Peer

Genetic variation and selection in the major histocompatibility complex Class II gene in the Guizhou pony

Chang Liu^{1,2}, Hongmei Lei¹, Xueqin Ran¹ and Jiafu Wang^{1,3}

¹College of Animal Sciences, Guizhou University, Guiyang, China

²College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China

³ Tongren University, Tongren, China

ABSTRACT

The Guizhou pony (GZP) is an indigenous species of equid found in the mountains of the Guizhou province in southwest China. We selected four regions of the equine leukocyte antigen (ELA), including DQA, DRA, DQB, and DRB, and used them to assess the diversity of the major histocompatibility complex (MHC) class II gene using direct sequencing technology. DRA had the lowest d_N/d_S ratio (0.560) compared with the other three loci, indicating that DRA was conserved and could be conserved after undergoing selective processes. Nine DQA, five DQB, nine DRA, and seven DRB codons were under significant positive selection at the antigen binding sites (ABS), suggesting that the selected residues in ABS may play a significant role in the innate immune system of the GZP. Two GZP alleles were shared with Przewalski's horse, and six older GZP haplotypes had a better relationship with other horse species by one or two mutational steps, indicating that the GZP may be a natural ancient variety of equid. The specific diversity of ABS and the numbers of unique haplotypes in the evolutionary process affords this species a better genetic fitness and ability to adapt to the native environment.

Subjects Evolutionary Studies, Genetics, Zoology Keywords Guizhou pony, MHC, Antigen binding sites, Evolution process, Adaptation

INTRODUCTION

The major histocompatibility complex (MHC) genes play a major role in vertebrate immune systems and have a high degree of genetic diversity associated with the adaptive immune response and evolution (*Lian et al., 2017; Kamath & Getz, 2011*). The MHC system is divided into class I and class II, which are key parts of the immune system (*Hughes & Nei, 1988*). The MHC class II genes are highly polymorphic parts of the immune response that act by presenting extracellular antigens to T lymphocytes. These molecules are heterodimers with α and β chains encoded by A and B genes. The polymorphic sites of the class II genes are typically located at exon 2, which codes for the first extracellular domain or the antigen binding sites (ABS). The exon 2 codes for a section of the pocket of the MHC molecule. The ABS mainly encoded the second exon of the MHC class II gene and have more variation than the neighboring regions in this sequence (*Li et al., 2014*), indicating that ABS variation may help to determine the rates of evolution across the MHC (*Hughes & Hughes, 1995*). Previous studies have shown that exon 2 of MHC class II genes

Submitted 25 November 2019 Accepted 17 August 2020 Published 18 September 2020

Corresponding authors Xueqin Ran, xqran@gzu.edu.cn Jiafu Wang, jfwang@gzu.edu.cn

Academic editor Xavier Harrison

Additional Information and Declarations can be found on page 16

DOI 10.7717/peerj.9889

Copyright 2020 Liu et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

had the most polymorphisms and encoded the α and β domains principally responsible for peptide binding (*O'Connor et al., 2007*). The polymorphism of the MHC loci is commonly associated with different susceptibilities to infectious diseases (*Hill, 2001*), especially in sheep (*Paterson, Wilson & Pemberton, 1998*), mice (*Meyer-Lucht & Sommer, 2005*), voles (*Kloch et al., 2010*) and lemurs (*Schad, Ganzhorn & Sommer, 2005*). The equine MHC class II loci may assist in determining the host response to pathogens encountered by the horse (*Miller et al., 2017*). MHC variants play key roles in mate preference, kin recognition, and maternal-fetal interactions (*Edwards & Hedrick, 1988*; *Bernatchez & Landry, 2003*; *Piertney & Oliver, 2006*). The diverse functions and characteristics of MHC molecules is reflected in the evolutionary and adaptive processes within and between populations (*Sommer, 2005*).

