cleaning, extracting data (e.g., natural

language and text processing methods)

Model Development Analysis (Fitting)

Information relating to the statistical methods used, ML (statistical techniques and/or broader Al e.g., neural

networks). If relevant additional data pre-processing/preparation. Assessment of overfitting

Performance Metric
Sensitivity, Specificity, Accuracy)

Baseline/Comparator

How model measured/reported (e.g., odds ratio, AUC ROC (Area Under Curve Receiver Operating Characteristic,

Criteria used to evaluate/compare model. How model assessed against outcome

Validation Information relating to the use of validation methods
Testing Independent testing and separate hold out set
Results The results reported (may be in summary form)

Data Availability and sharing

Code Availability and sharing
Abstract

Full Reference (and Citation)

Text of study abstract

Information relating to data availability, any repository/contact details and conditions that might apply
Information relating to code availability, any repository/contact details and conditions that might apply

Supporting unambiguous identification of paper and providing source for citations in tables/figures/text

table. OCEBM is designed to provide a hierarchy of levels
of evidence for researchers and clinicians whose time is
limited, it is well established and widely used. For further
information, see Howick et al. as reported in [47].

Results

The search protocol together with numbers of studies
identified, selected, assessed, included/excluded is pre-
sented in Fig. 1, compatible with PRISMA standard [48].
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Fig. 1 PRISMA flow diagram with results for systematic review study selection [48]. Note: reasons, for example relating to disorder focus, scope, data
sources, specially selected cohorts, disorder trajectory not diagnosis, for excluding full text articles are included in supplementary data, Table S 1

Searches

A total of 744 research papers were identified in the first
stage of the literature search (711 after duplicates were
removed). Screening content of abstracts and, subse-
quently, main body of each article, reduced the sample
to 18 eligible articles. The backwards citation search
of the selected papers identified 22 papers (including
duplicates) that were rejected, 10 that were in the origi-
nal selection and two (duplicates) that were added to the
selection, resulting in one additional paper (giving 19 in
total). The forward citation search did not produce addi-
tional papers at the time of the review.

Review articles are not included in the final total but
were used for supporting research and were recorded.

Selected studies overview

This review summarised studies that use ML methods to
train validate, and test ML models for predicting depres-
sion based on individual-level EHR data from primary
care (11 studies) and from a combination of primary and
secondary care (8 studies). Table 4 summarizes key fea-
tures of each study. We now turn to a detailed overview
of each of the components described in Table 4.
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http://www.cs.waikato.ac.nz/ml/weka/documentation.html
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Depression definition

The definition of depression and the method of its classi-
fication varied across the studies in this review. A combi-
nation of depression diagnosis definitions based on NHS
Read codes [68], SNOMED (Systematized Nomenclature
For Medicine) [29] codes, ICD [12] or DSM [13] based
assessments and/or the prescription of antidepressants
(ADs) was used in 16 of the 19 studies. Only one study,
by Xu et al. [65], used antidepressant prescription alone
as a case definition. Three other studies relied on the use
of a validated questionnaire such as the PHQ-9 [69] or
HADS [16].

Predictors

Here we report on aspects of the predictors including
their definition, how we grouped them and their fre-
quency of use.

Definitions

Most predictors were derived from a combination of var-
iables present in the EHR databases (e.g., SNOMED/NHS
Read codes and/or prescription of a drug in a similar way
to the definition used for depression) and were typically
categorical. In some cases, additional parameters speci-
fying a time frame for the predictor were also available.
Some predictors were defined by identifying components
by pre-processing clinical notes/other textual informa-
tion. A few studies used non categorical predictors such
as physiological measurements for example Body Mass
Index (BMI), blood pressure, and cholesterol as predic-
tors. This was usually where participants were receiving
some form of secondary care, such as in pregnancy for
PPD prediction.

