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Screening drug-target interactions 
with positive-unlabeled learning
Lihong Peng1,2, Wen Zhu1, Bo Liao1, Yu Duan3, Min Chen1, Yi Chen4 & Jialiang Yang   5

Identifying drug-target interaction (DTI) candidates is crucial for drug repositioning. However, usually 
only positive DTIs are deposited in known databases, which challenges computational methods to 
predict novel DTIs due to the lack of negative samples. To overcome this dilemma, researchers usually 
randomly select negative samples from unlabeled drug-target pairs, which introduces a lot of false-
positives. In this study, a negative sample extraction method named NDTISE is first developed to screen 
strong negative DTI examples based on positive-unlabeled learning. A novel DTI screening framework, 
PUDTI, is then designed to infer new drug repositioning candidates by integrating NDTISE, probabilities 
that remaining ambiguous samples belong to the positive and negative classes, and an SVM-based 
optimization model. We investigated the effectiveness of NDTISE on a DTI data provided by NCPIS. 
NDTISE is much better than random selection and slightly outperforms NCPIS. We then compared 
PUDTI with 6 state-of-the-art methods on 4 classes of DTI datasets from human enzymes, ion channels, 
GPCRs and nuclear receptors. PUDTI achieved the highest AUC among the 7 methods on all 4 datasets. 
Finally, we validated a few top predicted DTIs through mining independent drug databases and 
literatures. In conclusion, PUDTI provides an effective pre-filtering method for new drug design.

Identifying drug-target interaction (DTI) candidates is important in modern drug discovery1–3. Efficiently pre-
dicting possible DTIs helps accelerate research efforts in discovering multitarget drugs or multidrug targets4, 5.  
High-throughput screening provides more opportunities for exploring DTIs3. However, existing data about 
DTIs are still very limited. For example, although an estimated 35 million compounds exist in the PubChem 
database, only <7000 drug compounds have available association information on their corresponding targets3. 
Experimental determination of DTIs remains labor-intensive, time consuming, and limited to small-scale identi-
fications4, 6. Therefore, appropriate computational methods are needed to screen DTI candidates to save time and 
cost of biomedical experiments3.

Traditional computational methods to predict DTIs can be divided into ligand-based methods7 and molecule 
docking methods8. Ligand-based methods7 might be limited when target proteins have no known association 
information9, while molecular docking methods8 are computationally costly and depend largely on the 3D struc-
tures of target proteins3, 9. To overcome these problems, multiple computational models have been increasingly 
exploited to determine potential DTIs10–12. These computational methods are generally classified into two main 
classes: network-based inference methods and machine learning-based prediction methods3. Network-based 
inference methods, such as multiple target optimal intervention model13, drug side-effect similarity-based infer-
ence model14, and random walk-based prediction model with restart on the heterogeneous network10, can be used 
to investigate novel DTIs even if the 3D structures of proteins are unknown. However, this kind of method cannot 
detect possible DTIs when drug-target pairs are unreachable in a DTI network3.

An increasing number of machine learning-based methods have been proposed for inferring DTI candi-
dates among which supervised learning methods are the most widely used3, 15 because they have excellent pre-
dictive capability3, 16. For example, a kernel regression-based approach17 was proposed to predict possible DTIs 
from human enzymes, ion channels, GPCRs and nuclear receptors by integrating the chemical structures of 
drug compounds, sequence information of target proteins and known DTI networks into a unified framework. 
A supervised learning method18 based on a bipartite local model performs well, but it cannot predict DTI candi-
dates for new drugs or targets19. A Regularized Least Square-based method20 defined Gaussian interaction profile 
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kernel and Kronecker product kernel (Kron) to identify possible DTIs (RLSAvg and RLSKron). Kerneled Bayesian 
matrix factorization methods based on classification and regression21 obtained good predictive performances 
(KBMF2K-classification and KBMF2K-regression). A contrastive divergence method22 combing restricted 
Boltzmann machines was developed to find DTI candidates. However, this method only utilized known DTI 
networks and did not take advantage of drug and target similarity networks3. A Random Forest (RF)-based learn-
ing approach23 was exploited to predict DTIs by integrating substructures of compounds, physicochemical and 
biomedical properties of proteins and known DTI networks. However, this approach cannot detect possible DTIs 
for a new drug or target without association information. To solve this problem, multiscale feature representation 
approach24 based on deep learning, random projection ensemble method25 and support vector machine (SVM)12 
were utilized to infer DTI candidates for new drugs or targets.

Supervised learning have demonstrated satisfactory classification capability15. However, their classifi-
cation accuracy and robustness depend on the training dataset, wherein negative and positive samples are 
equally important. For potential DTI identification, unfortunately, positive samples (known DTIs) are rare, 
and experimentally validated negative samples (non-interacting drug-target pairs) are difficult to achieve or 
even unavailable26, 27. Thus, supervised learning-based models can only randomly generate negative samples 
from unlabeled drug-target pairs26, 27. However, these unlabeled datasets possibly include both positive and 
negative DTIs28. Thus, this inaccurate method for negative sample selection severely disturbs generation 
capability of the models and result in overoptimistic classification results3, 9, 26. Therefore, it is highlighted in 
refs 3 and 9 that extracting highly credible Negative DTI Samples (NDTISs) is one of the important devel-
opments in predicting DTIs.

It is assumed in ref. 26 that the compounds dissimilar to every known drug are not much likely to associ-
ate with proteins that interact with the known drugs, and vice versa. Based on the assumption, a systematic 
method, NCPIS, is presented to build up a set of reliable negative DTI samples. Reference 28 treated unknown 
DTIs as unlabeled samples and used three methods (KNN, random walk with restarts and heat kernel dif-
fusion) to extract reliable negative examples and likely negative examples based on PU learning and target 
similarity information.

