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Abstract: We sought to determine if DNA methylation patterns differed between vegans and
non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived
from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression,
methylation of CpG sites and genes was categorized or summarized according to various
genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of
genes was measured as the average methylation of available CpG’s annotated to the nominated region
of the respective gene. A permutation method defining the null distribution adapted from Storey
et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes
were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet
was associated predominantly with hypomethylation of genes, most notably methyltransferase-like
1 (METTL1). Although a limited number of differentially methylated features were detected in the
current study, the false discovery method revealed that a much larger proportion of differentially
methylated genes and sites exist, and could be detected with a larger sample size. Our findings
suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater
number of detectable significant differences expected with a larger sample.

Keywords: DNA methylation; epigenetics; Adventist Health Study-2; vegetarian diet; linear regression;
permutation

1. Introduction

Findings from the Adventist Health Study-2 (AHS-2) cohort have been prominent among
epidemiologic studies linking a vegetarian dietary pattern to lower risks of diabetes, metabolic syndrome,
and coronary heart disease [1–5] as well as lower risks of gastrointestinal and prostate cancers,
among others [6–8]. Besides avoiding meat, vegetarians and particularly vegans in this cohort have
markedly higher consumption of plant-based foods including fruits, vegetables, whole grains, soy,
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and nuts, but lower consumption of sweets, snack foods, refined grains, and caloric beverages [9],
and healthier profiles of biomarkers of dietary intake, including phytochemicals or bioactive
compounds [10] relative to non-vegetarians. However, there is limited understanding of the underlying
molecular mechanisms that could help explain the probable ability of vegetarian dietary patterns to
prevent chronic diseases, or to buttress causal interpretations.

DNA methylation involves the chemical addition of a methyl group at the 5′ position of a
cytosine residue, and may be influenced by diet, among other lifestyle or environmental factors.
Such modifications can potentially alter gene expression and the development of chronic, autoimmune,
or aging-related diseases [11,12]. Diet may influence gene-specific or global DNA methylation by
(1) providing or modifying the availability of methyl donor compounds or cofactors that regulate one-
carbon metabolism [13], (2) regulating enzymes that catalyze or reverse methylation, such as DNA
methyl transferases (DNMTs) or ten or eleven translocation (TET) enzymes [14,15], and (3) indirectly
regulating inflammation or oxidative stress [16]. Vegetarian or plant-based diets are rich in polyphenols
and secondary plant metabolites that could inhibit the activity of DNMT to prevent cancer [14,17,18].
On the other hand, diets high in animal-based and fatty foods may generate pro-inflammatory
compounds [19–22] and metabolites [15,23] that alter methylation and increase activity of TET enzymes
to promote cancer.

Besides specific dietary components, there is some evidence from animal studies and human
intervention trials that dietary conditions such as high fat content or caloric restriction may alter
genome-wide and gene-specific DNA methylation [24–30]. However, it is not clear how habitual dietary
patterns differing in consumption of plant- and animal-based foods differ in terms of DNA methylation
patterns. The aim of the current study was to examine genome-wide DNA methylation patterns
in long-term vegan and non-vegetarian participants of the AHS-2 cohort to identify differentially
methylated genes. Our approach involved a covariate-adjusted analysis of methylation of individual
CpG sites, as well as of CpGs annotated to their respective genes (gene methylation), considering
various gene regions, and employing an adapted Storey et al. [31,32] permutation method to correct
for false discovery.

2. Materials and Methods

2.1. Study Population

Participants in the current study are members of the larger AHS-2 cohort, established in 2002–2007
as a national study of Seventh-day Adventists, about 1

2 of whom are vegetarian. In this sub-study,
143 participants were Caucasian, and 61 were African-American or Black. Subjects were selected from
the AHS-2 biorepository for DNA methylation analyses conducted at three separate times variably
balanced by age, sex, diet group, and/or ethnic group. All subjects were pooled for the analyses
performed in the current study. Participants were classified a priori into vegetarian diet groups
based on their responses to the food frequency questionnaire (FFQ) completed upon enrollment as
follows: vegans never or rarely (less than once per month) consumed eggs, dairy, fish and other meats,
and non-vegetarians consumed non-fish meats at least once a month and any meat (including but not
only fish) more than once per week.

All investigations were carried out following the rules of the Declaration of Helsinki of 1975,
revised in 2013. The project was originally approved by the Loma Linda University institutional review
board, protocol: 48134.

2.2. Laboratory Analysis and Data Processing

Fasting blood samples were collected at field clinics held in church halls, as described
previously [33]. Buffy coat was removed and diluted to a final volume of 8 mL with phosphate
buffered saline, then aliquoted into straws and frozen at −180 ◦C in nitrogen vapor for storage in the
AHS-2 biorepository. Genomic DNA from buffy coat samples was isolated using the Quick-gDNA
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MiniPrep kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol. After bisulfite
sequencing, genome-wide methylation analysis was performed using the Infinium MethylationEPIC
(n = 67) and HumanMethylation450 BeadChip (n = 137) arrays at the University of California,
Los Angeles Neuroscience Genomics Core. Raw data were summarized into BeadStudio IDAT files for
further analysis.

Methylation data were processed using R version 3.6.1. Initial preprocessing and normalization
procedures were conducted using the minfi package in R [34]. Raw data generated from methylation
analysis were normalized with the single-sample normal-exponential out-of-band (ssNoob) method
as recommended by Fortin (2017) for combined 450 k and EPIC datasets. Probes were excluded that
were cross-reactive, within 10 bp of single nucleotide polymorphisms (SNPs) [35,36], or present on X/Y
chromosomes. Furthermore, CpG probes with bead counts less than 3 in more than 2% of samples or
detection p values above 0.01 in more than 1% samples were excluded. After these normalization and
processing steps, 313,206 CpG sites (common to both BeadChip arrays) remained for analysis.

As an additional layer of control and primarily to adjust for unwanted variation including batch,
chip, positional, cell heterogeneity, and study effects, a surrogate variable analysis was used from the
SmartSVA R package. With this method, influential principal components of residuals from regressions
of CpG methylation on dietary groups are converted into surrogate variables, and subsequently
included in final regression models, thereby accounting for unwanted variation from other sources
of “error” [37].