Groups
No formal method for grouping predictors was evi-
dent in the studies and, due to the large number of
diverse predictors used in different papers, for clarity
these were organised into the following groups. Specifi-
cally: comorbidity, demographic, family history, other
(e.g., blood pressure), psychiatric, smoking, social/fam-
ily, somatic, obstetric specific, substance/alcohol abuse,
visit frequency and word list/text. Due to this flexibility
in definition, there are overlaps between studies concern-
ing which category a predictor might fall, for example a
blood test may be in “other, or “obstetric specific” Table 5
shows the predictors groups and commentary on their
content.

Figure 2 indicates frequency of predictor use across the
selected studies.
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Data

The studies in this review used data sets from EHRs
systems, insurance claims databases and health service
(primary and secondary) providers. As such they store,
organise, and define data in a variety of ways that are not
expected to be consistent with each other. Most of this
data is categorical in nature, though some predictors
such as blood pressure, are usually continuous variables
within a range. In this section we report how each of the
reported studies dealt with missing or erroneous data,
potential sources of bias. We also report whether the
authors made their data and/or code publicly available.

Missing or erroneous data

Missing data either related to missing patients and/or
missing predictor data. In both cases it may not be possi-
ble to know that the data is missing. For missing patients,
Koning et al. [55] excluded patients whose records did
not identify gender or had no postcode registered. Huang
et al. [52] removed entries where patients had less than
1.5 years of visit history. Wang et al. [64] excluded from
the analysis PPD patients for whom there was no third
trimester data.

With regard to missing data. Nemesure et al. [58] esti-
mated that, for their data set, missing values were present
in 5% of the data overall and for 20 out of the 59 predic-
tors they used. In some studies, missing data led to exclu-
sion of cases from the analysis. In Nichols et al. [59].
missing smoking status was used to infer non-smoking
on the basis this was less likely to be missed for smok-
ers/those with smoking related disorders. Missing data
also led to exclusion of predictors. Again, in Nichols et al.
[59], the authors did not use ethnicity as it was missing in
over 63% of patients. Similarly, Zhang et al. [67] excluded
ethnicity from their USA dataset for the same reasons.
Many studies (e.g., Koning et al [55]., Meng et al. [57],
Nichols et al. [59] raised concerns that errors in predic-
tor data could affect performance, generalizability, and
reliability of the models. Errors and missing data were
identified as being due to misclassification, measurement
errors, data entry and bias; all of which can be difficult
identify and/or correct in EHR data as noted by Wu et al.
[36]. Other studies varied in the strategies used for deal-
ing with missing data. Common approaches were to esti-
mate the level for a missing point or simply acknowledge
that remedial action was not available. Nemesure et al.
[58] used an imputation approach fortheir numerical
data, such as blood pressure. Where remedial action is
not possible then the patient might be excluded from the
study, e.g. Hochman et al. [51].
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Table 5 Grouping of predictors from the studies

Predictor group

Commentary

Comorbidities

Demographic

Family History

Obstetric specific

Psychiatric symptoms or other diagnoses

Smoking

Social/family

Somatic
Substance/alcohol abuse
Visit frequency

Word list/text

Other measurements and predictors

Comorbidities were included in 13 studies. They included long-term conditions, such as diabetes, asthma,
epilepsy, and chronic pain. These were commonly used, especially when the study authors highlighted
theoretical links with depression

Demographic predictors were used in 16 studies. On some occasions, specific demographic variables
were excluded due to insufficient availability/coverage (often the case for ethnicity). Gender was included
as a predictor and occasionally also as a means of creating gender-specific models (e.g., Nichols et al. [59]).
Social deprivation was also used as a predictor, and information about missed immunization(s) was used
in two studies, Nemesure et al. [58] and Nichols et al. [59], as a proxy for social deprivation

