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Abstract

Nest success is a critical determinant of the dynamics of avian populations, and

nest survival modeling has played a key role in advancing avian ecology and

management. Beginning with the development of daily nest survival models,

and proceeding through subsequent extensions, the capacity for modeling the

effects of hypothesized factors on nest survival has expanded greatly. We extend

nest survival models further by introducing an approach to deal with incom-

pletely observed, temporally varying covariates using a hierarchical model.

Hierarchical modeling offers a way to separate process and observational com-

ponents of demographic models to obtain estimates of the parameters of pri-

mary interest, and to evaluate structural effects of ecological and management

interest. We built a hierarchical model for daily nest survival to analyze nest

data from reintroduced whooping cranes (Grus americana) in the Eastern

Migratory Population. This reintroduction effort has been beset by poor repro-

duction, apparently due primarily to nest abandonment by breeding birds. We

used the model to assess support for the hypothesis that nest abandonment is

caused by harassment from biting insects. We obtained indices of blood-feeding

insect populations based on the spatially interpolated counts of insects captured

in carbon dioxide traps. However, insect trapping was not conducted daily, and

so we had incomplete information on a temporally variable covariate of inter-

est. We therefore supplemented our nest survival model with a parallel model

for estimating the values of the missing insect covariates. We used Bayesian

model selection to identify the best predictors of daily nest survival. Our results

suggest that the black fly Simulium annulus may be negatively affecting nest

survival of reintroduced whooping cranes, with decreasing nest survival as

abundance of S. annulus increases. The modeling framework we have developed

will be applied in the future to a larger data set to evaluate the biting-insect

hypothesis and other hypotheses for nesting failure in this reintroduced popula-

tion; resulting inferences will support ongoing efforts to manage this population

via an adaptive management approach. Wider application of our approach

offers promise for modeling the effects of other temporally varying, but imper-

fectly observed covariates on nest survival, including the possibility of modeling

temporally varying covariates collected from incubating adults.

Introduction

Nest success – the probability that a nest will produce at

least one individual – is a key vital rate affecting the evo-

lution, ecology, and management of avian populations.

Nest success has long been a focus of study for avian

ecologists, and associated statistical methods have been in

development for more than 50 years. Mayfield’s (1961,

1975) work was a major breakthrough, developed to

address the problem that apparent nest success (the pro-

portion of sampled nests that are successful) will be a

biased measure of true nest success for most sampling
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scenarios. Nests that are lost early in incubation tend to

be underrepresented in samples, as nests are less likely to

be detected after they fail. To address this, the Mayfield

method instead considers daily nest survival (S):

S ¼ 1� y

D
;

where y is the number of nest failures observed, and D is

exposure days – the sum across nests of days in which

each nest is monitored, from initial detection to termina-

tion. However, Mayfield’s method requires that the date

of nest failure be known, which will not be achieved when

the interval between nest checks is >1 day. Alternatively,

Mayfield assumed that unsuccessful nests failed halfway

through the terminal observation interval, thus allocating

to exposure days half the number of days in the interval.

Johnson (1979), Hensler and Nichols (1981), and Bart

and Robson (1982) developed likelihood functions for

daily nest survival [reviewed by Williams et al. (2002)]

that addressed the problem of uncertain failure date. Sub-

sequently, Dinsmore et al. (2002), Stephens (2003), and

Shaffer (2004) developed generalized linear models allow-

ing for flexible modeling of variation in daily nest survival

[reviewed by Rotella et al. (2004)]. Bayesian developments

have also been presented (Royle and Dorazio 2008;

Schmidt et al. 2010). In the above cases, the mortality

hazard rate is assumed to be constant over the life of the

nest (i.e., age-constant survival), or if age-dependent vari-

ation in survival is of interest, the assumption is that

nests can be aged without error at first detection (e.g.,

Dinsmore et al. 2002). The case of age- or stage-depen-

dent survival with unknown nest age has also been

considered (Heisey and Nordheim 1995; He et al. 2001;

Pollock and Cornelius 2001; He 2003; Stanley 2004; Cao

et al. 2008).