The mechanisms of negative frequency-dependent selection (NFDS) and over-dominant selection have been well-studied in MHC genes. NFDS maintains intraspecific diversity and may interact with population density (Levitan & Ferrell, 2006; Meyer & Kassen, 2007). Over-dominant selection can maintain genetic polymorphisms in populations (Takahata & Nei, 1990). Correlative and experimental support for the negative frequency-dependent selection of MHC genes has been shown in humans (Trachtenberg et al., 2003), reed warblers (Westerdahl et al., 2004), mice (Kubinak et al., 2012), sticklebacks (Eizaguirre et al., 2012; Bolnick & Stutz, 2017) and guppies (Phillips et al., 2018). There are a number of examples of asymmetric over-dominant selection in populations found in the wild and in the laboratory (Landry & Bernatchez, 2001; Richman, Herrera & Nash, 2001; Lenz et al., 2009; Schwensow et al., 2010; Lenz et al., 2013). These results are supported by several computer-based binding prediction studies (Lenz, 2011; Lau et al., 2015; Buhler, Nunes & Sanchez-Mazas, 2016; Pierini & Lenz, 2018). Three primary sources of evidence currently support the idea of balancing selection: (i) elevated levels of polymorphisms, (ii) the rates of nonsynonymous (d_N) to synonymous (d_S) nucleotide substitutions (*Hughes & Nei*, 1988; Hughes & Nei, 1989), and (iii) trans-species polymorphisms with alleles among species (*Klein et al.*, 1993). The d_N/d_S ratio is frequently used to measure selective pressure on genes (Yang et al., 2000), and more specifically, the markedly different rates of evolution across the MHC genes (Hughes & Hughes, 1995). Site-specific methods have found elevated $d_{\rm N}/d_{\rm S}$ ratios at ABS, suggesting substantially different rates of evolution across the MHC. MHC variation within species and among species has proven to be useful in determining the historical patterns of selection in various mammals (*Cutrera & Lacey, 2007*).

In the family Equidae, the horse MHC class II gene, also known as equine leukocyte antigen (ELA) class II, is located on the short arm of chromosome 20q14-q22 (*Mäkinen et al., 1989; Ansari et al., 1988*). It contains the *DQA*, *DQB*, *DRA*, and *DRB* genes. The *DQA* and *DRA* genes encode for the α -chain of ELA class II molecules, and the polymorphisms of the *DQA* and *DRA* genes have been determined in European equids (*Luís et al., 2005; Janova et al., 2009; Kamath & Getz, 2011*). The *DQB* and *DRB* genes encode the β -chain of the ELA class II complex, and high levels of *DRB* and *DQB* polymorphisms have been reported in Arabian and European horses (*Fraser & Bailey, 1996; Mashima, 2003*). Previous reports indicated that exon 2 of the ELA class II gene is genetically diverse among horse

Table 1The primers for DRA, DRB, DQA and DQB gene detection.						
Gene name	Primer name	Primer sequence $(5' \rightarrow 3')$	Length (bp)			
DRAexon2	DRA-F	AGGATCACGTGATCATCCAG	246			
	DRA-R	CATTGGTGTTTGGAGTGTTG	240			
DRBexon2	DRB-F	CTCTGCAGCACATTTCCTGGAG	276			
	DRB-R	CGCCGCTGCACCAGGAA	270			
DQBexon2	DQB-F	CTCGGATCCGCATGTGCTACTTCACCAACG	230			
	DQB-R	GAGCTGACGGTAGTTGTGTCTGCACAC	230			
DQAexon2	DQA-F	CTGATCACTTTGCCTCCTATG	246			
	DQA-R	TGGTAGCAGCAGTAGAGTTG	240			

populations (*Kamath & Getz, 2011*). We examined the sequence variation in the second exon to determine the selective pressures and evolutionary path for the Guizhou pony.

The Guizhou pony is an indigenous species that was found in the Guizhou province during the Warring States Period (475-221 B.C.) in Ancient China. It is one of five Chinese pony species and has a body height of only 1.1 m (10-11 hands). The mtDNA/SSR polymorphism has been determined in several pony populations derived from native Irish, Canadian, and Chinese breeds using mtDNA/SSR markers (*McGahern et al., 2006; Prystupa et al., 2012*). We sought to analyze the variation in the MHC II exon 2 of the *DQA, DRA, DQB*, and *DRB* regions and their relationship with the selection and evolution in the GZP.