Positive and unlabeled (PU) learning29–31 has been widely applied to classify unlabeled data. The techniques 
can be categorized into two main classes based on different strategies that deal with unlabeled samples29, 31. 
One group of methods simply extract reliable negative samples from the unlabeled data and learn a classifier 
using positive and reliable negative data. The Spy-EM32 and Roc-SVM33 are two representative techniques. The 
Spy-EM method32 classified unlabeled texts based on a naive Bayesian classifier and an expectation maximi-
zation (EM) algorithm. The Roc-SVM method33 classified unknown documents by integrating the Rocchio 
technique and SVM. However, only known positive samples and extracted negative samples are available, and 
ambiguous samples (remaining unlabeled samples) are excluded in these two methods, thereby limiting their 
performances29.

Another group of methods fully utilized the ambiguous samples, except for positive and reliable nega-
tive data, during the learning process29–31. Micro cluster-based PU learning method (LELC)30 was applied to 
select high-quality negative samples and likely positive and negative samples from the unlabeled samples for 
data stream classification. LELC algorithm30 obtained more robustness than existing data stream classification 
techniques. However, LELC method absolutely imposed samples of the whole micro-cluster on either class29, 

31. Therefore, misclassification may be generated when parts of the samples are close to the positive class, 
and the other samples are more biased toward the negative class in a micro-cluster29. To solve this problem, a 
similarity-based PU learning technique (SPUL)29 extended the standard SVM to explicitly identify the ambigu-
ous examples. PU learning approach mixing population and individual properties (MPIPUL)31 detected decep-
tive reviews by mixing global and local information. Both techniques took full advantage of the similarities 
between samples for the easily misclassified ones, therefore, they obtained significantly higher improvement 
than the LELC algorithm.

Considering PU learning-based methods and various biological information related to drugs and targets, we 
first developed a Negative DTI Samples Extraction method, NDTISE, to screen strong negative DTI examples. A 
novel DTI screening framework, PUDTI, was then designed to infer new drug repositioning candidates of exist-
ing drugs and targets by integrating NDTISE, probabilities that the ambiguous samples belong to the positive and 
negative classes, and an SVM-based optimization model.

Results
Our goal is to (a) improve DTI predictive accuracy based on the PUDTI framework; (b) effectively iden-
tify drug repositioning candidates for existing drugs and targets; (c) provide new clues of the treatment for 
Alzheimer’s diseases. The central idea is to extract NDTISs based on PU learning. Figures 1, 2, 3, 4 and 5 show 
the illustration of the PUDTI framework. The framework consists of five main parts: representing each DTI 
as a vector based on various biological information, selecting feature subsets of DTIs, constructing strong 
NDTISs, computing the similarity weights of the ambiguous examples, and building an SVM-based optimi-
zation model.

We evaluated whether our proposed PUDTI framework can identify potential DTIs properly. We presented 
extensive experiments under different experimental settings. (1) We compared the performances of our proposed 
NDTISE method with random selection method and NCPIS on a DTI data provided by NCPIS26. (2) We evalu-
ated our proposed PUDTI framework on four classes of datasets from human enzymes, ion channels, GPCRs and 
nuclear receptors, respectively. (3) We compared the performances of 5 representative DTI prediction models 
including BLM, RLS-Avg, RLS-Kron, KBMF2K-classification and KBMF2K-regression by applying the negative 
samples predicted by NDTISE, random selection and NCPIS, respectively on the DrugBank data. (4) Parts of 
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new drug repositioning candidates of existing drugs and targets are identified. (5) New clues of the treatment of 
Alzheimer’s disease are inferred.

We executed the feature selection method and ranked each feature based on their discriminant capability scores 
in constructed positive sample set P and unlabeled sample set U. Moreover, we screened the top 300 features for 
DTIs. Considering previous studies25 and our test, we chose the radial basis kernel as the kernel function because of 
its good boundary response24. The parameters C1, C2, C3 and C4 were set with a step size of 2−4 in the range [2−5, 25].

Performance Comparison of Different Negative Sample Selection Methods.  We compared three 
different negative sample selection methods including NDTISE, random selection and NCPIS on the DTI data 
provided in the paper26 using six classical classification models including naive Bayes (NB), k-nearest neighbor 
(kNN), L1-logistic (L1-R) and L2-logistic regression(L2-R), RF and SVM. The parameters on these classifiers 
were set as the default values provided by ref. 26. The negative ratio in NCPIS was chosen as 3. The k for kNN 
algorithm was set as 1. Both the codes of the Spy and Rocchio classifiers32, 33 can be achieved from the LPU sys-
tem30 (http://www.cs.uic.edu/liub/LPU/LPU-download.html).

A total of 10 trials of pairwise 5-fold cross-validation9, 26 were used to measure the NDTISE method against 
random selection method and NCPIS. (1) The drug-target pairs D (interacting or non-interacting) in the gold 
standard dataset were randomly partitioned into five mutually exclusive subsets that were roughly equal in size 
D D D{ , , , }1 2 5… . (2) In each round t {1, 2, , 5}∈ … , one drug-target pair set Dt was regarded as a test set, and the 

entries in Dt were masked. The remaining four subsets D\Dt were taken as training sets to recover the masked true 
labels in Dt. (3) The experiment was repeated 10 times to avoid sampling bias, and the average predictive perfor-
mance over the 5-folds for 10 trials was used as the final result.

Figure 1.  Representing each DTI as a vector.