We focus here on the case of age-constant nest survival

and extend nest survival models to handle incompletely

observed temporally varying covariates. A challenge with

covariates of this type arises frequently in survival analysis

under mark–recapture designs, when temporally varying

covariates associated with an individual (e.g., body mass,

reproductive condition) cannot be observed when the

individual is not captured. Modeling the impact of such

covariates on survival, then, has long been a technical

challenge (Pollock 2002), and a handful of solutions have

emerged (Nichols et al. 1992; Bonner and Schwarz 2006;

Catchpole et al. 2008; Langrock and King 2013). We

developed an extension of nest survival models to handle

incompletely observed temporally varying covariates. Our

extension was motivated by a case study involving nest

survival in whooping cranes (Grus americana).

The reintroduction of the Eastern Migratory Popula-

tion of whooping cranes to central Wisconsin (largely on

Necedah National Wildlife Refuge; NNWR) is a corner-

stone effort in whooping crane conservation. Adding an

additional 1 or 2 whooping crane populations is a goal of

the Whooping Crane International Recovery Plan (Cana-

dian Wildlife Service & U.S. Fish and Wildlife Service

2005). Many indicators of success for this reintroduced

population, established with releases of captive-reared

birds beginning in 2001, are good (Urbanek et al. 2009;

Converse et al. 2012). However, reproductive success has

been poor (only 20 of 109 nests, through 2012, produced

a hatchling), largely due to a high rate of nest abandon-

ment.

In 2008, RP Urbanek posed the hypothesis that nest

abandonment is caused by harassment of cranes by

blood-feeding black flies of the genus Simulium (Urbanek

et al. 2010). Since that time, regular collection of insect

index data has been conducted on NNWR using carbon

dioxide traps. However, insect sampling is logistically

challenging (e.g., transporting dry ice to remote trap loca-

tions) and time-consuming (e.g., sample processing).

Therefore, sampling is conducted less than once per day.

While the intensive sampling of this small, reintroduced,

whooping crane population largely obviates the original

motivation for development of the Mayfield method –
essentially all nests are located within 1–2 days of initia-

tion – the focus of estimation is on daily nest survival

because the temporal pattern of nest failure may be key

to understanding the cause of nest failure. To carry out

the analysis for the biting-insect hypothesis, we developed

a novel daily nest survival model to account for missing

insect population indices from carbon dioxide traps. The

goal of this article is to describe and demonstrate the

model with a subset of the whooping crane nest survival

data (2009–2010). We also demonstrate the use of Bayes-

ian model selection, which allows us to distinguish among

a relatively large set of potentially predictive insect popu-

lation metrics. The method described herein will be

implemented for the full nest survival data set for this

population upon the completion of ongoing monitoring

and experimentation.

Methods

Study population and location

The Eastern Migratory Population of whooping cranes

was established via releases of captive-reared birds in 2001

and every year since. The majority of birds in the popula-

tion were reared and trained to migrate via ultralight

aircraft-led migrations in their first fall (Urbanek et al.

2005) between NNWR in central Wisconsin and the Gulf

Coast of Florida (Chassahowitzka National Wildlife

Refuge and St Marks National Wildlife Refuge).
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Beginning in 2005, an additional release type, direct

autumn release, was initiated, wherein birds were released

in Wisconsin during their first fall in the vicinity of older

birds, with the intention that older birds would teach

younger birds the migratory pathway. On 1 April 2009,

there were 73 birds in the EMP, and by 1 April 2010,

there were 89 birds.

Whooping cranes nest in wetland habitats and con-

struct large (>1 m diameter) nests from emergent vegeta-

tion (Allen 1952; Kuyt 1995). Whooping crane nests most

frequently contain 2 eggs, although occasionally a nest

will contain only 1 egg, and rarely 3 eggs (Kuyt 1995).