MATERIAL AND METHODS

Animal collection and DNA isolation

A total of 50 blood samples were collected from GZP in Ziyun County, Anshun, Guizhou Province, China. All ponies used in our study were 4 to 8 years old. All animal procedures were approved by the Institutional Animal Care and Use Committee of Guizhou University (Approval number EAE-GZU-2018-P007). The GZP were randomly selected and were all well-developed and in good health, with heights ranging from 102 to 118 cm and weights between 210 to 265 kg. Blood samples were collected from the jugular vein and were kept in EDTA Na2. All samples were stored at -20 °C until DNA extraction. Genomic DNA was extracted from blood samples using the SQ Blood DNA Kit (OMEGA, USA). The nucleic acid concentration of the extracted genomic DNA was calculated by determining OD260/OD280, and detected by 0.7% agarose gel electrophoresis.

PCR amplification, cloning, and sequencing

The exon 2 regions of the *ELA-DQA*, *DQB*, *DRA*, and *DRB* genes were amplified from genomic DNA using PCR with specific primers. We amplified 246 bp of the *DRA* using the equid-specific primers *DRA*-F and *DRA*-R (*Albright-Fraser et al.*, 1996), 246 bp of the *DQA* using the primers *DQA*-F and *DQA*-R (*Fraser & Bailey*, 1998), 276 bp of the *DRB* using the primers *DRB*-F and *DRB*-R (*Fraser & Bailey*, 1996), and 230 bp of the *DQB* using the primers *DQB*-F and *DQB*-R (*Mashima*, 2003). All primers were synthesized by the Bio-Engineering Company (Shanghai, China) (Table 1). The total PCR volume

was 20 μ L, and contained 10 μ L of 2× PCR Mixture (0.1 U Taq Plus Polymerase/ μ L, 500 μ M dNTP each, 20 mM Tris–HCl (pH8.3), 100 mM KCl, 3 mM MgCl₂), 0.4 μ L of upstream/downstream primers (10 μ mol/L), and 1 μ L templates. PCR amplification was carried out with initial denaturation at 95 °C for 5 min, followed by 30 cycles (95 °C for 30 s, 58 °C for 30 s, and 72 °C for 30 s), and a final extension at 72 °C for 10 min. PCR products were extracted and purified using the Gel Extraction Kit (OMEGA, USA), and were ligated into pGEM[®]-T vectors and transformed into *E. coli* competent cells. Twenty positive clones of each sample were removed with a sterile toothpick and were detected using the Sanger sequencing method (Invitrogen, China). Alleles were confirmed if the same allele was observed in at least two different individuals.

DNA sequence polymorphism analysis

The base composition of the DRA, DRB, DQA and DQB genes was analyzed using MEGA7 software (Kumar, Stecher & Tamura, 2016). Standard descriptive diversity indices for each locus within the GZP were calculated using MEGA7 software, including the variable sites (V), parsim-info sites (P), singleton sites (S), and the transition/transversion bias ratio (R). It was important to ascertain whether the variability was uniformly distributed or was confined to small segments of the variable regions when determining the nature of the variable region. The Wu-Kabat variability index was calculated using the formula by Wu and Kabat Wu & Kabat (1970) with respect to amino acids at peptide-binding pockets. The variation of amino acids was calculated by the mutation rate (variability = number of different amino acids at a certain position/frequency of the most common amino acids at this position) (Wu & Kabat, 1970). Selection was estimated using MEGA7 software in terms of the relative rates of nonsynonymous (d_N) and synonymous (d_S) mutations, according to Nei and Gojobori's method with the Jukes and Cantor (JC) correction (Nei & *Gojobori*, 1986). The selection Z-Test (P < 0.05) was performed for all sites under the null hypothesis of neutrality $(d_N = d_S)$ and the alternative hypotheses of non-neutrality $(d_N \neq d_S)$ $d_{\rm S}$), positive selection ($d_{\rm N} > d_{\rm S}$), and purifying selection ($d_{\rm N} < d_{\rm S}$).