The age range of cases was often an integral part of the study’s specific aims. Age being treated either as a
numeric or to break up the study population into subgroups. Some studies specifically focussed on older
patients. For instance, Sau and Bhakta [62] used data with an average age of 68.5 years (standard devia-
tion 4.85 years), whereas Nichols et al. [59] focused on early diagnosis among young people, between 15
to 24 years of age. Some studies narrowed the analysis to a narrow age bracket, others included a wide
range of ages. For example, Hochman et al. [51], who studied postpartum depression reported an average
age of 294 years (standard deviation, 5.4) whereas Xu et al. [65] used data from participants whose age
ranged from 18 to over 65

Family history was used in five studies and included family history of abuse (physical/sexual) and drug/
substance abuse, often because the study authors cited theoretical links with depression. This group

of predictors was often under recorded, as reported in the Nichols et al. [59] study where family history data
was removed from the model due to low prevalence (< 0.02%) in their data. Insufficient family history data
was also highlighted as a limitation in other studies [53, 55]

Obstetric specific were used in five studies focussed on the prediction of postpartum depression, and these
included predictors such as premature birth, use of specific drugs during pregnancy and obesity. This type
of predictor was also used in non-postpartum depression studies e.g., Abar et al. [49]

Psychiatric symptoms/diagnoses were used in fifteen studies. These include both depression related
symptoms such as: anxiety, low mood, self-harm, sleeping and eating disorders, too little sleep etc. They
also include the broader range of conditions including post-traumatic stress syndrome, obsessive compul-
sive disorder, personality disorders and psychoses. Within individual studies there may/may not be a distinc-
tion made between these two subgroups

Smoking was used in seven studies. However, it was identified, for instance by Nichols et al. [59], that data
may be incomplete for all participants and that this might impact the ability to reliably assess correlations
with depression, to mitigate this they used “‘missing smoker”data as a separate predictor. This was a categori-
cal predictor in the selected studies

Social and family related factors were used in seven studies these included bereavement, divorce, single
parent, police or social services involvement and similar

Somatic conditions were used in 14 studies these include physical conditions such as, abdominal pain, back
pain, dyspepsia, eczema, headaches, and others

Alcohol/substance abuse was used in seven studies, participants identified as having drug/alcohol abuse
problems. Typically categorical, but some studies included levels of abuse and/or combinations of the two

Visit frequency was used in six studies and shown to be a significant contributor to model performance. This
is an integer variable based on number of visits in a specified period to the primary care facility (e.g,, NHS GP)

Word list/text derived data was used in only one study, Geraci et al. [50], this was a source of data
that was then analysed, using natural language processing, to extract predictors from clinical notes. It
is based on language/defined terms specific

Other measurements and predictors were used in 11 studies and included, e.g,, measurements of physical
characteristics such as blood pressure, cholesterol, results of assays, and height/weight

Note: There may be overlap or gaps in these groupings as the predictors used and the reason for their use is study specific and not always explained

Sources of bias

comorbidity predictor data (e.g., for diabetes), both per-

Many of the studies (12), for instance, Hochman et al.
[51], Huang et al. [52] and Koning et al. [55] raised the
question about data bias due to cohort selection or col-
lection processes, such as diagnosis, data interpretation
and system input. Other studies (12) recognised sources
of bias impacting accuracy and generalizability. Jin et al.
[53] identified that as the population in their study
were mainly Hispanic and there was incompleteness of

formance and generalizability would be affected. Zhang
et al. [67] acknowledged that sourcing their data from an
urban academic medical centre could introduce result
in a limited generalizability of their findings. Hochman
et al. [51] suggested that their use of an exclusion criteria
removing severely depressed patients based on the pre-
scription of specific drugs could also create bias. Zhang
et al. [66] chose to exclude ethnicity from their models
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Fig. 2 The approximate number of studies using different groups of predictors. Note 1: Some papers used multiple categories of predictors
and not all categorised them. Note 2: The total number of predictors used was difficult to determine at a summary level as multiple models used
different combinations, in some cases no exact number was provided but a reference to a set of definitions used as a starting point

due to coding inconsistencies and errors; making a bias
in that area a potential issue. Huang et al. [52], defined
depression based solely on antidepressant usage and sug-
gested their sample would be skewed towards the more
severely depressed because the sample excluded those
whose condition was treated with only psychotherapy or
those without any treatment. A similar concern regard-
ing changing definitions for the detection of depression
during their study period was expressed by Xu et al. [65].
At a broader level, 20 of the studies were from “WEIRD”
(Western, Educated, Industrialised, Rich, Democratic)
countries with the majority (15) from the USA. The
remainder were from countries with highly developed IT
and healthcare industries such as Brazil, Israel, and India.