Incubation responsibilities are shared by the male and

female (Kuyt 1995). The incubation period is 28–34 days

(Gabel and Mahan 1996), most commonly 29–30 days

(Kuyt 1982). We assume a 30-day incubation period.

All nests described herein were on or in the vicinity of

NNWR, a 177-km2 US Fish and Wildlife Service-owned

National Wildlife Refuge in central Wisconsin, USA,

northwest of the town of Necedah. NNWR is composed

of a combination of large wetland complexes intermixed

with upland grassland and woodland, with minimal topo-

graphic relief.

Nest survival monitoring

We used data from all known whooping crane nests

(n = 34) in the Eastern Migratory Population, 2009–2010.
For successful nests, we terminated the encounter history

as soon as an egg hatched, such that nests that produced

any live hatchling were considered successful (whooping

cranes typically lay 2 eggs, which hatch asynchronously;

Kuyt 1995). Nest initiation was determined via direct

observation (ground-based or aerial) and/or radiotracking

of birds. The intensity of monitoring was sufficient to

make it unlikely that any nests went undetected. Monitor-

ing after detection consisted of a combination of ground-

based or aerial observation and radiotracking of adult

birds (to determine whether they were still attending the

nest). Nest checks were most often daily. In some cases,

intervals between checks were longer, but only rarely

longer than 3 days. Also, in some cases, nest fate was

determined after the fact based on video cameras

deployed just within range of nests.

Insect monitoring

To build the nest survival model, we used data from 7

carbon dioxide traps located around NNWR in 2009. All

7 traps were operated in 2009, but in 2010, only three of

the traps were operated. It was possible to fill in zeros for

missing insect data from before and after trapping com-

menced each year in some cases, if it was known for

certain that adults of a particular insect species had not

yet emerged (based on the monitoring of the insect

breeding sites).

Insect data sets were compiled in three different ways

for use in the nest survival models, resulting in three pre-

dictor variables for each of the insect taxa. To construct

the variables, we first spatially interpolated counts for

each taxon, specific to each nest i on day t, using the

inverse-distance-squared interpolator:

ci;t ¼
XN

l¼1

cl;t
1
d2
i;lPN

k¼1
1
d2
i;k

where cl,t is the count at trap l on day t, di,l is the distance

between nest i and trap l, and N is the total number of

traps active on day t. If, on a particular date, data were

available from some traps, while other traps were inactive

(e.g., due to the trap being blown over by wind gusts),

weighted means were calculated from the remaining

traps.

Once we had nest-specific counts, we constructed 3 dif-

ferent metrics to describe insect populations. The metrics

were developed to reflect alternative hypothesized relation-

ships between nest survival and insect populations. First,

we used the counts themselves, transformed as ln

(count + 1). Second, we used a presence/absence indicator

(equal to 1 on any day where the interpolated count was

>0, that is, any day in which insects were detected in any

trap). Finally, we used an indicator for any day when the

nest-specific weighted count exceeded the 90% quantile

for the entire count data set (for all nests), that is, the days

when interpolated counts at a nest were particularly high.

We considered four different insect taxa in the analysis.

First, we included S. annulus and S. johannseni, the two

most abundant ornithophilic black flies in the carbon

dioxide samples. We also included two additional taxa of

blood-feeding insects that were common and widespread

in the insect survey data, including mosquitoes (family

Culicidae) and horse flies (family Tabanidae).

Nest survival model

There are two basic components to the model that we

developed. First is the nest survival portion of the model.

Data for this portion of the model consist of the nest

encounter history Xi,t for nest i on day t, where Xi,t = 1 if

the nest was observed alive, 0 if the nest was observed

dead, and “NA” if the nest was not observed (i.e., coded

as missing data). We assumed (reasonably so) that suc-

cessful nests were observed on the day of hatching, so the

nest record would terminate once the first egg hatched.