Site-specific selection analyses and protein 3D structure analysis

We estimated the nonsynonymous and synonymous substitutions in the overall domain, ABS, and non-ABS for the *DQA*, *DQB*, *DRA* and *DRB* alleles. We assessed the positive selection using CodeML subroutine in the PAML program (*Yang*, 2007), which was more sensitive than other methods for assessing selection at the molecular level (*Anisimova*, *Bielawski & Yang*, 2001). The PAML program used the maximum likelihood estimation to examine heterogeneity in rates of $\omega = d_N/d_S$ among codons (*Bielawski & Yang*, 2003). The PAML program was able to better detect the molecular evidence of selection compared to other programs (*Anisimova*, *Nielsen & Yang*, 2003). We assessed heterogeneity in ω (ω < 1: purifying selection, $\omega = 1$: neutral evolution, $\omega > 1$: positive selection) across the four alleles (*DQA*, *DQB*, *DRA* and *DRB*) to identify codons under positive selection. The observed ω value followed six models in PAML: M0 (one ratio, average ω across all sites), M1a (nearly neutral), M2a (positive selection), M3 (discrete), M7 (beta), and M8 (beta and omega) (*Yang et al.*, 2000). We used the online SWISS-MODEL program (*Biasini*) *et al.*, 2014; *Waterhouse et al.*, 2018) (https://swissmodel.expasy.org/interactive) to make predictions about the *DQA*, *DQB*, *DRA* and *DRB* protein structures.

Phylogenetic allele networks

We constructed a median-joining haplotype network to infer the phylogenetic relationships among the sequence haplotypes (*Bandelt, Forster & Röhl, 1999*) using the maximum parsimony in Network 4.6.1 (http://www.fluxus-engineering.com/sharenet.htm). The haplotype median networks of *DQA*, *DQB*, *DRA* and *DRB* between GZP and known horse species (*Eqca, E.callabus; Eqpr, E.przewalski; Eqki, E.kiang; Eqgr, E.grevyi; Eqas, E.asinus; Eqbu, E.burchelli; Eqze, E.zebra; Eqhe, E.hemionus*) from GenBank were plotted using NetWork 4.6. The frequency information and population proportion of the alleles were incorporated into the visualization of the network. Sequences from the horse, including *E. callabus, E. przewalskii, E. burchellii, E. asinus*, were incorporated to evaluate the distance from the Guizhou pony's haplotypes (Table 2).

RESULTS

Analysis of nucleotide diversity

184 alleles were identified from 1,000 sequencing clones, with 118 effective alleles selected from the total. Of the 118 alleles, there were 18 novel DQA alleles (GenBank accession number: MT304744–MT304761), 38 new DQB alleles (MT304705–MT304743), 22 new DRA alleles (MT304762–MT304783) and 28 new DRB alleles (MT304784–MT304811) (Table S1). The alignment results are listed in Table S1 for the effective alleles from DQA, DQB, DRA, DRB and the sequences of JQ254059, AF034122, AJ575295, and AF144564. A considerable sequence diversity within the genus was revealed based on the DQA, DQB, DRB alignment results. The nucleotide diversity in DRA was much lower than in DQA/Band DRB in GZP, which is comparable with the level of nucleotide diversity in DRA from other species in the Equus genus (*Kamath & Getz*, 2011). Within the GZP, the genetic diversity was much higher in DQA, DQB, and DRB than in DRA and the ratio (variable sites/length) was the lowest at the DRA locus (15.04%) and highest at the DQB locus (46.08%).

Analysis of nucleotide compositions

The GC contents of *DQB* and *DRB* were higher than those of *DQA* and *DRA* (Table S2). The content of G+C (48.10%) was slightly lower than that of A+T (51.90%) at *DQA*, and the content of G+C (48.10%) was lower than that of A+T (51.90%) at *DRA*, which revealed that *DQA* and *DRA* had lower GC percentages. However, the base composition of G+C (64.20%) was higher than that of A+T (35.80%) in *DQB* alleles, and the base composition of G+C (61.90%) was more than that of A+T (38.10%) in DRB alleles, revealing that *DQB* and *DRB* had a higher GC content. The R (transitions/transversions) was 1.357 and 2.241 in the *DQA* and *DRA* alleles, respectively. However, there was an R of 0.778 and 0.573 in the *DQB* and *DRB* alleles, respectively. Our results revealed that the *DRA* locus was more well-conserved than the other loci.