2.3. Statistical Analyses

DNA methylation β values were obtained from the BeadChip array, representing the methylation
frequency within an individual sample (ratio of methylated signal divided by the sum of methylated
and unmethylated signals) for each target CpG or gene ranging from 0 (not methylated) to
1 (fully methylated). Subsequently the log2 ratio of the methylated to unmethylated signal was
calculated to obtain M values. Using SmartSVA (39), surrogate variables were created from regression
residuals conditional on covariates, age (continuous), sex (male, female), ethnic group (Black, Caucasian),
and body mass index (BMI; continuous). To examine the association between dietary pattern and
DNA methylation, a linear model was then fitted where the response variable was the residual
when the M values were regressed on these covariates (except BMI) and the surrogate variables [38].
This represents non-BMI covariate-adjusted methylation levels for individual CpG sites [39], or the
average of covariate-adjusted methylation level for CpGs associated with each gene. The independent
variable came from residuals when dietary pattern was regressed on these same covariates, this then
representing covariate-adjusted dietary pattern. Body mass index was not included as a covariate,
given that it may be a mediator in some cases between diet and CpG methylation.

For comparison, separate linear regression models were fitted excluding the SmartSVA method,
where models were additionally adjusted for position on the BeadChip (n = 8 rows), the original
sub-study (n = 3) along with array (450 K, 800 K), and cell type heterogeneity (CD8T, CD4T, NK,
Bcell Mono, Gran) using the approach of Houseman et al. [38].

CpG sites were associated with genes by calculating an unweighted average of covariate-adjusted
M values of all CpG sites in the dataset that were annotated to the gene of interest and in the nominated
gene region, where applicable. When analyzing a particular region, genes were only included where
at least two CpG sites were available in that region. Thus, besides analyzing methylation of all
represented sites, or average methylation across a gene, methylation was also analyzed according to 1)
genic/intergenic region (200 or 1500 base pairs upstream of the transcription start site (TSS200 and
TSS1500, respectively), the 5′ untranslated region (UTR), first exon, gene body, 3′ UTR, and intergenic
regions, 2) in relation to CpG islands (CpG island, north shore, south shore, north shelf, south shelf,
and open sea regions), and 3) in the promoter, including CpG islands within the promoter.

An adapted permutation-identified null distribution (Storey et al. method, references 31, 32) was
used to adjust for multiple comparisons to avoid the risk of severe false discovery. The measure of
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DNA methylation differences by diet pattern for each CpG site or gene is the corresponding partial t
statistic for each CpG site, and for genes a joint t statistic averaging multivariable-adjusted methylation
status across relevant CpGs in a particular gene. The permutation method was used to define the
null distribution of the t scores for CpG sites. Then for genes, in separate analyses, all CpG sites in a
nominated region relevant to that gene were used in the averaging process, not only the CpG sites
that were previously statistically significant. To adjust for covariates when planning a permutation
approach, the residual method was used as has been recommended [40], this being applied to both
the independent variables aside from diet (the exposure of interest) and the dependent variable as
described above. This reduces the independent variables to one for permutation, which already takes
account of covariances between the covariates. Covariances between the residualized dependent M
values are retained as these dependent variables are not permuted. Recognizing that the real data
are a mixture of null and non-null methylation sites/genes, an estimate of the proportion of null
features allows a direct estimate of the false discovery rate (FDR) [32], and hence the more useful
selection of only those with small FDR. The method also allows an estimate of the number of all
differentially methylated sites/genes [31,32]), although only a proportion can be individually identified
with acceptable FDR in this relatively small dataset. All statistical analyses were performed with
R software.

3. Results

3.1. Methylation Differences in Vegans and Non-Vegetarians

Demographic characteristics of study participants are shown in Table 1. There were no statistically
significant differences in the distribution of males and females, or in age, comparing vegans and
non-vegetarians. As expected, vegans had lower BMI relative to non-vegetarians (24.3 vs. 28.0;
p < 0.001). This was viewed as a potentially mediating variable in statistical analyses.

Table 1. Demographic characteristics of study population 1.

Vegan Non-Vegetarian p

Participants (n) 62 142
Sex (%) 0.57

Male 30 (48.4) 61 (43)
Female 32 (51.6) 81 (57.0)

Age (years) 67.3 (9.0) 65.9 (8.4) 0.28
BMI (kg/m2) 24.3 (4.6) 28 (5.1) <0.001
Ethnicity (%) 0.50

Caucasian 46 (74.2) 97 (68.3)
Black 16 (25.8) 45 (31.7)
1 Values presented as mean (SD) or as n (%) where indicated.

For this study, we compared methylation of individual CpG sites and genes in vegans relative
to non-vegetarians, dividing CpG sites into separate categories defined by gene region, namely,
genic/intergenic, relation to CpG islands, and promoter regions.

3.1.1. Differential Methylation of Select Regions Associated with Individual Genes

1. Proportions of Differentially Methylated Gene Regions

There were greater proportions of genes with at least two probes in a related CpG island (74%)
or TSS1500 (72%) region, followed by those with sites in the gene body (65%) (Table 2). The majority
of differentially methylated genes were hypomethylated in vegans. When differential methylation
was analyzed after averaging CpG methylation across an entire gene, within each of the 18,627 genes
(i.e., labelled “All”) represented on the array and in our analytical dataset, a total of 18 genes
(4 hypermethylated, 14 hypomethylated) were found to be differentially methylated after adjustment
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for false discovery (Table 2). When differential methylation was analyzed according to methylation of
genic/intergenic regions, 21 genes (including three identified in the analysis of overall gene methylation,
“All”) showed differential methylation in the gene body, representing the most differentially methylated
genes for any region. Identifying a central linear region of a plot of cumulative probabilities of the
null vs. actual distributions of t scores (adaptation of methods in references [31,32]) revealed that an
estimated 1081 (6%) of the 18,627 genes analyzed are non-null (Table 2 and Appendix A), although the
majority of these cannot be specifically identified here. The greatest proportion of estimated non-null
genes relative to the respective total number of genes for methylation of a given region were genes
defined by methylation of the gene body (9%, see Figure A1 of Appendix A), with relatively high
proportions also noted when defined by methylation of the TSS1500 (7%), north shelf (7%), and open sea
(7%) regions. As only t-scores of non-null sites will systematically increase (in absolute value) as sample
sizes increase, it is possible to estimate the effects of larger sample size on the proportion of differentially
methylated genes that could then be identified (Appendix A). With increasing sample size, the number
of differentially methylated genes comparing vegans with non-vegetarians steadily increases (Table 3).
Fewer differentially methylated genes were observed with exclusion of surrogate variables (SmartSVA)
from the analytical approach (Supplementary Table S1), although greater numbers of differentially
methylated CpG sites than genes (observed and non-null) were noted in analyses excluding surrogate
variables (Supplementary Table S2).