In 2010, two nests did not hatch, although they were

incubated full term (eggs were either infertile or the
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embryos died). We assumed that these nests failed on the

30th day of incubation – this is the typical incubation

period for whooping cranes (Kuyt 1995). Other assump-

tions could be made, but because nest abandonment

appears to be the major proximal cause of nest failure, we

decided to treat the nest as successful until the end of

incubation, as it was not abandoned before that point.

Starting with the first day after nest detection, the nest

encounter history Xi,t+1 is distributed as follows:

Xi;tþ1jðXi;t ¼ 1Þ�BernoulliðSi;tÞ

and

Xi;tþ1jðXi;t ¼ 0Þ ¼ 0:

Then,

logitðSi;tÞ ¼ B � Z

where Si,t is the survival probability for nest i on day t, the

B are model parameters, and the Z are a set of predictor

variables, which may include Ii,t+1 – the day- and nest-spe-

cific insect predictors. We included a random intercept for

each nesting pair, so b0[pairi]~ Normal (lpair, rpair), and
we also included a fixed effect of renesting, applied as an

indicator to second and third nests, in addition to the

insect variables included as described below.

The second portion of the model considers the insect

populations. For count data – transformed as ln(count

+1) – we modeled:

Ii;tþ1 �Normalðli;tþ1; s½yeari�Þ

where sy is a year-specific precision term for y = 1:2

(2009 and 2010), and

li;tþ1 ¼ a½yeari� þ q½yeari� � ðli;t � a½yeari�Þ
where ay is a year-specific mean, and qy is a year-specific

autoregressive parameter. Alternatively, for the 2 types of

indicator data (presence/absence and >90% quantile), we

used a model analogous to the process portion of a dynamic

occupancy model (MacKenzie et al. 2003), such that

Ii;tþ1 �Bernoulliðwi;tþ1Þ
and

wi;tþ1 ¼ wi;t � /½yeari� þ ð1� wi;tÞ � c½yeari�
In this case, φ is a year-specific patch survival term and

c is a year-specific patch colonization term, where, in this

case, a patch is a nest. In other words, a nest occupied by

insects (i.e., where insects were predicted to be present)

on the previous day is subject to a survival probability,

and a nest unoccupied on the previous day is subject to a

colonization probability.

Bayesian model selection

To facilitate inference about the predictive value of the

different insect indices for daily nest survival, we con-

ducted Bayesian model selection using the Kuo and

Mallick (1998) indicator variable approach (see also Link

and Barker 2006; Royle and Dorazio 2008; Smith et al.

2011). We considered, with equal prior weight, all possi-

ble models given the 12 insect variables, producing 212

possible models. To achieve this, we modeled each of the

insect variables in parallel in the analysis. We then

included the full set of insect effects in the linear predic-

tor for daily nest survival. However, we also included,

associated with each insect effect, an indicator variable,

wm for the insect variables I
ðmÞ
i;tþ1 such that:

logitðSi;tÞ ¼ b0½pairi� þ
X12

m¼1
wm � bm � IðmÞ

i;tþ1

� �
þ b13

� renesti;
where the prior for wm~Bernoulli (0.5). Each sample from

the Markov chain Monte Carlo (MCMC) algorithm then

included an indicator for whether a given variable was

included in the model: 1 if the variable was included in

the model and 0 if it was not. We then calculated the

Bayes factor (BF) for each insect variable from the prior

mean of wm (0.5) and the posterior mean of wm (wm|

data) as follows:

BFm ¼ wmjdata=ð1� wmjdataÞ
wm=ð1� wmÞ

In other words, the BF is the odds ratio for inclusion

of the variable in the model (Smith et al. 2011). Because

the prior distributions on model parameters can influence

Bayesian model selection results, Link and Barker (2006)

recommend that the total prior uncertainty should

remain constant regardless of the dimensions of the

model. We achieved this by scaling the variance of the

parameter prior distributions. We gave each of the bm
coefficients a mean zero normal prior, with a variance

equal to V/K, where K was equal to the number of insect

effects entering the model at a particular sample (i.e.,P12
m¼1 wm). We then placed a Gamma-distributed prior

on the total variance of the linear predictor, V, with

parameters 3.29 and 7.8 (Link and Barker 2006). This

prior results in a marginal distribution for nest survival

that is approximately Uniform(0,1).