Locus	Breed	Source	GenBank ID		
	Guizhou pony	This study	MT304744-MT304761		
DQA	Fauus przewalskii	NCBI	1009741 - 101904701		
DQA	Equus przewaisku	NCDI	JAU68099, JAU68096, JAU68097, JAU68090, 092309, 092309		
DQA	Equus caballus	NCBI	AF115329, AF115328, AF115327, AF115326,		
	-		AF115325, AF115324, U92508, U92519,		
			U92518, U92517, U92516, U92515,		
			U92514, U92513, U92512, U92511,		
DOA	F 1111::	NODI	U92510, U92507, U92506, U92505		
DQA	Equus burchellii	NCBI	EU935835, EU935837, EU935836, EU935834, EU035833 EU035832 EU035820 EU030130		
			HO637409 $HO637408$ $HO637407$		
			HQ637397, HQ637406, HQ637405,		
			HQ637404, HQ637403, HQ637402,		
			HQ637401, HQ637400, HQ637399,		
			HQ637398		
DQA	Equus zebra	NCBI	EU935838, EU935831, EU935830, EU935828		
DQA	Equus grevyi	NCBI	EU930136, EU930131		
DQA	Equus asinus	NCBI	U92522, U92521		
DQA	Equus hemionus	NCBI	U92520, EU930135		
DQA	Equus kiang	NCBI	EU930134, EU930133, EU930132		
DQB	Guizhou pony	This study	MT304705-MT304743		
DQB	Equus asinus	NCBI	AF034125, AF034124, AF034123, AF034122, U31776, U31775, U31774, XM_014839831.1		
DQB	Equus przewalskii	NCBI	XM_008508365.1		
DQB	Equus caballus	NCBI	JQ254069.1, L33910.1, XM_005603501.3, JQ254075.1,		
			JQ254071.1, NM_001317256.1		
DRA	Guizhou pony	This study	MT304762-MT304783		
DRA	Equus hemionus	NCBI	L47173, EU930128		
DRA	Equus kiang	NCBI	FJ657514, EU930127		
DRA	Equus grevyi	NCBI	EU930125, EU930116		
DRA	Equus zebra	NCBI	EU930117, EU930119, EU930123, EU930124, EU930129		
DRA	Equus burchellii	NCBI	EU930118, EU930120, EU930121, EU930122,		
			EU930126, HQ637392, HQ637393,		
			HQ637394, HQ637396, HQ637395, AJ575299		
DRA	Equus caballus	NCBI	L47172, L47174, AJ575295, JN035631,		
	-		JN035630, JN035629		
DRA	Equus asinus		AJ575298, AJ575297, AJ575296, HM165492,		
			FJ487912, L47171, AF541938		
DRB	Guizhou pony	This study	MT304784–MT304811		
DRB	Equus przewalskii	NCBI	AF084188.1, XM_008511984.1		

(continued on next page)

Table 2 (continued)

Locus	Breed	Source	GenBank ID
DRB	Equus caballus	NCBI	L76972, L76978, L76976, L76975, L76974, L76977, L76973, AF170067, L77079, AF144564, XM_023624024.1, JQ254087.1 XR_002801945.1, XR_001379170.2, XM_023624023.1, XM_014734203.2, XM_014734205.1, NM_001142816.1, JN035625.1, JQ254096.1, JQ254095.1, L25644.1, JN035627, JN035623.1, JN035622.1, JN035621.1, JN035624.1, JO254099.1, JN035626.1, JO254093.1
DRB	Equus asinus	NCBI	XM_014846373.1, XR_001398881.1, XM_014846372.1, KJ596517.1, KJ596507.1, KJ596519.1, KJ596510.1, KJ596510.1, KJ596516.1, KJ596511.1, KJ596518.1, KJ596512.1, KJ596514.1, KJ596515.1