2. Unique Genes Showing Differential Methylation

Methyltransferase-like 1 (METTL1) was significantly and consistently hypomethylated in vegans in
both analyses of promoter methylation (62,398 CpG sites distributed among 9131 genes) and overall
methylation of all genes present on the array and in our analytical set (313,161 CpG sites distributed
among 18,627 genes), this with either the inclusion of SmartSVA (Tables 4 and 5) or the exclusion of
surrogate variables from models (Supplementary Tables S3 and S4). Other genes that were significantly
hypomethylated in the promoter regions in analyses both with and without surrogate variables included
ribosomal protein L38 (RPL38), snurportin 1 (SNUPN), FLVCR heme transporter 2 (FLVCR2), and CKLF-like
MARVEL transmembrane domain containing 7 (CMTM7). Two genes, METTL1 and nei-like DNA glycosylase
2 (NEIL2), were significantly hypomethylated in CpG islands within the promoter, in analyses with
and without SmartSVA (Table 5 and Supplementary Table S4). Besides METTL1, genes showing
differential methylation in analyses of both promoter methylation and overall methylation of all genes
included RPL38 (SmartSVA analysis) (Tables 4 and 5), and FLVCR2 (analysis excluding SmartSVA)
(Supplementary Tables S3 and S4). Differential methylation of D-dopachrome tautomerase-like (DDTL)
and aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) was observed in analyses of genes defined by
methylation of the gene body, as well as of all genes (SmartSVA analysis, Table 4), and the same was true
for LIM homeobox protein 3 (LHX3) in models excluding surrogate variables (Supplementary Table S3).
Glutathione S-transferase theta pseudogene 1 (GSTTP1), detected in analysis of the open sea region showed
the most marked hypomethylation in vegans (fold change of 0.72 and 0.76 in models with and without
SmartSVA, respectively), whereas NACHT and WD repeat domain containing 2 (NWD2), identified in
analysis of methylation of the south shore region, showed the greatest increase in gene methylation
(fold change, 1.12) (Table 5 and Supplementary Table S4).
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Table 2. Estimated non-null and observed differentially methylated genes (false discovery rate < 0.05) summarized according to gene region or in relation to CpG
islands comparing vegans with non-vegetarians 1.

Region 2 Total Genes Estimated Non-Null Significantly Hypermethylated Significantly Hypomethylated

n % of All Genes n 3 % of Region-Specific Total n Fold Change 4 n Fold Change 4

All 18,627 100 1081 5.8 4 1.02 14 0.97
Genic/intergenic

TSS200 10,008 53.7 388 3.9 4 1.03 4 0.96
TSS1500 13,373 71.8 954 7.1 2 1.03 7 0.97
3′ UTR 1935 10.4 55 2.8 1 1.04 2 0.98
5′ UTR 7686 41.3 475 6.2 2 1.02 6

Gene Body 12,072 64.8 1100 9.1 7 1.03 14 0.97
1st Exon 6262 33.6 405 6.5 1 1.07 9 0.97

Intergenic 8049 43.2 449 5.6 1 1.05 7 0.97
Island-related

CpG Island 13,688 73.5 649 4.7 4 1.03 2 0.97
North Shelf 2562 13.8 180 7.0 2 1.03 2 0.97
North Shore 8315 44.6 424 5.1 1 1.03 7 0.96
South Shelf 2278 12.2 146 6.4 3 1.04 7 0.97
South Shore 7137 38.3 441 6.2 5 1.06 7 0.96

Open Sea 11,884 63.8 798 6.7 2 1.04 14 0.96
Promoter

All 9131 49.0 459 5.0 2 1.05 9 0.98
CpG Island 7693 41.3 60 0.8 1 1.02 2 0.97

1 Number of actual differentially methylated genes determined using linear regression with SmartSVA followed by adapted Storey et al. [32] permutation approach to adjust for false
discovery. 2 Individual CpGs may have been represented in more than one region when determining gene methylation of a given region. 3 Number of genes estimated to show non-null
differences in methylation. 4 Fold change represents ratio of the mean methylation of vegans to that of non-vegetarians for differentially methylated (hypomethylated or hypermethylated)
genes in a given region. This is averaged across significant genes.



Nutrients 2020, 12, 3697 7 of 23

Table 3. Numbers of genes expected to be detected with FDR < 0.05 as differentially methylated in vegans relative to non-vegetarians 1.

Fold Increase in Sample Size—Hypomethylated Genes Fold Increase in Sample Size—Hypermethylated Genes

Region 1 1.5 2 3 4 5 1 1.5 2 3 4 5

All 14 28 42 66 79 86 4 29 103 266 377 456
Body 14 23 37 58 68 91 7 17 65 159 254 309

TSS1500 7 7 24 31 43 49 2 25 108 254 350 411
TSS200 4 4 4 12 19 19 4 9 44 141 203 254
3′ UTR 2 2 2 2 2 2 1 1 10 30 47 57
5′ UTR 6 6 12 17 26 28 2 15 47 122 172 226

1st Exon 9 10 23 33 37 43 1 10 45 96 142 169
Island 2 2 12 26 27 33 4 27 98 243 336 397

North Shore 7 7 12 23 24 28 1 8 47 144 222 260
South Shore 7 7 16 24 31 36 5 19 60 124 175 229
North Shelf 2 2 2 7 7 7 2 4 17 46 69 83
South Shelf 7 7 7 7 7 7 3 9 21 39 59 71

Promoter Associated 9 9 12 16 17 20 2 12 62 145 214 250
Promoter and CpG Island 2 2 2 5 10 13 1 8 45 112 161 201

Open Sea 14 20 28 44 58 61 2 11 61 144 218 256
Intergenic 7 8 19 30 40 51 1 7 40 101 154 185

1 Number of differentially methylated genes determined by adapted Storey et al. [32] based on plots of cumulative distributions of p values (derived from t statistics) from real and
hypothetical null data.
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Table 4. Differential methylation of genic/intergenic regions associated with individual genes at
FDR < 0.05 (based on SmartSVA method) 1.