Model fitting

We fit the models using MCMC methods implemented in

JAGS (Plummer 2012; use of trade or product names

does not imply endorsement by the US government) via

R (R Development Core Team 2004) and the R package
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rjags (Plummer 2013; an R script for running the model

can be obtained from the corresponding author). We

used standard flat priors for all terms in the model

(except as described above), including Gamma (0.1,0.1)

for the inverse of variance terms, Uniform(0,1) priors for

the parameters in the dynamic occupancy-type insect

models, and normal priors with mean = 0 and vari-

ance = 1000 otherwise. We sampled from three indepen-

dent Markov chains a total of 500,000 samples after

discarding the first 20,000 samples. We chose such a large

number of samples because of the large number of mod-

els implied by the model selection procedure, 212. This

allowed us to obtain enough samples under a single

model for reasonable model-conditional posterior distri-

butions of effects of interest. We evaluated the behavior

of the MCMC routine based on the visual inspection of

chains and on R̂ < 1.05, as recommended by Gelman

et al. (2004).

Results

In 2009, insect trapping was conducted on 50 days between

4 April and 15 June, the period when nests were active. In

2010, trapping was less frequent than in 2009 (2010: 5 days

of trapping between 1 April and 14 June). In both 2009

and 2010, the highest counts of the four taxa were for

S. annulus, and these high counts occurred near the end of

April (Figs 1 and 2). In 2009, relatively high counts of mos-

quitoes were also observed, in mid-June. The relative infre-

quency of sampling in 2010 made it more difficult to see

clear increases and decreases in the insect counts.

Of the 34 nests included here (n = 17 in each year),

only 7 produced chicks (2 in 2009, 5 in 2010). There were

5 second nests attempted in 2009 (i.e., 12 pairs nested in

2009), and in 2009, there were 4 second nest attempts

and 1 third nest attempt (12 pairs nested in 2010). In

addition to the 7 successful nests, an additional 2 nests

(both in 2010) were incubated >30 days, but failed due to

infertility or because embryos died during incubation. Of

the 7 nests that produced chicks, only two of them were

first nesting attempts, both in 2010. These 2 nests were

initiated later in the nesting season than any other first

nest observed.

Of the 12 insect variables we considered as predictors

of daily nest survival, only one had a BF > 3 (Table 1) –
the ln-transformed counts of S. annulus. This variable

had a posterior inclusion probability of 0.92, whereas all

other variables had a posterior inclusion probability <0.75
and a BF < 3. The effect estimate for the S. annulus count

variable was strongly negative (b = �0.695, 95%

CI = �1.097, �0.309; Fig. 3). This estimate is conditional

50
0

10
0

15
0

20
0

25
0

30
0

M
ea

n 
co

un
t

5−
A

pr
10

−
A

pr
15

−
A

pr
20

−
A

pr
25

−
A

pr
30

−
A

pr
5−

M
ay

10
−

M
ay

15
−

M
ay

20
−

M
ay

25
−

M
ay

30
−

M
ay

4−
Ju

n
9−

Ju
n

14
−

Ju
n

19
−

Ju
n

24
−

Ju
n

29
−

Ju
n

4−
Ju

l

Figure 1. Mean counts of four insect taxa from 7 carbon dioxide

traps deployed on Necedah National Wildlife Refuge in spring 2009.