Figure 2.  Selecting feature subset of DTIs.

http://www.cs.uic.edu/liub/LPU/LPU-download.html
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To extract sub-datasets for PU learning, we specially conducted the following setting: we randomly extracted 
r percent of samples from known DTI dataset in the training set to form a positive sample set P. The remaining 
samples from the known DTI dataset and unknown drug-target pairs in the training set were used together to 
form an unlabeled dataset U. We firstly set r = 10, and evaluated the performances of the NDTISE method by 
increasing r. We observed that the NDTISE method is basically stable when r is no less than 30. Therefore, we set 
r as 30 in this study. The above six classifiers utilized P and RN extracted by the three negative sample selection 
methods as positive and negative samples, respectively. SVM-SW computed the similarity weights of the ambig-
uous samples besides P and RN.

We listed in Table 1 the performances of the three negative sample selection methods using respective classifi-
cation models in terms of precision, recall, f-measure and AUC. NDTISE outperforms the other two methods in 4 
classification methods and achieves comparable performances to NCPIS in the other two classification methods. 
Compared to random selection method, for instance, the average AUC values on NDTISE increased by 17.29%, 
36.10%, 5.89%, 7.03%, 26.79% and 25.08% in NB, kNN, L1-R and L2-R, RF and SVM, respectively. The F-measure 
values on NDTISE also increase by 29.34%, 55.38%, 15.60%, 15.54%, 53.31% and 58.60% from naive Bayes to 
SVM. Compared with NCPIS, NDTISE was found to be superior in NB, kNN, L1-R and L2-R. For instance, the 
AUC values of NDTISE increased by 10.64%, 2.59%, 1.82% and 2.02% from NB to L2-R. Moreover, the F-measure 
values of NDTISE increased by 12.87%, 3.88%, 4.69%, and 3.08%. The observations indicated that NDTISE can 
effectively screen negative DTI samples.

Although the performances of NDTISE were slightly lower than NCPIS in the RF and SVM, our proposed 
PUDTI framework based on the SVM-SW classifier was better than NCPIS, as shown in Table 2. The results indi-
cated that considering the probabilities that the ambiguous samples belong to the positive and negative classes 
may help improve classification performance.

Figure 3.  The NDTISE method.
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Comparison on Four Classes of Datasets Provided by Yamanishi et al.  Yamanishi et al.17 screened 
90, 635, 1476 and 2926 interactions based on 54, 223, 210 and 445 drugs and 26, 95, 204 and 664 proteins from 
human nuclear receptors, GPCRs, ion channels and enzymes, respectively. Table 3 described the details. To 
demonstrate the performance of our proposed PUDTI framework, we compared it with 6 state-of-the-art meth-
ods on these four datasets: DBSI11, NetLapRLS34, KBMF2K21, NetCBP27, WNN-GIP35 and PUDT-Lan28. The six 
methods were used to predict potential DTIs from human nuclear receptors, GPCRs, ion channels and enzymes 
and the last method inferred possible DTIs based on PU learning.

We listed in Table 4 the average AUC values of these six methods and our proposed PUDTI framework. It 
is clear that PU-based prediction methods significantly outperform other methods on all four datasets, which 
suggests that extracting negative DTI samples from unlabeled drug-target pairs may help improve prediction 
performance. In addition, our proposed PUDTI framework is better than the PUDT-Lan method, which might 
due to the fact that we considered the probabilities that the ambiguous samples belong to the positive and negative 
classes in PUDTI.

Comparison with Representative DTI Prediction Methods on the DrugBank data.  We com-
pared the performances of 5 representative DTI prediction models including BLM, RLS-Avg, RLS-Kron, 
KBMF2K-classification and KBMF2K-regression by applying the negative samples predicted by NDTISE, ran-
dom selection and NCPIS, respectively on the DrugBank data. These methods were originally used to identify 
potential DTIs from human enzymes, ion channels, GPCRs and nuclear receptors, which were provided by ref. 17.  
For RLS-Avg and RLS-Kron, we set the parameters as (0.5, 0.5) and (0.5, 0.5), wherein the two classifiers obtained 
better classification performances than (1, 1) and (1, 1)26. We extracted strong NDTISs based on algorithm 1. The 
drug and protein similarity matrices can be calculated according to cosine formula based on the feature vectors of 
drugs and proteins. We still used 10 trials of pairwise 5-fold cross-validation and conducted sub-dataset extrac-
tion for PU learning, similar to the previous section.

The results are as shown in Fig. 6. NDTISE significantly outperforms random selection method in 5 repre-
sentative DTI prediction models. The recall values of NDTISE were lower than NCPIS in these models. However, 
the precision values of NDTISE are better than NCPIS, that is, more correctly predicted DTIs were obtained; 
although, successfully predicted DTIs were relatively few. Moreover, NDTISE obtained better improvement than 
NCPIS in terms of F-measure and AUC. These results indicated that our designed NDTISE method can extract 
NDTISs properly.

Figure 4.  Computing the similarity weights of remaining ambiguous examples.
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Sensitivity Study on the Parameter.  The similarity weights of an ambiguous sample are used to meas-
ure the probabilities that the sample belongs to the positive and negative classes. The parameter α is used to 
balance the importance between local and global similarities. To measure the sensitivity of α in our proposed 
PUDTI framework, we conducted a series of extensive experiments to investigate the performance under differ-
ent settings.

As described in Fig. 7, when r is 30, and if α < 0.6, the performances increase gradually; and if α > 0.6, the 
performances decrease gradually. We obtained the similar results when r was selected from 40 to 70 with a step 
size of 10. Therefore, we set α as 0.6.