Gene ID Gene Symbol Description Fold Change

TSS200
341,350 OVCH1 (1) ovochymase 1 0.93

8499 PPFIA2 PTPRF interacting protein alpha 2 0.96
51,099 ABHD5 abhydrolase domain containing 5, lysophosphatidic acid acyltransferase 0.98
51,205 ACP6 acid phosphatase 6, lysophosphatidic 0.98
9874 TLK1 tousled-like kinase 1 1.02

10,440 TIMM17A translocase of inner mitochondrial membrane 17A 1.02
1132 CHRM4 cholinergic receptor, muscarinic 4 1.03
9570 GOSR2 lgi SNAP receptor complex member 2 1.03

TSS1500
151,313 FAHD2B fumarylacetoacetate hydrolase domain containing 2B 0.95
10,653 SPINT2 serine peptidase inhibitor, Kunitz type 2 0.96

100,302,640 LINC00882 Long Intergenic Non-Protein Coding RNA 882 0.96
84,838 ZNF496 (1) zinc finger protein 496 0.96
4234 METTL1 methyltransferase-like 1 0.98
9054 NFS1 NFS1 cysteine desulfurase 0.98
1263 PLK3 polo-like kinase 3 0.98
8546 AP3B1 adaptor-related protein complex 3 subunit beta 1 1.02

11,267 SNF8 SNF8 subunit of ESCRT-II 1.04
3′ UTR
79,960 JADE1 jade family PHD finger 1 0.97

667 DST dystonin 0.98
54,820 NDE1 nudE neurodevelopment protein 1 1.04

5′ UTR
252,969 NEIL2 nei-like DNA glycosylase 2 0.96

4147 MATN2 matrilin 2 0.97
5928 RBBP4 RB binding protein 4, chromatin remodeling factor 0.97
3792 KEL Kell metallo-endopeptidase (Kell blood group) 0.97
9772 TMEM94 transmembrane protein 94 0.98

63,924 CIDEC cell death-inducing DFFA-like effector c 0.99
51,465 UBE2J1 ubiquitin conjugating enzyme E2 J1 1.02
1374 CPT1A carnitine palmitoyltransferase 1A 1.03
Body

100,037,417 DDTL D-dopachrome decarboxylase-like protein 0.92
154,007 SNRNP48 small nuclear ribonucleoprotein U11/U12 subunit 48 0.95

8120 AP3B2 adaptor-related protein complex 3 subunit beta 2 0.96
89,781 HPS4 HPS4, biogenesis of lysosomal organelles complex 3 subunit 2 0.96
2668 GDNF glial cell line derived neurotrophic factor 0.96

56,666 PANX2 pannexin 2 0.97
91,010 FMNL3 formin-like 3 0.98

117,246 FTSJ3 FtsJ RNA 2’-O-methyltransferase 3 0.98
11,052 CPSF6 cleavage and polyadenylation-specific factor 6 0.98

149,297 FAM78B family with sequence similarity 78 member B 0.98
399,671 HEATR4 HEAT repeat containing 4 0.98
285,987 DLX6-AS1 DLX6 antisense RNA 1 0.99
64,784 CRTC3 CREB regulated transcription coactivator 3 0.99
5361 PLXA1 plexin A1 0.99

Body
9915 ARNT2 aryl hydrocarbon receptor nuclear translocator 2 1.02
5170 PDPK1 3-phosphoinositide dependent protein kinase 1 1.02

10,610 ST6GALNAC2 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 2 1.02
57,459 GATAD2B GATA zinc finger domain containing 2B 1.03
3694 ITGB6 integrin subunit beta 6 1.04

58 ACTA1 actin alpha 1, skeletal muscle 1.05
9963 SLC23A1 solute carrier family 23 member 2 1.06

First Exon
2201 FBN2 fibrillin 2 0.96

100,303,453 TSNAX-DISC1 Disrupted in schizophrenia 1 isoform 51 0.96
10,274 STAG1 stromal antigen 1 0.97

252,969 NEIL2 nei-like DNA glycosylase 2 0.97
3489 IGFBP6 insulin-like growth factor binding protein 6 0.97
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Table 4. Cont.

Gene ID Gene Symbol Description Fold Change

5928 RBBP4 RB binding protein 4, chromatin remodeling factor 0.97
6727 SRP14 signal recognition particle 14 0.97
9167 COX7A2L (1) cytochrome c oxidase subunit 7A2-like 0.97
1802 DPH2(1) diphthamide biosynthesis 2 0.98

23,336 SYNM Synemin 1.07
All

100,037,417 DDTL D-dopachrome tautomerase-like 0.95
284,680 SPATA46 spermatogenesis associated 46 0.96

100,113,403 LIN28B-AS1 LIN28B antisense RNA 1 0.96
64,220 STRA6 signaling receptor and transporter of retinol STRA6 0.97
4234 METTL1 methyltransferase-like 1 0.97

27,179 IL36A interleukin 36 alpha 0.98
90,379 DCAF15 DDB1 and CUL4 associated factor 15 0.98
89,781 HPS4 HPS4, biogenesis of lysosomal organelles complex 3 subunit 2 0.98
136,371 ASB10 ankyrin repeat and SOCS box containing 10 0.98

397 ARHGDIB Rho GDP dissociation inhibitor beta 0.98
6169 RPL38 ribosomal protein L38 0.98

55,222 LRRC20 leucine rich repeat containing 20 0.99
9491 PSMF1 proteasome inhibitor subunit 1 0.99

154,150 HDGFL1 HDGF-like 1 0.99
9915 ARNT2 aryl hydrocarbon receptor nuclear translocator 2 1.02

219,990 OOSP2 oocyte secreted protein 2 1.02
114,757 CYGB cytoglobin 1.02

7284 TUFM Tu translation elongation factor, mitochondrial 1.02
Intergenic

136,371 ASB10 Ankyrin repeat and SOCS box protein 10 0.95
100,113,403 LIN28B-AS1 LIN28B antisense RNA 1 0.96

23,704 KCNE4 Potassium voltage-gated channel subfamily E member 4 0.97
27,319 BHLHE22 Class E basic helix-loop-helix protein 22 0.97
9935 MAFB Transcription factor MafB 0.98
7100 TLR5 Toll-like receptor 5 0.98

154,150 HDGFL1 Hepatoma-derived growth factor-like protein 1 0.99
284,889 MIF-AS1 MIF antisense RNA 1.05

1 Number of differentially methylated CpG sites associated with each gene shown in brackets.

Table 5. Differential methylation of island-related and promoter regions associated with individual
genes at FDR < 0.05 (based on SmartSVA method) 1.

Gene ID Gene Symbol Description Fold Change

Island
80,070 ADAMTS20 ADAM metallopeptidase with thrombospondin type 1 motif 20 0.95

101,409,261 OGFR-AS1 OGFR Antisense RNA 1 0.98
4609 MYC MYC proto-oncogene 1.01

161,145 TMEM229B transmembrane protein 229B 1.02
7284 TUFM Tu translation elongation factor, mitochondrial 1.04
273 AMPH amphiphysin 1.05

North Shelf
4000 LMNA lamin A/C 0.97

123,041 SLC24A4 solute carrier family 24 member 4 0.97
100,534,592 URGCP-MRPS24 URGCP-MRPS24 readthrough 1.02

116,844 LRG1 leucine rich alpha-2-glycoprotein 1 1.04
North Shore

8022 LHX3 LIM homeobox protein 3 0.92
10,653 SPINT2 serine peptidase inhibitor, Kunitz type 2 0.95
6169 RPL38 ribosomal protein L38 0.96

23,200 ATP11B Probable phospholipid-transporting ATPase IF 0.96
7707 ZNF148 Zinc finger protein 148 0.97

26,156 RSL1D1 ribosomal L1 domain containing 1 0.97
9379 NRXN2 Neurexin-2 0.98
9480 ONECUT2 one cut homeobox 2 1.03
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Table 5. Cont.