The amino acid composition analyses

We determined that the exon 2 of the DQA, DQB, DRA, and DRB nucleotide sequences encoded 82, 76, 81, and 79 amino acid sequences, respectively. The underlined residues in Fig. 1 indicated an assumed ABS, based on the HLA equivalents (*Brown et al., 1988; Brown et al., 1993*), and may contact the antigen peptides (Figs. 1A–1D). There were 38 (45.12%), 51 (67.10%), 16 (19.75%), and 49 sites (62.02%) that were variable in the predicted amino acid sites of the DQA, DQB, DRA and DRB of GZP populations, respectively. For the ABS, 17 of 21 sites (80.95%), 12 of 18 sites (66.67%), 5 of 20 sites (25.00%), and 13 of 14 sites (92.85%) were diverse at the DQA, DQA, DQB, DRA and DRB loci. The amino acid compositions of DQA, DQB, DRA, and DRB at ABS were calculated using MEGA 7 software (Fig. 2). There were more polar R-amino acids at the DQA locus (46.30%), and included Gly, Cys, Ser, Tyr, Thr, Asn, and Gln (Fig. 2). The non-polar R-amino acids at the DRA locus had the highest percentage (58.86%), and included Ala, Leu, Val, Trp, Ile, Phe, Pro, and Met (Fig. 2). The largest proportion of charged R-amino acids (30.70%) was located at DQB, and consisted of Arg, Lys, His, Glu, and Asp (Fig. 2).

Global selection analyses

The Wu-Kabat variability index was not used to select all of the variable amino acids (*Wu* & *Kabat*, 1970). A total of fifteen amino acids at the *DQA* locus were strongly selected at residues 10, 17, 18, 21, 23, 30, 46, 51, 52, 58, 60, 61, 62, 65 and 72, with the highest variability occurring at residue 60 (Fig. 3). Many polymorphic sites were observed at the *DQB* locus, with eight high mutation loci at residues at 16, 27, 38, 46, 47, 57, 61, and 65 (Fig. 3). 12 residues were found to be polymorphic at the DRA locus, including residues at 12, 14, 15, 19, 29, 39, 47, 49, 63, 64, 67 and 69 (Fig. 3). Amino acid residues at six different positions in the *DRB* locus had high values (more than 30) on the Wu-Kabat variability index, and the strongly selected amino acid regions were found at residues 1, 2, 4, 5, 6, 7, 8, 12, 19, 28, 36, 47, 48, 50, 56, 58, 61, 62, 65 and 69 (Fig. 3). A comparison of the d_N/d_S ratio averaged across the whole coding region suggested that positive selection occurred at loci $DQB (d_N/d_S = 1.127, p = 0.322)$ and $DRB (d_N/d_S = 1.228, p = 0.202)$, and purifying