Drug Repositioning for Astemizole.  Astemizole is a long-acting and non-sedative antihistaminic. The 
drug has antiallergic properties and is used to treat allergic conjunctivitis, asthma, chronic idiopathic urticaria 
and seasonal allergic rhinitis36. Recently, ref. 37 reported that astemizole was possibly a new anti-cancer drug. 
Therefore, identifying new drug repositioning candidates for the drug is significant. We intended to find new 

Figure 5.  Classify unknown DTIs based on SVM-SM.
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association information for the drug from the DrugBank database38 by training SVM-SW classification model 
after determining the performances of PUDTI.

Astemizole interacts with eight proteins, namely, P24462, P08183, P35367, P51589, P20815, P10635, 
P08684 and Q12809 in the DrugBank database38. We extracted twelve negative DTIs for the drug, namely, 
O75600, P07814, P21549, P23378, P23415, P28066, P30793, P34896, P34897, Q10588, Q53ET4 and 
Q8IWU9. Five of these extracted negative DTIs have been reported by ref. 26. We used cytoscape39 to draw 
DTI networks. Figure 8(a) listed known DTIs in the DrugBank database38 and reliable NDTISs extracted by 
algorithm 1.

We predicted possible interaction partners for astemizole based on known DTIs and extracted NDTISs. The pre-
dicted results are shown in Fig. 8(b). These DTIs can be divided into four parts: the first part includes known DTIs 
in the DrugBank database38, wherein seven of eight known DTIs are identified by PUDTI. The second part includes 
DTI candidates that are unknown in the DrugBank database38 but can be validated by retrieving the other databases. 
Among these DTIs, the interactions between astemizole and four proteins, namely, Q07973, O95259, P28223 and 
P41595, can be validated by searching the STITCH database40, and the interactions between astemizole and two 
proteins, namely, P35346 and P30874, can be substantiated by retrieving the SuperTarget database41.

The third part includes the interaction between astemizole and Q9UHW9, which has been reported by ref. 26.  
The remaining are from the associations between astemizole and P04798, P05177, P10632, P11712, P13584, 
P20813, P21439, P28335, Q16678 and Q9HB55.

P08183 is an energy-dependent efflux pump and used to decrease drug accumulation in cells42. The pro-
tein interacts with astemizole in the DrugBank database38. Phosphatidylcholine translocator ABCB4 (P21439) is 

Metric
Negative 
DTIs NB kNN L1-R L2-R RF SVM

Precision

Random 0.338 0.458 0.786 0.787 0.529 0.700

NCPIS 0.361 0.716 0.823 0.837 0.847 0.969

NDTISE 0.422 0.759 0.877 0.842 0.840 0.965

Recall

Random 0.376 0.306 0.622 0.631 0.306 0.261

NCPIS 0.560 0.882 0.749 0.773 0.824 0.883

NDTISE 0.625 0.897 0.775 0.817 0.821 0.876

F-measure

Random 0.356 0.367 0.694 0.700 0.388 0.380

NCPIS 0.439 0.790 0.784 0.804 0.835 0.924

NDTISE 0.504 0.822 0.823 0.829 0.830 0.918

AUC

Random 0.622 0.593 0.879 0.873 0.694 0.705

NCPIS 0.672 0.904 0.917 0.920 0.954 0.942

NDTISE 0.752 0.928 0.934 0.939 0.948 0.941

Table 1.  Performance comparison of six classical classification models on random selection method, NCPIS 
and NDTISE.

Metric Precision Recall F-measure AUC

SVM 0.965 0.876 0.918 0.941

SVM-SW 0.973 0.892 0.931 0.962

Table 2.  Performance comparison on SVM and SVM-SW.

Dataset
Nuclear 
receptors GPCRs

Ion 
channels Enzymes

drugs 54 223 210 445

targets 26 95 204 664

interactions 90 635 1476 2926

Table 3.  Datasets from human nuclear receptors, GPCRs, ion channels and enzymes17.

Dataset DBSI NetLapRLS KBMF2K NetCBP
WNN-
GIP

PUDT-
Lan PUDTI

Nuclear receptor 0.759 0.761 0.810 0.838 0.839 0.885 0.907

GPCR 0.803 0.826 0.840 0.823 0.872 0.878 0.894

Ion channel 0.803 0.793 0.802 0.803 0.775 0.831 0.875

Enzyme 0.806 0.802 0.812 0.825 0.861 0.884 0.898

Table 4.  The average AUC values of different DTI prediction methods on four datasets.
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energy-dependent phospholipid efflux translocator and used to positively regulate biliary lipid secretion. It spe-
cifically translocates phosphatidylcholine from canalicular membrane bilayer into hepatocytes. The translocation 
enables biliary phospholipids to be extracted into the canaliculi lumen and thus protects hepatocytes from the 
detergent properties of bile salts42. Both P08183 and P21439 are multidrug resistance proteins38. The function of 
P21439 is similar to P08183’s41. Moreover, sequence similarity and sequence identity between these two proteins 

Figure 6.  Performance comparison of different negative sample selection methods. Blue denotes the 
performances of random selection method, green denotes the performances of NCPIS and yellow denotes the 
performances of our proposed NDTISE method. (a–d) Represent precision, recall, F-measure and AUC values 
of different negative samples extraction methods using respective classification models, respectively.

Figure 7.  The choice of α values.
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are 0.86 and 0.753 in the SuperTarget database, respectively41. Therefore, we inferred that P21439 may be new 
drug repositioning candidates of astemizole based on the predictive accuracy of PUDTI, functional similarity, 
sequence similarity and sequence identity to known target.