Gene ID Gene Symbol Description Fold Change

South Shelf
55,608 ANKRD10 ankyrin repeat domain 10 0.95
26,693 OR2V1 olfactory receptor family 2 subfamily V member 1 0.96
2180 ACSL1 acyl-CoA synthetase long chain family member 1 0.96

399,829 LINC01168 long intergenic non-protein coding RNA 1168 0.97
2774 GNAL G protein subunit alpha L 0.97

64,319 FBRS fibrosin 0.97
84,286 TMEM175 transmembrane protein 175 0.97

140,706 CCM2L cerebral cavernous malformation 2-like 1.04
1112 FOXN3 forkhead box N3 1.04

10,410 IFITM3 interferon-induced transmembrane protein 3 1.04
South Shore

41 ASIC1 acid-sensing (proton-gated) ion channel 1 0.94
151,313 FAHD2B fumarylacetoacetate hydrolase domain containing 2B 0.95
84,838 ZNF496 (2) zinc finger protein 496 0.95

116,988 AGAP3 ArfGAP with GTPase domain, ankyrin repeat and PH domain 3 0.95
9735 KNTC1 kinetochore associated 1 0.96

29,993 PACSIN1 protein kinase C and casein kinase substrate in neurons 1 0.96
85,395 FAM207A family with sequence similarity 207 member A 0.97
57,186 RALGAPA2 Ral GTPase activating protein catalytic subunit alpha 2 1.03
55,243 KIRREL1 kirre-like nephrin family adhesion molecule 1 1.03
11,267 SNF8 SNF8 subunit of ESCRT-II 1.04

375,061 FAM89A family with sequence similarity 89, member A 1.06
57,495 NWD2 NACHT and WD repeat domain containing 2 1.12

Open Sea
25,774 GSTTP1 glutathione S-transferase theta 4 0.72

402,381 SOHLH1 spermatogenesis and oogenesis specific basic helix-loop-helix 1 0.96
3034 HAL histidine ammonia-lyase 0.96

64,220 STRA6 signaling receptor and transporter of retinol STRA6 0.97
134,510 UBLCP1 ubiquitin-like domain containing CTD phosphatase 1 0.97

1188 CLCNKB Chloride channel protein ClC-Kb 0.97
1610 DAO D-amino-acid oxidase 0.98
397 ARHGDIB Rho GDP-dissociation inhibitor 2 0.98

27,179 IL36A interleukin 36 alpha 0.98
54,989 ZNF770 zinc finger protein 770 0.98
83,394 PITPNM3 PITPNM family member 3 0.98
79,981 FRMD1 FERM domain containing 1 0.98
55,137 FIGN fidgetin 0.99

114,879 OSBPL5 oxysterol binding protein-like 5 0.99
219,990 OOSP2 oocyte secreted protein 2 1.02

100,130,673 LOC100130673 phosphoribosyl pyrophosphate synthetase 2 pseudogene 1.06
Promoter

55,640 FLVCR2 FLVCR heme transporter 2 0.95
79,695 GALNT12 polypeptide N-acetylgalactosaminyltransferase 12 0.96
6169 RPL38 ribosomal protein L38 0.97
4234 METTL1 methyltransferase-like 1 0.97

112,616 CMTM7 CKLF-like MARVEL transmembrane domain containing 7 0.98
10,073 SNUPN snurportin 1 0.98
80,321 CEP70 centrosomal protein 70 0.98
9167 COX7A2L cytochrome c oxidase subunit 7A2-like 0.99

100,288,142 NBPF20 NBPF member 20 0.99
8546 AP3B1 adaptor-related protein complex 3, beta 1 subunit 1.01

100,506,334 LINC00649 (1) long intergenic non-protein coding RNA 649 1.08
Islands in Promoter

4234 METTL1 methyltransferase-like 1 0.97
252,969 NEIL2 nei-like DNA glycosylase 2 0.97
200,312 RNF215 ring finger protein 215 1.02

1 Number of differentially methylated CpG sites associated with each gene shown in parentheses.
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3.1.2. Differential Methylation of CpG Sites

1. Proportions of Differentially Methylated CpG Sites by Region

Considering CpG sites, the majority of CpG sites are mapped to the gene body (36%), open sea
(34%), and island (32%) regions (Table 6). A large proportion of the promoter region (66%) overlapped
with CpG islands, and the promoter region also showed overlap with the TSS200 and TSS1500 regions
(25% and 24%, respectively) (Supplementary Figure S1). Analysis of individual CpG sites revealed few
identifiable differentially methylated sites and roughly a balance of hypo- and hypermethylated sites
(SmartSVA method, Table 6). In spite of the relatively low numbers of differentially methylated sites,
we estimated that 9% (n = 27,276) of CpG sites were actually non-null. Out of all CpG sites represented
in our analytical dataset (n = 313,161), 4–9% were estimated to be non-null CpG sites across individual
gene regions (Table 6). Relatively fewer numbers of differentially methylated CpG sites were observed
in analyses excluding SmartSVA (Supplementary Table S2).

2. Genes Associated with Differentially Methylated CpGs

Individual CpG sites that were differentially methylated were annotated to many of the genes
identified as differential in the analysis of gene methylation. cg15613340 in protocadherin beta 5 (PCDHB5)
was significantly hypomethylated in vegans in the analysis of methylation of all sites and of the first
exon, with a fold change of 0.81 (analyses with SmartSVA), and cg25026992 in protocadherin beta 7
(PCDHB7) was similarly hypomethylated (fold change, 0.81) in analysis of the 3′ UTR region (analyses
without SmartSVA), representing the most marked hypomethylation observed among CpG sites.
The most marked hypermethylation was that of Cg07967210 in SNF8 subunit of ESCRT-II (SNF8),
identified in the analysis of promoter methylation (fold change, 1.17) (Supplementary Tables S5–S8).
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Table 6. Estimated non-null and observed differentially methylated CpG sites (FDR < 0.05) summarized according to genic/intergenic region or in relation to CpG
islands comparing vegans with non-vegetarians 1.