Data sharing

The nature of the data, data protection and requirements
for anonymity, and privacy issues limited access to source
data though details of sources themselves were more
often made available (e.g., Hochman et al. [51], Nichols
et al. [59]).

Modelling

In this review, we identified a wide array of statistical
techniques used on EHR data (see Table 4). Many differ-
ent types of supervised ML were used for classification
of depression versus control, including regression mod-
els (13 studies) and Random Forest (8 studies), XGBoost
(8 studies) and SVM (7 studies) were the most common

techniques. Use of multiple techniques in a single paper
was also common, for instance Xu et al. [65] and Zhang
et al. [66] used four or more methods. Geraci et al. [50]
was the only study to use a deep neural network-based
deep learning approach as the primary component of
their model. Figure 3 summarises methods used in the
selected studies.

Temporal sequence was referred to in two studies [49,
60] though other studies refer to time between predic-
tors and diagnosis (e.g., Meng et al. [56]). In other stud-
ies patterns of predictors were used to determine their
predictive probabilities of depression, sometimes using
time constraints, such as a primary care visit “within the
last twelve months” or specifically including time distant
events such as birth trauma (Koning et al. [55], Nichols
et al. [59]. Only one study, Pélchlopek et al. [60], imple-
mented temporal sequence, whereby the order of presen-
tation of symptoms was considered, in the EHRs. Though
Abar et al. [49] speculated that temporal sequence
might be used to improve performance by taking causal
sequence into consideration.

Most studies (17 out of 19) validated their models,
most commonly (12) by splitting data into a training and
a testing set. Cross validation data sets for model testing
were also used (11 out of 19). Generally testing and vali-
dation was carried out by the same team as created the
models, only Sau and Bhakta [62] had diagnostic accu-
racy checked by an independent team. Only one study
used a separate data set for testing rather than splitting
the original data set, Zhang et al. [67].
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Fig. 3 Machine Learning/Artificial Intelligence Methods for pre-processing and modelling (note LR variants add up to 11). Abbreviations; ARM,
Association Rule Mining; BRTLM, Bidirectional Representation Learning model with a Transformer architecture on Multimodal EHR; DNN/ANN, Deep
Neural Network/Artificial Neural Network; KNN, K Nearest Neighbours; LASSO, Least Absolute Shrinkage Selection Operator; LR, Logistic Regression;
MLP, Multilayer Perceptron; M SEQ, multiple-input multiple-output Sequence; NB, Naive Bayes; SVM, Support Vector Machine; XGBoost, eXtreme

Gradient Boosting

Code sharing

Code was made available by the majority (12) of stud-
ies. In some cases, just the details of the packages that
implemented the ML algorithm were provided. For
example, Jin et al. [53] reference the R package MASS,
rather than the providing the complete code.

Performance

Several performance metrics was used to evaluate ML
models of depression. Among those, researchers reported
confusion matrices; area under the curve — receiver oper-
ating characteristics (AUC-ROC); and Odds Ratios/Vari-
able Importance for predictors.

Confusion Matrix derived metrics (True Positives,
True Negatives, False Positives and False Negatives)
were used in sixteen of the studies, usually in conjunc-
tion with other measures particularly AUC-ROC. Many
performance metrics are derived from this information,
including accuracy, F1, sensitivity, specificity, and pre-
cision. Sensitivity (also known as recall) and specific-
ity were commonly reported, possibly because they give
information relating to the discriminative performance of
the model and are well understood by practitioners [70].