Drug Repositioning for DNA topoisomerase 2-alpha.  DNA topoisomerase 2-alpha (P11388) encoded 
by the TOP2A gene is used to control topological states of DNA. It is essential for segregating daughter chro-
mosomes during mitosis and meiosis38. We intended to find new drug repositioning candidates for the protein 
from the DrugBank database38 by training SVM-SW classification model after determining the performances of 
PUDTI.

P11388 interacts with thirty-two drugs in the DrugBank database38. Most of these drugs are used to interfere 
with the transcription process and prevent the RNA synthesis38. We extracted thirteen negative DTIs for the 
proteins, where eight of these extracted negative DTIs have been reported by ref. 26. We used cytoscape39 to 
draw DTI networks. Figure 9(a) listed known DTIs in the DrugBank database38 and reliable NDTISs extracted 
by algorithm 1.

We predicted possible interaction partners for P11388 based on known DTIs and extracted NDTISs. The 
predicted results were shown in Fig. 9(b). These DTIs can be divided into four parts: the first part includes known 
DTIs in the DrugBank database38, wherein twenty-seven of thirty-two known DTIs are identified by our proposed 
PUDTI framework. The second part includes DTI candidates that are unknown in the DrugBank database38 but 
can be validated by retrieving the other databases. Among these DTIs, the interaction between dactinomycin 

Figure 8.  New drug repositioning candidates of astemizole. Figure (a) describes the known DTIs and extracted 
NDTISs of astemizole. Red hexagon denotes astemizole, the green dotted lines denote known DTIs, the blue 
solid lines denote extracted NDTISs in (a). Figure (b) describes predicted DTIs of astemizole. The green dotted 
lines denote successfully predicted DTIs, the orange dash lines denote predicted DTIs that can be validated by 
the related databases, the azure dash dotted line denotes predicted DTIs which have been reported by ref. 26, the 
black solid lines denote the other predicted results in (b).

Figure 9.  New drug repositioning candidates of P11388. Figure (a) describes the known DTIs and extracted 
NDTISs of P11388. Red hexagon denotes P11388, the green dotted lines denote known DTIs, the blue solid 
lines denote extracted NDTISs in (a). Figure (b) describes predicted DTIs of P11388. The green dotted lines 
denote successfully predicted DTIs, the orange dash lines denote predicted DTIs that can be validated by the 
related databases, the azure dash dotted lines denote predicted DTIs which have been reported by ref. 26, the 
black solid lines denote the other predicted results in (b).
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and P11388 can be validated by searching the UniProt database42, and the interaction between gatifloxacin and 
P11388 can be substantiated by retrieving the SuperTarget database41. Dactinomycin is used to bind to DNA and 
inhibit RNA synthesis. Protein synthesis, a result of impaired mRNA production, will decline after dactinomycin 
therapy38. Gatifloxacin is used to inhibit bacterial enzymes DNA gyrase. The drug is available in aqueous solutions 
for intravenous therapy38.

The third part includes the interactions between P11388 and dichlorophenamide and miconazole, which have 
been reported by ref. 26. The remaining are from the associations between P11388 and irinotecan and topotecan. 
P11388 interacts with camptothecine in the SuperTarget database41. Both irinotecan and topotecan are derivatives 
of camptothecin38. Topotecan is a drug used to treat ovarian cancer. It is used to regulate DNA topology and facil-
itate DNA recombination, replication and repair by inhibiting DNA topoisomerase I38. The similarity between 
camptothecine and topotecan is 0.94 in the SuperTarget database41. The association between P11388 and topo-
tecan can be validated by retrieving refs 43–45. Therefore, we inferred that P11388 may interact with topotecan.

Find New Clues of Treatment for Alzheimer’s Diseases.  The above results of drug repositioning 
imply that existing drugs and drug targets may help find new therapies for diseases. We investigated the complex 
associations between existing drugs and drug targets of Alzheimer’s disease to infer new clues of treatment for 
the disease. We retrieved six drugs for Alzheimer’s disease based on its indications in the DrugBank database, 
namely, galantamine, olanzapine, quetiapine, risperidone, thioridazine and ziprasidone38. All the other five drugs 
except for galantamine target seven proteins, namely, D(1A), D(2) and D3 dopamine receptors (P21728, P14416 
and P35462), alpha-1A and alpha-1B adrenergic receptor (P35348 and P35368), 5-hydroxytryptamine receptors 
(P28223) and potassium voltage-gated channel subfamily H member 2(Q12809)38.

We found some drugs targeting these seven proteins in the DrugBank database. However, we can not infer new 
clues of the treatment of Alzheimer’s disease only by these seven target proteins. Therefore, we intended to predict 
the interactions between these six drugs and targets, as well as the associations between these drug targets and the 
other drugs. The results are shown in Fig. 10. We can observe that the other five drugs except for galantamine gen-
erally target parts of target proteins, namely, adrenergic receptors (P35348, P35368, P08913, P18089 and P18825), 
dopamine receptors (P21728, P21917, P21918, P35462 and P14416), 5-hydroxytryptamine receptors (P28223, 
P34969 and P08908), muscarinic acetylcholine receptors (P08172, P08173, P08912 and P11229), histamine H1 
receptor (P35367) and potassium voltage-gated channel subfamily H member 2(Q12809). Therefore, we inferred 
that these target proteins may have a strong correlation with Alzheimer’s disease.