Region 2 Total Genes Estimated Non-Null Significantly Hypermethylated Significantly Hypomethylated

n % of All CpG Sites n 3 % of Region-Specific Total n Fold Change 4 n Fold Change 4

All 313,161 100 27,276 8.7 6 1.06 8 0.92
Genic/intergenic

TSS200 40,816 13.0 2355 5.8 5 1.05 3 0.91
TSS1500 57,450 18.3 3950 6.9 5 1.06 8 0.93
3′ UTR 12,840 4.1 633 4.9 3 1.04 6 0.93
5′ UTR 43,313 13.8 3270 7.6 4 1.08 3 0.95

Gene Body 114,095 36.4 9835 8.6 7 1.08 6 0.95
1st Exon 25,662 8.2 2082 8.1 1 1.04 7 0.92

Intergenic 72,524 23.2 5798 8.0 9 1.06 3 0.92
Island-related

CpG Island 99,350 31.7 7883 7.9 4 1.07 4 0.92
North Shelf 15,106 4.8 923 6.1 7 1.05 6 0.93
North Shore 43,549 13.9 3542 8.1 6 1.06 3 0.94
South Shelf 13,564 4.3 974 7.2 9 1.06 3 0.93
South Shore 33,905 10.8 2652 7.8 5 1.08 7 0.93

Open Sea 107,687 34.4 8266 7.7 5 1.06 5 0.93
Promoter

All 62,398 19.9 2308 3.7 6 1.08 3 0.95
CpG Island 39,230 12.5 1713 4.4 1 1.07 3 0.96
1 Number of differentially methylated CpG sites determined using linear regression with SmartSVA, followed by adapted Storey et al. [32] approach to adjust for false discovery.
2 Some CpG sites represented in more than one gene region. 3 Number of CpG sites estimated to show non-null differences in methylation. 4 Fold change represents ratio of the mean
methylation of vegans to that of non-vegetarians for differentially methylated (hypomethylated or hypermethylated) sites for a given region. This is averaged across significant sites.
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4. Discussion

DNA methylation is one mechanism that links lifestyle with genomic alterations. The goal of this
study was to determine if habitual vegan and non-vegetarian dietary patterns differentially influenced
DNA methylation. Using a permutation-based adapted Storey et al. [32] approach, and considering
various genomic regions, we could detect a modest number of genes that differed significantly in
their methylation status between vegans and non-vegetarians, noting that much larger proportions of
apparently differentially methylated CpG sites and genes are in fact present, and should be detected
with larger samples.

The majority of differentially methylated genes detected were hypomethylated in vegans,
both when considering gene methylation overall, as well as in various gene regions. The greatest
differences in gene methylation were found when considering the gene body. The region-specific
differences in the number of detected differentially methylated genes are in part a reflection of the
nonuniformity in the distribution of probes selected for the BeadChip array (i.e., a large number of
CpG sites were present in the gene body). However, there were fewer observed and predicted non-null
differentially methylated genes defined by the TSS1500 and CpG island regions, in spite of greater
total numbers of genes with CpG sites in these regions, relative to the gene body. The gene body may
therefore be the most susceptible to diet-induced alterations in methylation. Overall, we have estimated
larger proportions of differentially methylated, non-null genes (6% of all genes) and CpG sites (9% of all
CpG sites) to be detected with sufficiently large samples, using our adapted Storey approach. It should
be noted that results from our permutation-based adapted Storey approach showed strong agreement
with results from the simpler Benjamini–Hochberg approach for false discovery.

There is little other published evidence on the influence of plant-based dietary patterns on
DNA methylation. Global methylation (LINE1) has been associated with consumption of fruits and
vegetables or flavonoids in dietary intervention studies [41,42], as well as with energy restriction in
overweight participants [43,44] although the latter has not been consistently observed [45]. It is unclear
how a vegan diet impacted global (overall) methylation in the current study, given our array-based
approach. However, of the significantly hypermethylated CpG sites, the majority were located in the
intergenic region, which houses many transposable elements, including LINE1. Our findings show
some consistency with those reported by Perfilyev et al., where high fat feeding (both saturated and
polyunsaturated combined) was associated with hypermethylation of genes (>99%) [27]. These findings
seem to complement our results as vegans who have lower fat consumption [9] and lower proportions
of saturated fatty acids in adipose tissue [10], showed decreased gene methylation overall. However,
the differential patterns of methylation between vegans and non-vegetarians in our study was not
merely due to differences in fat, as our findings were only slightly attenuated when adjusted for
total/saturated fat. Additionally, associations persisted when controlling for BMI, which could also be
thought of as a surrogate of long-term energy intake and energy balance.

Many genes differentially methylated in the analysis of overall methylation of all genes have
roles in RNA transport or ribosome assembly/regulation of translation (RPL38, TUFM [46,47]), as well
as lysosome regulation (HPS4 [48]), protein degradation or ubiquitination (DCAF15, PSMF1 [49,50]),
cytokine or B cell receptor signaling (CMTM7, IL36A [51,52]), and metabolism (STRA6, COX7A2L,
GALNT12 [53–56]), among other pathways. Alterations in many of these processes impact protein
synthesis and may have pathophysiological implications [57,58].

We have highlighted methylation differences in the promoter region particularly, as such alterations
may have a greater impact on gene transcription. METTL1 consistently showed hypomethylation in all
relevant analyses—i.e., analyses of methylation of genes defined by CpGs in associated promoter regions,
as well as of overall methylation of all genes, this being in analyses including or excluding SmartSVA
variables, and after adjustment for false discovery. METTL1 encodes a methyltransferase that promotes
methylguanine methylation of RNA, including miRNAs such as let7, which results in processing of the
miRNA [59]. Let-7 miRNA has roles in regulating cell growth and metabolism, and is also considered
a tumor suppressor, showing downregulation in a number of cancers [60]. METTL1 along with NEIL2,
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encoding an enzyme involved in DNA repair [61], were significantly hypomethylated in CpG islands
within the promoter independent of SmartSVA variables. Hypermethylation of CpG islands within
the promoter is associated with silencing of tumor suppressor genes [62–65]. Thus, hypomethylation
and consequent increases in these genes might be associated with sustained expression of tumor
suppressors, and thus cancer prevention.

Besides METTL1 and NEIL2, several of the differentially methylated genes identified by analysis
of associated promoter methylation, or of all genes, have roles in cancer biology. For example,
LIN28B regulates let-7 miRNA [66], CMTM7 is potential tumor suppressor, possibly silenced by
promoter methylation [49,67]), and ARGHDIB, a regulator of Rho family signaling, can be upregulated
in tumors [68]. Interestingly, GALNT12, DDT, and ARNT2 have been found to be over-represented
in cancer, including colorectal cancer among others [69–72], with ARNT2 showing promoter
hypermethylation in hepatoma cells [73]. We have found that vegans and other vegetarians in AHS-2
have lower risk of certain types of cancer and other chronic diseases [2,3,6]. Thus, DNA methylation
alterations in genes with relevance to cancer could help explain some of the differences in cancer
outcomes between dietary groups in the AHS-2 cohort. However, it is unclear if transcriptional changes
are associated with any of the observed methylation alterations.