For sensitivity, reported values range from 0.35 Hoch-
mam et al. [51] to 0.94 Geraci et al. [50]. For specificity,
reported values range from 0.39 Wang et al. [64] to 0.91
Hochman et al. [51]. Sensitivity was usually higher than
specificity across the models with the exceptions being:

Hochman et al. [51] who reported a high specificity fig-
ure of 0.91 with a low sensitivity of 0.35 using a gradient
boosted decision tree algorithm; and Nemesure et al.
[58] reported specificity of 0.7 and sensitivity of 0.55.
The highest accuracy at 0.91 was reported by Sau and
Bhakta [62] and the lowest was 0.56 (Zhang et al. [67]).
This metric only gives a broad overall picture of correctly
predicted results vs. all predictions made and gives no
indication of the more useful true/false positive rates; it
was presented in only six studies.

For the studies that reported performance in terms of
AUC- ROC metric (14) the low extreme for any model
was 0.55, specifically from a benchmark model predict-
ing depression in the 12—15 years age group (Péichlopek
et al. [60]. The highest AUC-ROC score was 0.94 (Zhang
et al. [67], Kasthurirathne et al. [71]). The overall range
AUC-ROC values reported was 0.70 to 0.90. The average
AUC-ROC value was 0.78 with a standard deviation of
0.07. Figure 4 shows the average AUC values achieved in
each study.

Generalizability and interpretability

Generalizability was mentioned in 14 studies, for exam-
ple Jin et al. [53] and Zhang et al. [67]. The points already
illustrated under, “sources of bias’, for example, demo-
graphically specific participants, and, factors relating to
missing data and granularity of data, such as only hav-
ing social deprivation data at practice level have negative
consequences for generalizability.
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Fig. 4 Average AUC performance across studies reporting them (AUC average=0.78, Standard Deviation AUC Average=0.07)

Interpretability was identified as a concern in only 3
studies (Koning et al. [55], Nemesure et al. [58], Meng
et al. [56]). For interpretability Nemesure et al. [58] used
SHAP (Shapley Additive Explanations) scores which
offers a decision chart and other visualisations for model
predictors [72]. None of the included studies provided
visualisations other than AUC-ROC diagrams and bar
charts, as such interpretability was not significantly
addressed in the selected studies.

Quality of studies

All the included studies achieved a score of 3 (11) or 4
(8) based on the OCEBM criteria (1 to 5 from highest to
lowest) hierarchy of levels of evidence as far they could
be applied to the selected studies, areas that related to
diagnostic tests only (no interventions). This represents
a moderate level of performance. Overall, the studies rep-
resented large sample sizes, usually case series or cohort
trials and they applied a clinically recognised benchmark,
had there been randomized trials studies could have been
promoted to level 2.

Only 3 studies provided reference to the use of a for-
mal assessment method such as TRIPOD [42]. suggest-
ing that following standards is not yet widespread or
that the frameworks are not yet sufficiently established
or appropriate. This lack of consistent reporting is a lim-
itation, and the use of standardised frameworks should
become the expectation rather than the exception.

Discussion

In this review we have identified three areas of inter-
est: generalizability (can the model be reused with, e.g.,
different populations), interpretability (is the model’s
information readily understandable to its users), and
performance (does the model meet the needs e.g. in
AUC-ROC, for the purpose for which it is intended) as
key components to consider for predictive models of
depression built on the use of ML with EHR data. All
three would need careful evaluation before moving from
research to a clinical application environment.