We further considered the other drugs targeting these proteins in the DrugBank database and found that arip-
iprazole may have strong correlations with these target proteins. Aripiprazole is atypical antipsychotic medication 

Figure 10.  New clues of the treatment of Alzheimer’s disease. Red hexagon denotes Alzheimer’s disease, 
yellow diamonds denote known drugs of Alzheimer’s disease, azure rectangles denote predicted new clues of 
treatment of Alzheimer’s disease. Green solid lines denote known DTIs, blue solid lines denote predicted DTIs, 
red separate arrow lines denote the associations between Alzheimer’s disease and known drugs, azure dash lines 
denote the associations between Alzheimer’s disease and new clues of treatment.
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and is used to treat schizophrenia and mediate its antipsychotic effects primarily by P14416. It has been reported 
in ref. 46 that aripiprazole may be in clinical trails and used to the treatment of Alzheimer’s disease. Therefore, we 
inferred that aripiprazole may be a drug candidate of Alzheimer’s disease.

Discussion
Supervised learning-based methods demonstrated better classification performances for potential DTI 
identification than traditional computational methods. However, experimentally validated NDTISs were 
impossible to achieve or even unavailable. Therefore, screening negative training samples for DTI prediction 
models is a recurring problem. In this study, we designed the NDTISE method to extract reliable NDTISs 
based on PU learning and various biological information. A novel DTI screening framework, PUDTI, is 
then developed to find new drug repositioning candidates of existing drugs and targets. Experimental 
results from three different negative sample selection methods on the DTI data provided by NCPIS26, 6 
state-of-the-art methods on 4 classes of DTI datasets from human nuclear receptors, GPCRs, ion channels 
and enzymes, and 5 representative DTI prediction models on the DrugBank data demonstrated the gen-
eralization capability and competitiveness of our proposed PUDTI framework. The framework identified 
new drug repositioning candidates for the drug astemizole and the target DNA topoisomerase 2-alpha, and 
found new clues of the treatment for Alzheimer’s disease.

The PUDTI framework can produce good results over all measures compared with different methods. 
This observation may be ascribed to the following advantages of the framework. (1) The framework can 
effectively extract those DTI candidates that are most likely to be negative samples. These NDTISs are 
applied to identify possible DTIs with the labeled DTIs. (2) The framework took advantage of multiple 
classifier combination and effectively integrated two types of PU learning models and various biological 
information related to drugs and targets. (3) In the DTI prediction problem, the noise in training samples 
was unavoidable. Different similarity weights were calculated to demonstrate different noise levels of the 
ambiguous samples. Therefore, the built SVM-SW was more tolerant to different noise levels of various DTI 
data types.

The PUDTI framework integrated the Spy and Rocchio classifiers32, 33 to extract reliable NDTISs. However, the 
predictive accuracy can be further improved by integrating multiple PU learning models. In subsequent inves-
tigations, we will consider an ensemble PU learning framework for DTI screening to minimize the possible bias 
and errors in these two types of PU learning methods.

The negative sample construction is a key issue in predicting associations between various biological enti-
ties, such as lncRNA-disease associations, miRNA-disease associations and drug-drug associations. The PUDTI 
framework may also benefit from the extraction of various negative samples, which will in turn assist in identi-
fying underlying associations between these entities. In further experiments, we will consider to build negative 
lncRNA-disease association dataset and negative miRNA-disease association dataset based on PU learning to 
improve predictive performance.

Finding new therapies for existing drugs is significant for modern drug development. There are complex 
associations between diseases and their known drugs and drug targets. In the future, we will consider to build a 
supervised learning model by constructing a disease-drug-target network to identify new clues of the treatment 
for existing diseases.

Materials and Methods
Materials.  Representing Drug Molecules.  Different kinds of descriptors were used to describe various drug 
molecule properties in drug discovery. A PaDEL-Descriptor software47 has been designed to represent drug mol-
ecules. We used the software and represented a drug molecule as G g g g( , , , )T1 2 1444= …  based on the preprocess-
ing program provided by ref. 25.

Representing Target Proteins.  Various types of protein descriptors were defined based on different properties of 
target proteins in proteomics. For representing target proteins, we used three types of protein properties, namely, 
protein domain48, pseudo amino acid composition (PAAC)49 and position specific scores50.

Protein Domain: Domains of target proteins were retrieved from the PFAM database48. A total of 1331 func-
tionally assigned domains on human are available in PFAM. The domain component of a target protein is denoted 
as = …O o o o( , , , )T1 2 1331 , where oi (1 ≤ i ≤ 1331) is equal to 1 if the target protein contains the ith domain; oth-
erwise, oi is equal to 0.

PAAC: The PAAC method49 described each protein based on the amino acid sequence of a protein. Following 
the PAAC method, we used PAAC features as descriptors to represent each target protein as a 50-dimensional 
vector:

A a a a( , , , ) ( 30) (1)T
1 2 20 λ= … =λ+

Position Specific Score Matrix (PSSM): The bi-gram feature extraction method (BiGFE)51 was devel-
oped to describe the evolutionary information of target proteins combining position specific scoring matrix 
(PSSM)50 of target proteins. References 12 and 52 used the method and obtained improved performances 
in predicting DTIs. We described each protein as a 400-dimensional feature vector based on the BiGFE 
method:

= … … … ≤ ≤ ≤ ≤B B B B B B i j( , , , , , , ) (1 20, 1 20) (2)i j
T

1,1 1,2 , 20,1 20,20



www.nature.com/scientificreports/

1 2SCIENtIfIC RePortS | 7: 8087  | DOI:10.1038/s41598-017-08079-7

Combing domains, PAACs and PSSM, a protein target can be represented as a 1781-dimensional vector:

=
















Q
O
A
B (3)

Therefore, each DTI sample can be described as a 3225-dimension vector based on PaDEL-Descriptors of drugs 
and domains, PAACs and PSSM of target proteins:

F G
Q (4)

=












= … …F f f f f( , , , , , )T1 2 1444 3225 , where …f f f{ , , , }1 2 1444  represents the 1444 PaDEL-Descriptors of drugs, and 
…f f f{ , , , }1445 1446 3225  represents the 1781 descriptors of target proteins.