А	В
	AF034122 RIRKCYFTNGTERVRLYTRLIYNREEFVRFDSDVGEFGAVTELGRHIAKDINNGKDVLEGKIMAELDTVCRHNVLGL G2P RIRKCYFTNGTERVRLYTRVIYNREEFVRFDSDVGEFVRAVTELGRFIAEVINGGKDVLERTRAEVDTVCRHNYRGL
AF144501 YANGCHF SNGTERVILVRF I VNCE VPDDS/VGEFAVTELGRPGAC INNGXO/DEPGLAAUDI/CRAWOVIGE INFORMACIES DP YANGCHF SNGTERVILVRF I INNGC VPDDS/VGEFAVTELGRPGAC INNGXO/DEPGLAAUDI/CRAWOVIGE INFORMACIES DP SIST N. L. N. K. S. ALL K. K. S. NEES DP SIST N. D. F. N. L. N. S. ALL K. K. S. NEES DP SIST N. D. F. N. L. N. S. ALL K. K. VES NEES DP SIST N. D. F. N. L. N. S. ALL K. K. VES NEES DP SIST N. D. F. N. V. D. N. S. ALL K. S. VES NEES DP SIST N. D. F. GK. Y. K. T. N. V. S. NEES SIST N. D. F. GK. Y. K. N. V. S. NEES DP SIST N. D. F. GK. Y. K. N. V. V. S. NEES SIST. N. D. F. GK. Y. L. N. K. S. V. V. S. DP SIST N. D. F. GK. Y. V. N. M. J. V. S. NEES N. M. S. S. N. S. N. D. M. S. S. DP SIST N. D. D. F. S. K. N. V. O. N. U. L. M. K. S. V. V. N. D. M. S. S. N. S. N. S. N. S. DP SIST	D081
GZP DHVI I QAEFY LKPGDSGEFM FDFDGGE [FH VOMDKKETVIJ RLEEFGBF.SSFCAGALANI AVIKALE IN MKSNNTPNT N DRA1 DHVI I QAEFY LKPGDSGEFM FDFDGGE [FH VOMDKKETVIJ RLEEFGBF.SSFCAGALANI AVIKALE IN MKSNNTPNT N DRA2 T DRA3 Y DRA4 Y DRA5 N. MK RER DRA5 N. DRA6 N. DRA7 E DRA7 N. DRA7 <td< th=""><th>AF14451 YIKAECHFSNCTERVRLVNF, I YNGE YNFDSDVGEFRAVTELGPPDAE YNGGNCPFCI, RAAVD TVCBHVYGLU (2P YSK-GEFSNCTERVRLVNF, I YNGE YNFDSDVGEFRAVTELGPPDAE YNGGNCPFCI, RAAVD TVCBHVYGL (2P DBB1 STS. F. YLD YF. N.K. N.Y. DBB2 STS. F. YLD YF. N.K. Y.Y. DBB2 STF. O. LYLL YF. N.K. Y.Y. NY DBB3 L. H. O. FLD YF. N.Y. NY NUD. Y.Y. DBB4 L. H. O. FLD YF. N.Y. NUD. Y.Y. NUD. Y.Y. DBB4 L. H. O. FLD YF. R.K. Y. NUD. Y.Y. Y. DBB4 STF. O. LYLH JF. GK. Y. L. C. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD</th></td<>	AF14451 YIKAECHFSNCTERVRLVNF, I YNGE YNFDSDVGEFRAVTELGPPDAE YNGGNCPFCI, RAAVD TVCBHVYGLU (2P YSK-GEFSNCTERVRLVNF, I YNGE YNFDSDVGEFRAVTELGPPDAE YNGGNCPFCI, RAAVD TVCBHVYGL (2P DBB1 STS. F. YLD YF. N.K. N.Y. DBB2 STS. F. YLD YF. N.K. Y.Y. DBB2 STF. O. LYLL YF. N.K. Y.Y. NY DBB3 L. H. O. FLD YF. N.Y. NY NUD. Y.Y. DBB4 L. H. O. FLD YF. N.Y. NUD. Y.Y. NUD. Y.Y. DBB4 L. H. O. FLD YF. R.K. Y. NUD. Y.Y. Y. DBB4 STF. O. LYLH JF. GK. Y. L. C. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD. NUD. Y.Y. Y. NUD

Figure 1 The amino acid alignment of the *DQA* (A), *DQB* (B), *DRA* (C) and *DRB* (D) locus. Underlines below amino acids indicated antigen binding sites (ABS). The missing amino acid was denoted with hyphen.

Full-size DOI: 10.7717/peerj.9889/fig-1

selection appeared at DQA ($d_N/d_S = 0.779$, p = 0.143) and DRA ($d_N/d_S = 0.560$, p = 0.069) (Table 3). All codon sites were not statistically significant according to the *Z*-tests (p > 0.05, Table 3). The estimates of d_N/d_S suggested that DQA and DRA were not affected by the positive selection at the genetic level.

Site-specific selection analyses

It is unlikely for selection to act uniformly across MHC genes over evolutionary time. Selection was more likely to occur at specific codons based on their functional role. The rate of nonsynonymous substitutions for the ABS ($d_N = 0.594 \pm 0.132$) exceeded the number of synonymous substitutions four times ($d_S = 0.128 \pm 0.080$) at the *DRB* (Table 3). Our results are in agreement with those observed in the Argentine Creole horse, which exhibited rates of nonsynonymous substitutions more than four times the number of synonymous