Generalizability

This is a significant consideration for medical ML appli-
cations, whilst a model may work well in their develop-
ment and testing environments, this does not guarantees
that they will work in a new context [73, 74]. To be widely
deployed clinically, the models in the studies would need
to be generalizable, i.e., be able to work reliably outside
of their development environment. Kelly et al. [73] iden-
tified the ability to deal with new populations as one
prerequisite for clinical success. Areas identified in the
studies that could impact generalizability included demo-
graphics, sources of bias, inclusion/exclusion criteria,
missing/incomplete data, the definition of depression and
predictors. All of these were identified in the included
studies, for instance, Jin et al. [53] identified Hispanic
participants being highly represented in their data and
Zhang et al. [66] excluding ethnicity from their models.
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As noted in the Performance sub-section of the
Results, the ML method itself did not seem to be overly
critical for outcome performance using the EHR data
sets in the included studies and it is provisionally sug-
gested that the method itself may be more generalizable
than the data to which it is fitted.

Another area that can limit generalizability is the
wide variety of EHR data. This varies depending on
source for example insurance derived, a state health
service such as the NHS, or a proprietary standard such
as SNOMED etc. The coding may, or may not, incorpo-
rate a recognised medical standard such as the ICD [12]
or DSM [13] amongst others that can be found in the
included studies. Although not derived from the stud-
ies directly it was noted that individual EHRs systems
are proprietary in nature and there is no universally
accepted extant standard detailing how data should
be categorised, stored, and organised for them.. There
are organisations developing, promoting, and gaining
accreditation, for example Health Level Seven Inter-
national [75] with ANSI (American National Stand-
ards Institute) [76]. However, none of these are globally
adopted, and the only accepted standard developed by
the World Health Organization (E1384) was withdrawn
in 2017 [77]. Lack of standardisation is currently a bar-
rier to portability for individual applications. Conse-
quently, it is likely that models are data source specific
to a greater or lesser extent. Further work needs to con-
sider how this can be addressed.

The studies in this review differed in how depres-
sion was defined and by the range of predictors selected
and their definitions. As mentioned, a commonly used
approach was to use a combination of EHR data entry
codes covering diagnoses in combination with prescrip-
tion of an antidepressant. This can result in too many
cases as being diagnosed as depressed due to antidepres-
sants being used for a wider range of conditions. Similar
issues apply for the definition of predictors. In combi-
nation this restricts the generalizability of any models
produced.

Another factor for generalization is the robustness
of the models and their replicability. None of the stud-
ies included replication of their results, only Sau and
Bhakta [62] used an independent team for the verifica-
tion of results, though the majority employed recognised
validation techniques and 12 used separate hold out data
set. This last point is also relevant to establishing if mod-
els have been overfitted to their data; the possibility for
this was not reported in any of the studies despite being
known as a serious potential issue for ML models in
general. Reducing bias and independent validation and
testing is recommended for future work involving the
prediction of depression using ML with EHRs.
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Interpretability

Interpretability was only identified as a concern in a few
studies. However, clinical practitioners may wish to know
the explanation for ML algorithm’s predicted diagnosis
so they can fit it into a broader diagnostic picture rather
than treating it as a “black box” as described by Cadario
et al. [78]. Similarly, Vellido [79] and Stiglic et al. [80]
also considered that interpretability and visualisation are
important for effective implementation of medical ML
applications. This may be as simple as listing the specific
predictors that contributed to the outcome, for exam-
ple, anxiety, low mood, chronic pain or similar. Of the
included studies Nemesure et al. [58] used SHAP (Shap-
ley Additive Explanations) scores which have been used
in clinical applications [81] to aid interpretability, again
by identifying the most important predictors. Techniques
such as SHAP, and e.g., LIME (Local interpretable model-
agnostic explanations) [82] offer visualisations which may
be more intuitive and provide more easily digested infor-
mation. However, none of the other studies included pro-
vided visualisations other than AUC-ROC diagrams and
bar charts of predictors. That said, there is a long-stand-
ing unsettled debate regarding interpretability going
back to the 1950s. Providing interpretive data to sup-
port a practitioner as opposed to a “black box” approach
where the diagnosis made by the application is simply
accepted, can lead to a lower diagnostic performance
overall [83, 84]. It is recommended that future studies
should be made that not only develop predictive models
but also include trialling their use, for example with pri-
mary practitioners, support staff and/or patients, offer-
ing different forms of interpretable/black box output and
assessing acceptability. This needs not be done, initially,
in a clinical setting, but can be piloted and demonstrated
in prototype form in a controlled environment. This can
then be assessed using a combination of qualitative and
quantitative methods e.g., with surveys, interviews, focus
groups and panels prior to moving to clinical trials.