Taxa include Simulium annulus (open circles), S. johannseni (closed

circles), horse flies (open triangles), and mosquitoes (closed triangles).
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Taxa include Simulium annulus (open circles), S. johannseni (closed

circles), horse flies (open triangles), and mosquitoes (closed triangles).
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on the top-ranked model including the S. annulus count

variable, that is, the model that was sampled the greatest

number of times (based on the Bernoulli wm variables) in

the MCMC routine.

Predicted daily probability of nest survival was 0.95

(95% CI = 0.87–0.99) for first nests not exposed to black

flies and 0.90 (0.75–0.98) for first nests exposed to

S. annulus at the mean observed level. For renesting, the

equivalent probabilities were 0.97 (0.90–1.00) and 0.94

(0.75–1.00). Predicted probability of producing at least 1

hatchling (survival throughout a 30-day incubation per-

iod) for first nests varied between approximately 0.32 for

nests never exposed to black flies to 0.12 for nests

exposed to black flies at the mean observed level through-

out incubation (Fig. 4). The corresponding values for

renesting attempts were 0.54 and 0.33 (Fig. 4).

Discussion

Flexible, generalized linear modeling approaches to estima-

tion of daily nest survival have contributed substantially to

the study of nesting ecology in recent years (e.g., Dinsmore

et al. 2002; Jehle et al. 2004; Rotella, Dinsmore & Shaffer

2004, 2004; Grant et al. 2005; Hood and Dinsmore 2007;

Schmidt et al. 2010). These methods require fewer

Table 1. Model selection results for 12 insect variables hypothesized

to affect daily nest survival in the Eastern Migratory Population of

whooping cranes. The posterior inclusion probability is the probability

that the variable should be included in the model, and the Bayes fac-

tor (BF) is the posterior odds ratio in favor of the set of models includ-

ing the variable versus the set of models not including the variable.

Insect Variable1
Posterior inclusion

probability2 Bayes Factor3

S. annulus ln(count+1) 0.92 10.80

S. annulus presence 0.52 1.09

S. annulus >90% quantile 0.50 0.99

S. johannseni ln(count+1) 0.74 2.84

S. johannseni presence 0.50 0.99

S. johannseni >90% quantile 0.50 0.99

Tabanidae ln(count+1) 0.46 0.85

Tabanidae presence 0.59 1.41

Tabanidae >90% quantile 0.52 1.08

Mosquitoes ln(count+1) 0.24 0.32

Mosquitoes presence 0.51 1.02

Mosquitoes >90% quantile 0.48 0.91

1Insect variables included, for each of 4 taxa, ln-transformed counts

at a nest, an indicator for presence, and an indicator for days when

the count exceeded the 90% quantile of all counts.
2Posterior mean of the w variables described in the text.
3BF ¼ wjdata=ð1�wjdataÞ

w=ð1�wÞ , where w|data is the posterior inclusion proba-

bility, and w is the prior inclusion probability = 0.5.
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level of counts of the black fly Simulium annulus in the Eastern

Migratory Population of whooping cranes, 2009–2010. Days of

exposure = 0 is the probability of success with no black fly exposure

during a 30-day incubation period, while days of exposure = 30 is the
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incubation period. Open circles are predicted probabilities for first
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2009–2010.
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assumptions than the original formulation of Mayfield

(1961, 1975) and are able to accommodate inclusion of

temporal covariates (e.g., weather effects), fixed individual

covariates (e.g., habitat), and individual covariates that

change in a deterministic way (e.g., nest age).

In our case study, the daily nest survival modeling

framework needed to be extended to accommodate tem-

porally varying individual covariates, where the values of

covariates were periodically unavailable. These covariates

were specific to individual nests because insect counts

were spatially interpolated. The high spatial variability in

insect densities rendered spatial modeling of insect popu-

lations infeasible, and so instead, we used the distance-

averaged counts. However, we note that similar analyses

using insect counts only from the trap nearest the nest

(and in 2010, this included only three possible traps)

resulted in qualitatively equivalent inference, suggesting

that trap-based counts are reasonably robust predictors of

daily nest survival.