Drug-target Interaction Data.  We downloaded DTI data from STITCH40, DrugBank38 and Matador41, which 
were provided by ref. 26. In these databases, a total of 2,290,630 interactions between 367,142 unique drug com-
pounds and 19, 342 target proteins on human are available.

Methods.  The proposed PUDTI framework can be divided into five steps:

•	 Select the feature subsets of DTI samples.
•	 Screen the high-quality NDTISs.
•	 Calculate the representative positive and negative prototypes.
•	 Compute the similarity weights of the ambiguous samples.
•	 Construct the final classification model and identify DTI candidates.

In the following, we described every step in details.

Step 1: Feature Selection.  There are parts of robust features in DTI feature set. Selecting a feature subset from 
these features may help decrease the false positive and the false negative ratios, thereby avoiding the overfitting 
problem. Reference 53 developed a feature selection method to distinguish disease genes from non-disease genes, 
we used the method to select feature subsets for each DTI to efficiently distinguish interacting drug-target pairs 
from noninteracting drug-target pairs.

For each DTI feature f, we define its association score in P and U (as(f, P) and as(f, U)) as follows:

∑

∑

=

=
∈

∈

as f P asso DTP f

as f U asso DTP f

( , ) ( , )

( , ) ( , )
(5)

DTP P
i

DTP U
i

i

i

Figure 11.  Computing the local similarity weights of the ambiguous samples. Blue lower triangles represent 
positive DTI samples in a cluster, red upper triangles represent NDTISs in the cluster.
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where DTPi is the ith Drug-Target pair, DTPi ∈ P indicates that the ith DTP is positive and DTPi ∈ U represents 
that the ith DTP is unlabeled. asso(DTPi, f) represents the association score between DTPi and the feature f, which 
can be computed as follows:

=





asso DTP f
if DTP have feature f
if DTP have not feature f

( , )
1
0 (6)

i
i

i

We then compute the discriminant ability score of f in P and U as,

= + ∗



 +






da f as f P as f U
P

as f P
U

as f U
( ) ( ( , ) ( , )) log

( , ) ( , ) (7)

By Eq. (7), we intend to screen those discriminative features which either frequently present in P but seldom 
in U or frequently present in U but seldom in P. For a feature f, when as(f, P) in P is large but as(f, U) in U is 
small or as(f, U) in U is large but as(f, P) in P is small, da(f) will be large because both af(f, P) + af(f, U) and 
log(|P|/af(f, P) + |U|/af(f, U)) are relatively large. On the contrary, the score will be relatively low when both 
af(f, P) and af(f, U) are small or large simultaneously. Thus, we can select representative feature subsets for 
each DTI.

Step 2: Screening Reliable NDTISs.  Typically, supervised learning-based models require numerous labeled pos-
itive and negative samples to achieve good classification accuracy. However, known DTIs are rare, and NDTISs 
are difficult to achieve or even unavailable. Moreover, numerous DTI examples are unlabeled. To obtain a good 
predictive performance, we intend to screen trustworthy NDTISs.

We considered two classical PU learning models, namely, the Spy and Rocchio techniques32, 33. To reduce the 
expected error rates when screening NDTISs, we minimized the bias of individual model based on multiple clas-
sifier combination. The details are described in algorithm 1.

In algorithm 1, RN and EP denote reliable NDTISs and positive samples extracted by algorithm 1, respectively. 
CSpy and CRoc represent the classification results from the Spy and Rocchio classifiers32, 33, respectively. Steps 1 and 
2 initialize P, U, RN and EP. Steps 3–5 classify the unknown DTIs in U. Steps 6–9 screen RN by excluding positive 
DTIs as far as possible. For instance, a DTI is regarded as a reliable negative sample if its classification results from 
two classifiers are both negative classes, that is, the DTI simultaneously satisfies CSpy = −1 and CRoc = −1. Steps 
10–14 are used to add high-quality positive examples to P. The U in Step 15 denotes the remaining unlabeled 
DTIs after extracting parts of high-quality positive and negative examples. We considered these remaining DTIs 
as the ambiguous samples.

Step 3: Computing the Representative Positive and Negative DTI Prototypes.  We achieved reliable NDTISs from 
the last section. In theory, we can build a classifier and predict new DTIs using P and RN. However, the classifica-
tion results may not be accurate enough because parts of ambiguous samples remain. For these ambiguous sam-
ples, we cannot determine whether they belong to the positive or negative classes. Assigning these examples to the 
positive or negative class will disturb the classification performance. As such, considering the method provided by 
refs 29 and 31, we developed a similarity weight calculation method to measure the probabilities that remaining 
ambiguous samples belong to the positive and negative classes.

Algorithm 1.  The NDTISE method.
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To compute the similarity weights of these ambiguous samples, we partitioned DTI samples in RN into a 
modules using the k-means clustering algorithm and computed the representative positive and negative DTI 
prototypes. The details are described in algorithm 2.

The parameter a was set as = ∗ +a t RN U RN/( ), where |RN| and |U| denote the numbers of RN and U, 
respectively. t, α and β were set as 30, 16 and 4, respectively, as recommended by the studies29–31.