Performance

Here we consider what may be limiting the performance
of the models with respect to their intended used as a
means of identifying depression. One limiting factor on
performance in the included studies, relates to the defini-
tion of depression itself and the predictors used. Defining
depression accurately is critical as this definition is used
to train the ML application, a point raised by Meng et al.
[57]. In the studies reviewed here, typically a combina-
tion of diagnostic and drug codes within the EHRs were
used. Using prescription of antidepressants as part of the
definition may misidentify too many cases, a point iden-
tified in the selected studies by, for example, Qiu et al.
[61] and Nichols et al. [59]. ADs are prescribed for other
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conditions including anxiety [85, 86], chronic pain [87,
88], obsessive compulsive disorder [89, 90], post-trau-
matic stress disorder [91, 92] and inflammatory bowel
disease [93]. Of the included papers Xu et al. [65] sug-
gested that under-identification of depression cases could
also occur for patients receiving treatment via private
care or an alternate service provider.

The prevalence of predictors can be artificially boosted,
as suggested by Koning et al. [55] and Nichols et al. [59]
where primary care physicians who think a patient has
depression may identify or suspect a precursor or comor-
bidity, for example, with other mental health conditions
like low mood or anxiety. There is strong evidence that
family history of depression, alcohol, drug, physical and
sexual abuse, and co-morbidity with other mental health
conditions, are strong predictors of depression [94—97].
However, this data appears to be under recorded result-
ing in removal of important predictors due to low preva-
lence—again in Nichols et al. [59] removed family history
data due to its low prevalence (<0.02%). This would be
expected to have a negative impact on performance.
Identifying consistent and valid definitions for depression
and any predictors used is a necessity.

The studies in this review reported an overall model
performance where AUC-ROC value was 0.78 with a
standard deviation of 0.07 (Fig. 2). This compares well
with primary care where up to half of depression cases
are missed at baseline consultation, improving to around
two thirds being diagnosed at follow up [38, 40]. An ear-
lier paper by Sartorius et al. [98] reported that only 39.1%
of cases of ICD10 current depression were identified by
primary care practitioners. Based on the studies we iden-
tified potential areas that might support improvements
in the performance of the models. A key area relating to
this is that of over/under diagnosis; as mentioned in our
background section early diagnosis and thus intervention
can show benefits for depression [25, 99]. However, there
is a broader argument with regard to over-diagnosis (i.e.,
false positives) in terms of potentially wasting resource or
stigmatising patients.

Although some studies suggested that using more
sophisticated techniques should improve performance,
we noted that simpler methods such as logistic regres-
sion were often comparable to those obtained using more
complex ones such as Random Forest and XG Boost (e.g.,
Zhang et al. [67]. Christodoulou et al. [100] echoed this
conclusion in their systematic review of clinical predic-
tion using ML where they saw similar performance for
logistic regression compared with ML models such as,
artificial neural networks, decision trees, Random For-
est, and support vector machines (SVM). Geraci et al.
[50] employed a deep neural network (deep learning) as
their main modelling technique and Nemesure et al. [58]
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used it as a component in a larger ensemble model. How-
ever, neither demonstrated performance benefits from its
use. Even if higher performance could be obtained using
deep learning it is important to note that small amounts
of noise or small errors in the data can cause significant
reliability issues due to misclassification due to very small
perturbations in the data [101, 102]. The use of more
sophisticated techniques to improve performance is not
supported by this review.