Our problem is analogous to that addressed by Bonner

and Schwarz (2006), who considered the problem of

modeling survival using the Cormack–Jolly–Seber
capture–recapture model (Cormack 1964; Jolly 1965;

Seber 1965) with a temporally varying individual covari-

ate (see Pollock 2002 for a general discussion of the

issue). In that case, the missing data arise because the

covariate cannot be observed when the individual is not

captured. Here, our missing covariates arise due to the

less-than-daily frequency of data collection on the covari-

ate. The conceptual approach, however, is similar: a

Markovian model is used to describe the covariate, and

the missing data are sampled using MCMC methods. One

can imagine myriad applications of this or similar models

for temporally varying but imperfectly observed nest

covariates, including covariates that relate to the condi-

tion of the nesting individual (e.g., a nesting bird’s body

mass or physical condition). Daily collection of such a co-

variate could itself have negative effects on nest success,

so less frequent data collection may well be warranted.

The key for completing such an analysis will be identify-

ing an appropriate model for the missing data; we dem-

onstrated two here, one for normally-distributed count

data, and one for Bernoulli-distributed indicator data.

Bayesian model selection to identify the strongest predic-

tor of daily nest survival, among the insect indicators con-

sidered, allowed us to more rigorously assess the evidence

for particular insect population-based predictors of nest

survival. Based on the posterior inclusion probabilities and

Bayes factors (BFs), we had support for essentially only one

insect variable, the ln-transformed counts of S. annulus

populations. In our case, the BF represents evidence for a

particular variable rather than a particular model, as the BF

was calculated based on all models including a given vari-

able versus all models excluding that variable (Smith et al.

2011). Jeffreys (1961) suggested that a BF between 3 and 12

indicated some support for a model, while a BF over 12

indicated strong support. This general guideline may prove

useful in interpreting our results for readers unfamiliar

with Bayesian model selection, although we caution against

over-reliance on arbitrary cutoffs. As clearly articulated by

Link and Barker (2010), strength of evidence represents a

continuum. We interpret the BF of 10.8 to represent mod-

erate to strong support in favor of the biting-insect hypoth-

esis, when insects are represented as ln-transformed counts

of S. annulus.

We found that even with relatively few nests and low

insect sampling frequency (especially in 2010), we were

able to demonstrate a link between S. annulus counts and

daily nest survival in reintroduced whooping cranes. King

et al. (2013) performed an analysis of daily nest survival

for this population, but did not make use of the consis-

tent and continuous data stream available from carbon

dioxide traps. The provenance of the indicators of insect

populations used in that analysis is unclear (to us), but

apparently did not include nest-specific temporally vary-

ing predictors arising from a single, consistent, monitor-

ing technique; however, we note that these authors also

found a negative relationship between S. annulus abun-

dance and daily nest survival. Whether the relationship

we report here holds with a larger data set will be of

primary interest in future investigations. In 2011 and

2012, a bacterial larvicide (Bacillus thuringensis israelensis;

Bti) was applied to riverine habitat surrounding NNWR.

Data from those years, as well as 2013 – a post-treat-

ment year – will be analyzed to examine evidence for

several different hypotheses for poor nest survival in this

population.

Poor breeding success has rendered this reintroduced

population nonviable (Converse et al. 2012; S. Servanty,

Colorado State University, unpubl. data). Uncertainty in

the appropriate management actions to take for this popu-

lation is due to uncertainty in the cause of nest failure

(Runge et al. 2011). Adaptive management is therefore the

most appropriate process for decision-making in this rein-

troduced population (Williams et al. 2007; Runge 2011;

McCarthy et al. 2012; Converse et al. 2013), and continued

analysis of nest survival will be key in reducing uncertainty

over time within an adaptive management process.
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