Step 4: Computing the Similarity Weights of the Ambiguous Samples.  The similarity weights of the remaining 
ambiguous samples in U represent the probabilities that the samples belong to the positive and negative DTI 
classes. To compute the similarity weights, we defined the similarities of an ambiguous sample x to the ith repre-
sentative positive and negative prototypes (pi and ni) as follows:

=
⋅

⋅

=
⋅
⋅

x p
x p

x p

x n x n
x n

sim

sim

( , )

( , )
(8)

i
i

i

i
i

i

Computing Local Similarity Weights: We developed an algorithm to measure the local similarity weights of 
the ambiguous samples.

where n is set as = ∗ +n t U U RN/( ) and t is set as 30, which are recommended by refs 29 and 31. Step 5–9 
tag x with a temporary label. |USi| denotes the number of all samples in USi. |temposi| denotes the number of 
samples which are temporarily regarded as positive samples in USi, |temnegi| denotes the number of samples 
which are temporarily regarded as negative samples in USi. The most similar positive and negative prototypes of 
x can be obtained by equation (8).

As illustrated in Fig. 11, H denotes the decision hyperplane in the process of classification and can be com-
puted by the Rocchio classifier33. The ambiguous examples in U are clustered into four modules, namely, M1, M2, 
M3 and M4. The examples in M1, M2, M3 and M4 are assigned with local similarity weights (1, 0), ( ),5

12
7

12
, ( ),7

10
3

10
 

and (0, 1), respectively.

Algorithm 2.  Computing the representative positive and negative DTI prototypes.

Algorithm 3.  Computing the Local similarity weights of the ambiguous samples.
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Computing Global Similarity Weights: The local similarity weights utilized the biological features shared by 
the ambiguous samples and computed the similarities between all samples in a cluster. However, the local sim-
ilarity weights of samples in the same cluster are possibly different because of different physical locations. For 
example, assigning the same class weight to the ambiguous samples y and z in M2 is inappropriate even though the 
two samples have the same local similarity weights. Therefore, we calculated the global similarity weights between 
x and all representative prototypes to measure the probabilities that x belongs to the positive and negative DTI 
classes from a global perspective.

The global similarity weights of x can be measured as follows:
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∑ +

= ∑
∑ +

=

=

=

=
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where GloP(x) and GloN(x) represent the probabilities that x belongs to the positive and negative DTI classes 
from a global perspective.

We obtain the final probabilities that x belongs to the positive and negative DTI classes based on its local and 
global similarity weights:

α α

α α

= − +

= − +

x x x
x x x

W LocP GloP
W LocN GloN

( ) (1 ) ( ) ( )
( ) (1 ) ( ) ( ) (10)

P

N

where the parameter α is used to balance the importance between the global similarity and the local similarity.

Step 5: Constructing SVM-based Classification Model.  By incorporating positive DTI dataset P, reliable neg-
ative DTI dataset RN, the similarity weights of the ambiguous examples in U, we obtained training datasets to 
learn classification model for novel DTI identification. These training examples may include parts of noisy data. 
Therefore, we built an SVM with similarity weights (SVM-SW) as our basic classifier to tolerate these noisy 
examples.

Constructing Classification Model: SVM54 is a powerful tool for data classification. We classified unknown 
DTIs based on SVM. Suppose that

= …X x y x y x y{( , ), ( , ), , ( , )}n n1 1 2 2  be training dataset. xi denotes the ith DTI sample and can be represented 
as a feature vector xi after feature selection in Step 1, yi ∈ {+1, −1}. We can classify the unknown DTIs based on 
standard SVM:

w

w x
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where εi is a slack variable of xi and is used to allow for misclassifications in the training examples, and C is used to 
balance the impact of εi. The test sample x is viewed as the positive class if w · φ(x) + b > 0; otherwise, it is negative.

Combining standard SVM with the similarity weights of the ambiguous samples, we further introduced 
SVM-SW for finding DTI candidates:
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where εi, εj, εm and εn are the error terms. C1, C2, C3 and C4 are penalty factors that are used to control the trade-off 
between margin and misclassification errors. WP(xj)εj and WN(xm)εm are errors with different weights. Different 
WP(xj) and WN(xm) reflect different effects of the parameters εj and εm on classification accuracy, respectively. The 
large value of WP(xj) can increase the effect of εj; therefore, the ambiguous example xj is more likely to belong to 
the positive class. Similarly, the smaller value of WN(xm) can reduce the effect of εm; therefore, xm is less significant 
toward the negative class.

Solving the Model: The model can be solved based on the method provided by refs 29 and 31. For a test sample 
x, it is regarded as a positive DTI if w · φ(x) + b > 0; otherwise, it is regarded as a negative DTI.
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Experimental Setup and Evaluation Metrics.  Various performance measures have been proposed 
to evaluate DTI prediction models. Among these, precision, recall, AUC and F-measure are extensively used. 
Precision, recall and F-measure26 are computed as equations (13)–(15):

=
+

Precision TP
TP FP (13)

=
+

Recall TP
TP FN (14)

− =
∗ ∗

+
F measure Precision Recall

Precision Recall
2

(15)

where TP, FP, TN and FN represent true positive, false positive, true negative, and false negative, respectively.
Precision is the percentage of correctly predicted DTIs and is used to measure the distinguished capability 

of a classifier. Recall is the percentage of successfully predicted DTIs. F-measure is used to evaluate the average 
classification performance. Either small precision or recall will result in a low F-measure30: therefore, F-measure 
is used to measure predictive models. AUC is the average area under the receiver operating curve. For these four 
parameters, higher values exhibit better classification performance. We used these four metrics to evaluate our 
proposed PUDTI framework.
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