How else might performance be improved? The use of
non-anonymised data, sourced from within a primary or
secondary care facility, something that is more achievable
in a clinical than a research setting, could be beneficial.
For example, in the Nichols et al. [59] study social depri-
vation indices were only available at a regional/practice
level and inspection of their model suggests that social
deprivation has little impact on prediction of depres-
sion. This is inconsistent with expectation, as supported
by Ridley et al. [103] who showed that there is a link
between increased social deprivation and the probability
of developing depression. Having this data at an individ-
ual level might be expected to increase the performance
of a model. However, this is likely to only be achievable
in a clinical trial of an application. Alternatively, the use
of synthetically generated EHR data [104, 105] removes
the patient confidentiality and related ethical constraints
that come with real data and would allow all aspects of
a model to be fully evaluated as if with non-anonymous
patient data.

Another approach is using more information relating
to time in predictive models; EHRs typically time stamp
entries so it is known when a predictor is activated.
Péichlopek et al. [60], considered temporal sequence
in EHRs. They were concerned that techniques includ-
ing support vector machines and random forest identify
predictors that affect the outcome but do not identify
the effect of sequence on that outcome. They looked at
the improvement that could be found by using temporal
patterns in addition to non-time specific predictors and
noted a small positive effect. Abar et al. [49] also specu-
lated that temporal sequence might be used to improve
model performance. There are techniques that might be
used to do this. For example, time series analysis meth-
ods such as Gaussian processes, which are capable of
coping with the sparse nature of EHR data [106] have
been used to make predictions for patients with heart
conditions. We recommend exploring the use of more
time dependent factors in building predictive ML models
for depression.

Although missing data is more of a concern in terms
of generalizability, some studies identified it as an oppor-
tunity to improve performance. Kasthurirathne et al.
[54] noted that missing EHR data can reduce model
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performance and suggested that this could be mitigated
by merging with other data sources, for example, related
insurance claims. Nichols et al. [59] used missing smok-
ing data as a predictor and it had a positive effect in their
model. Missing data is potentially of significance of itself
and is an opportunity for further study.

Strengths and limitations

As far as we are aware this is the first systematic review
focussed on the use of EHRs to predict depression using
ML methods. The choice of journal databases and the-
date range covered by the searches means that the stud-
ies identified provide a sound basis for comparison. The
data extraction protocol was informed by established
standards [42—44] to best identify data needed to support
meaningful and repeatable analyses.

A limitation of this study is that inclusion criteria
focused on study titles and key words which may have
led to some ML studies using EHRs being missed. This
was mitigated using backwards and forwards citation
searches. Additionally, the variety of study designs
including case control, cohort, and longitudinal stud-
ies precluded the possibility of using some of the more
traditional quality assessment tools; we did however, as
stated in methods, use OCEBM which has been used
in previous ML systematic reviews. The categorization,
definition, and identification of the numbers of pre-
dictors used within models was sometimes difficult to
establish, leading to limitation in the scope of this infor-
mation presented. It is also likely that the included stud-
ies are culturally specific as they focused on “WEIRD”
populations.

Conclusions

In conducting this systematic review, we have shown that
there is a body of work that supports the potential use of
ML techniques with EHRs for the prediction of depres-
sion. This approach can deliver performance that is com-
parable to, or better than that found in primary care. It
is clear there is scope for improvement both in terms of
adoption of standards for both conducting and reporting
the research and the data itself. The development of an
acceptable global standard for EHRs would improve gen-
eralizability and portability. This would involve greater
promotion, and development, of standards for research
such as TRIPOD [42] and, for data interchange, Health
Level Seven International [75], and their further devel-
opment to support ML/EHR applications. Future work
could pay more attention to generalizability and inter-
pretability, both of which need to be addressed prior to
trialling implementation in the clinic. It is also worth
investigating areas where performance can be improved,
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for example by including temporal sequence within the
models, better selection of predictors and the use of non-
anonymised/synthetic data. Our review suggests depres-
sion prediction using ML/EHRs is a worthwhile area for
future development.
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