The observed trend towards hypomethylation of genes in vegans could be explained in part by
inhibition of activity of DNMT enzymes by polyphenols and various secondary plant metabolites [14,74].
We have shown that vegetarians in the AHS-2 cohort have significantly increased consumption
of plant-based foods including fruits, vegetables, legumes, nuts, and seeds [9], which are high
in polyphenols. Furthermore, we recently demonstrated that vegetarians, particularly vegans,
have significantly higher levels of bioactive compounds and phytochemicals-enterolactone, isoflavones,
carotenoids, as well as total omega-3 fatty acids (attributable to alpha linolenic acid) in plasma, urine,
and adipose tissue, many of which could theoretically modulate methylation [75]. Additionally,
methyl donor compounds, folate, choline, methionine and cofactors (vitamin B), which are obtained
from various foods, may influence both gene-specific and global DNA methylation, as demonstrated
through observational and intervention studies; however, activity may be context, dose, or tissue
dependent [13,30,76,77]. It is not clear if any of these methyl donor compounds differ between
vegans and non-vegetarians in the current study. Thus, gene-specific and genome-wide alterations in
methylation may be determined by a complex interplay of methyl donors, micronutrients, polyphenols,
macronutrient composition, and inflammatory status, among other possible factors, including physical
activity and stress.

Methylation activity of CpGs within the same gene, and particularly the same region, may be
coordinated. This correlation of CpG sites could partly explain why our analysis of gene methylation
revealed greater differential alterations than analysis of individual CpG sites, although a much greater
number of sites are estimated to be non-null and detectable with a larger sample. Findings from
our study suggest that methylation alterations associated with dietary patterns (and likely other
environmental exposures) may be characterized by coordinated methylation of CpG sites in a specific
gene and within select regions of the gene. This approach of analyzing CpGs within select regions
after annotation to their respective genes is, in general, similar to the region-centric approach taken by
Bacalini et al. involving the grouping together of probes mapping to the same island or gene [78].

The effect size of methylation differences was low overall, with average regional methylation
differences in the range of 2–4% for significant genes and 4–9% for significant CpG sites (at FDR < 0.05),
though fold changes were much larger for select genes or CpG sites. Effect sizes of low magnitude
(≤1–5%) have been previously reported in dietary studies. Besides the high fat feeding study by Perfilyev
et al. [27], interventions examining alterations associated with a Mediterranean diet or diet enriched
in flavonoids and isothiocyanates also found very subtle but significant changes (~1% methylation
difference in LINE1) [41,44]. Smaller changes in methylation tend to be disregarded [79,80], but the
physiological relevance of such small effects is unclear. It is possible that such changes over the
long-term contribute to sustained, physiologically meaningful epigenetic differences. These “small”
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changes may translate into permanent changes in gene expression, and consequently phenotype,
and be inherited by daughter cells [81]. The location of methylation alterations also holds much
relevance, as methylation of one site can contribute to gene silencing if the methylated site blocks
binding of a transcription factor [82,83].

This is the first study to our knowledge analyzing differences in DNA methylation between vegans
and non-vegetarians. The AHS-2 cohort is unique in its relatively large number of vegans (~9% of
cohort), thereby enabling such a study, although it should be noted that AHS-2 non-vegetarians tend
to have lower meat consumption relative to the general population. The examination of habitual,
long-term dietary patterns is a major strength, as epigenetic marks are more stable, reflecting long-term
dietary conditions. We have shown that the majority of cohort members remain in the same diet
group from one decade to the next [84]. Because of the habitual, a priori-classified dietary patterns,
there was likely minimal measurement error in the classification of diet group. Additionally, our study
was strengthened by leveraging multiple analytical approaches, comparing the SmartSVA method
which adjusts for surrogate variables and thus unwanted variation, with linear regression models not
including these surrogate variables but adjusting for other known technical variations.

Our study has some noteworthy limitations. Methylation alterations are best paralleled with
gene expression data. In the absence of such data there are limitations in the interpretation of our
findings. As mentioned, it is not clear how other dietary or lifestyle influences (exercise, methyl donors)
may have altered results. Furthermore, we do not know how methylation alterations in leukocytes
correlate with those in other tissues, although there is evidence that methylation patterns or alterations
in blood may be reflective of patterns in other tissues [85–87]. Additionally, the two dietary groups
examined were somewhat heterogeneous in terms of consumption of animal- and plant-based foods.
For example, it is not clear how methylation patterns differ comparing individuals with very high
consumption of red or processed meat with individuals following a diet comprised largely of fruits,
vegetables, and whole plant foods.

5. Conclusions

In summary, modest specific differences in methylation of genes and CpG sites were detected,
comparing vegans and non-vegetarians, with clear indication that many more such differences exist,
but are yet to be specifically identified with larger studies. This study thus lays the foundation
for the identification of transcriptional alterations and molecular functions associated with these
diet-influenced methylation patterns.
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Appendix A

A Method of Power Calculations, Estimating Ability to Detect Differentially Methylated Sites with a Given
False Discovery Rate

First, in what follows, p values are defined as the cumulative probabilities of the chosen test
statistics when the null hypothesis is satisfied, thus ranging from 0 to 1.0. As noted by Storey et al. [32],
a plot of the density of p values for a central t distribution (or other distributions) is a uniform plot,
when the data conform to the null (the hypothesis that the p value is defined to represent). Then, it is
assumed that the observed data to be evaluated (consisting of a large number, say R, independent t
statistics), represent a mix from two types of CpG (or gene) populations. Namely, these are a population
of true null data, and a second population where the true distribution for each t statistic is non-null
(non-central), but not otherwise specified.

In that situation the density plot of p values (estimated, say, from a central t distribution) should
devolve into a central uniform portion, at a density less than 1.0, say R0/R, and tails at either end
that slope upward from the uniform region represent an excess of p values in regions more sparsely
populated under the null. The total area under the curve must, as usual, equal 1.0, by the definition
of density. One can compare this to a plot that would be expected if all values came from a null
distribution, which would be a uniform plot at a value of 1.0. It is easy to show that the value R0/R
represents the proportion of the t values in the real data that come from a null distribution. Then R—R0

is the estimated number of t statistics that come from non-null distributions.
To gain some extra stability, we have simply translated this same rationale to cumulative

distributions of p values from both observed data and hypothetical null data. In the null situation
the cumulative distribution is a diagonal line from lower left to upper right. In the observed data,
the central uniform density cumulates to a straight line that can be shown to have slope R0/R. Relative
excess densities at small p values cumulate to push the left end of the curve higher than the diagonal
with slopes that exceed 1.0, thus flattening the straight line null portion that begins at the end of this
elevated segment. Unless there are no non-null data at the right-hand higher-valued end, the central
straight portion necessarily crosses the diagonal. Then later, at the end of the null straight portion,
again develops slopes greater than 1.0, representing non-null high-value P statistics, finally meeting
the diagonal again when p = 1.0. In these plots the slope of the straight line portion estimates the
proportion of underlying null distributions, and of course again (R—R0)/R is the proportion that
are non-null.

An example from the DNA methylation data (average of CpG sites in gene body regions) described
in this paper is shown as Figure A1. Here, the deviation in slope of the central linear region from
the diagonal is relatively small, but important, and in part due to large numbers, is not due to
chance (p < 2 × 10−16). The size of the population studies, and the relatively small fold change values
(that translate to smaller non-centrality parameters for the non-null t distributions) account for the
modest deviation from the diagonal in the figure. Increasing n (the number of subjects) will change
this (see Table 4). An example from a metabolomics dataset—also comparing non-vegetarians to
vegans—includes t distributions with much greater non-centrality parameters and is shown below for
illustrative purposes (Figure A2).



Nutrients 2020, 12, 3697 17 of 23Nutrients 2020, 12, x FOR PEER REVIEW 20 of 26 

 

 

Figure A1. Plot of cumulative p values from real data (dark line), and from a hypothetical data where 

all data are null (fine line). Differential methylation: average of CpG sites in gene body regions, 

comparing non-vegetarians to vegans. 

An example from the DNA methylation data (average of CpG sites in gene body regions) 

described in this paper is shown as Figure A1. Here, the deviation in slope of the central linear region 

from the diagonal is relatively small, but important, and in part due to large numbers, is not due to 

chance (p < 2 × 10−16)). The size of the population studies, and the relatively small fold change values 

(that translate to smaller non-centrality parameters for the non-null t distributions) account for the 

modest deviation from the diagonal in the figure. Increasing n (the number of subjects) will change 

this (see Table 4). An example from a metabolomics dataset—also comparing non-vegetarians to 

vegans—includes t distributions with much greater non-centrality parameters and is shown below 

for illustrative purposes (Figure A2). 

Figure A1. Plot of cumulative p values from real data (dark line), and from a hypothetical data where all
data are null (fine line). Differential methylation: average of CpG sites in gene body regions, comparing
non-vegetarians to vegans.

Nutrients 2020, 12, x FOR PEER REVIEW 21 of 26 

 

 

Figure A2. Cumulative p plots (real and hypothetical null data) for a metabolomics panel comparing 

non-vegetarians to vegans. 

This situation can be used to estimate power, and how, in a particular dataset, this depends on 

n.  Power is here expressed as the false discovery rate (FDR) associated with sample size n2, where 

n1 is the size of the observed data, and where critical t statistic values are nominated for exploratory 

purposes. This is dependent on the observation that as n increases, the distribution of t statistics from 

null sites does not change. The reason for this is that the numerator of each t value is (mean(non-

vegetarians)—mean(vegans)) for that site or gene, and its expectation by definition under the null, is 

zero. Thus, the underlying random errors in these means will shrink as n increases according to the 

inverse square root law, decreasing the range of the random differences between the two means (the 

numerator). The denominator that measures the standard error of this difference between means 

shrinks by an exactly equivalent amount; however, the ratio t statistic remains unchanged, with other 

things being equal. 

However, the situation for non-null t values is different—the numerators, again by definition, 

have a non-zero expected value (that differs from methylation site to methylation site). As n increases, 

this expected value does not change, but the denominator (Standard Error of the difference) shrinks 

as usual, driving the non-null t statistics to ever more extreme values. This has the most helpful 

consequence of drawing the non-null results ever more toward the tails of the observed distribution 

as numbers increase. So, for any nominated critical t value, the tails will contain the usual number of 

randomly extreme t statistics from null sites, but an increasing number from non-null sites with 

increasing numbers of subjects, thus improving the FDR. 

Specifically, it can be shown that, for the left-hand tail, 

FDR(n2) = FDR(n1).R.cp(Tcl)

{R.cp(Tcl.√(n1/n2)) – 𝑅0.[p(Tcl.√(n1/n2)) − p(Tcl)]}
, where Tcl is the nominated critical t value for the 

left-hand tail; p(Tcl) refers to the cumulative probability under the null corresponding to this t value; 

cp(Tcl) refers to the cumulative probability of this Tcl value in the observed data. 

For the right-hand tail where Tcu is the critical value for significance in the upper tail, the 

expression is 
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non-vegetarians to vegans.

This situation can be used to estimate power, and how, in a particular dataset, this depends
on n. Power is here expressed as the false discovery rate (FDR) associated with sample size n2,
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where n1 is the size of the observed data, and where critical t statistic values are nominated for
exploratory purposes. This is dependent on the observation that as n increases, the distribution of t
statistics from null sites does not change. The reason for this is that the numerator of each t value is
(mean(non-vegetarians)—mean(vegans)) for that site or gene, and its expectation by definition under
the null, is zero. Thus, the underlying random errors in these means will shrink as n increases according
to the inverse square root law, decreasing the range of the random differences between the two means
(the numerator). The denominator that measures the standard error of this difference between means
shrinks by an exactly equivalent amount; however, the ratio t statistic remains unchanged, with other
things being equal.

However, the situation for non-null t values is different—the numerators, again by definition,
have a non-zero expected value (that differs from methylation site to methylation site). As n increases,
this expected value does not change, but the denominator (Standard Error of the difference) shrinks
as usual, driving the non-null t statistics to ever more extreme values. This has the most helpful
consequence of drawing the non-null results ever more toward the tails of the observed distribution
as numbers increase. So, for any nominated critical t value, the tails will contain the usual number
of randomly extreme t statistics from null sites, but an increasing number from non-null sites with
increasing numbers of subjects, thus improving the FDR.

Specifically, it can be shown that, for the left-hand tail,

FDR(n2) =
FDR(n1).R.cp(Tcl){

R.cp(Tcl. √(n1/n2) ) – R0.[p(Tcl. √(n1/n2) ) − p(Tcl)]
} , where Tcl is the nominated critical t

value for the left-hand tail; p(Tcl) refers to the cumulative probability under the null corresponding to
this t value; cp(Tcl) refers to the cumulative probability of this Tcl value in the observed data.

For the right-hand tail where Tcu is the critical value for significance in the upper tail,
the expression is

FDR(n2) =
FDR(n1).R.(1− cp(Tcu)){

R.
(
1− cp

(
Tcu. √(n1/n2)

))
– R0.

[
p(Tcu) − p

(
Tcu. √(n1/n2)

)]} .
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