substitutions at exon 2 of *ELA-DRB* (*Díaz et al., 2001*). The ABS rates of synonymous substitutions and nonsynonymous substitutions for *DQA* and *DQB* were similar ($d_N = 0.330 \pm 0.088$, $d_S = 0.287 \pm 0.110$; $d_N = 0.206 \pm 0.079$, $d_S = 0.133 \pm 0.076$, respectively) (Table 3). The ABS sites at the *DRA* exhibited less nonsynonymous substitutions ($d_N = 0.017 \pm 0.008$) than synonymous substitutions ($d_S = 0.028 \pm 0.022$) with a d_N/d_S ratio of 0.607 (Table 3). *Z*-tests performed separately on ABS were significant for *DRB* (p = 0.001) providing evidence for positive selection at these sites. We could not reject the null hypothesis of neutral evolution at the non-ABS site (Table 3). The *Z*-tests by site type at the *DQA*, *DQB*, and *DRA* sites could not reject the null hypothesis of neutrality (p > 0.05). In contrast, the non-ABS sites showed more synonymous substitutions than nonsynonymous substitutions with d_N/d_S ratios of 0.581, 0.895, 0.520, and 0.678 at *DQA*, *DQB*, *DRA* and *DRB*, respectively (Table 3).

The results from the selection analyses in PAML revealed different levels of selection for the four loci (Table 4). The variable evolutionary rates across the codon sites (M3) fit our data better than the M0 model and models M2a and M8 had higher log-likelihoods than positive selection (M1a and M7). The M2a and M8 models implied that approximately 2% of sites may be under positive selection at the *DQA* site ($\omega = 8.583$, $\omega = 8.425$) (Table 4). The posterior means of ω were estimated across the *DQA* codons under positive selection models and predicted fourteen sites (positions 10, 17, 18, 30, 46, 51, 52, 60, 61, 65, 68, 69, 70, 72) that may be under selection ($\omega > 1$), nine (10, 30, 46, 51, 52, 61, 65, 68, and

Full-size DOI: 10.7717/peerj.9889/fig-3

72) of which were also putative ABS, based on the HLA equivalents (Fig. 4). However, the discrete model (M3: 3 discrete evolutionary rate classes) had the highest log-likelihood and estimated that only 6.6% of codon sites had ω values greater than one ($\omega = 10.031$) with the remaining 93.4% of sites being assigned ω values close to 0 (Table 4).

However, the posterior means of ω across *DQB* codon sites estimated by M2a ($\omega = 6.240$) and M8 ($\omega = 6.373$) predicted that only five codons were under significant positive selection (positions 16, 27, 47, 57, 61). These five codons were also known as putative ABS based on the HLA equivalents (Fig. 4). The M3 model at the *DQB* estimated that approximately 8% of codon sites had ω values greater than one (7.3% with $\omega = 1.283$; 0.6% with $\omega = 6.935$) with the remaining 92% of sites being assigned ω values close to 0 ($\omega = 0.054$) (Table 4).

The M3 model estimated that only 6.6% of codon sites had ω values greater than one ($\omega = 10.031$) with the remaining 93.4% of sites being assigned ω values close to 0 for the *DRA* (Table 4). Moreover, the posterior means of ω across the *DRA* codon sites estimated by M2a ($\omega = 10.286$) and M8 ($\omega = 10.323$) predicted that nine codons (positions 12, 14,

The mules of selection at the DQA, DQB, DKA and DKD loci.									
Allele	Туре	No.	aa distance	$d_{ m N}$	ds	$d_{\rm N}/d_{\rm S}$	$Z; \\ d_{\rm N} \neq d_{\rm S}$	$Z; \\ d_{\rm N} > d_{\rm S}$	Z; $d_{\rm N} < d_{\rm S}$
DQA	All	82	0.213 ± 0.029	0.138 ± 0.024	0.177 ± 0.042	0.779	0.296	1.000	0.143
	ABS	21	0.416 ± 0.066	0.330 ± 0.088	0.287 ± 0.110	1.150	0.728	0.361	1.000
	non-ABS	61	0.148 ± 0.031	0.086 ± 0.021	0.148 ± 0.041	0.581	0.123	1.000	0.061
DQB	All	76	0.155 ± 0.026	0.097 ± 0.018	0.086 ± 0.018	1.127	0.621	0.322	1.000
	ABS	19	0.264 ± 0.071	0.206 ± 0.079	0.133 ± 0.076	1.549	0.248	0.123	1.000
	non-ABS	57	0.124 ± 0.024	0.068 ± 0.014	0.076 ± 0019	0.895	0.734	1.000	0.371
DRA	All	81	0.028 ± 0.007	0.014 ± 0.004	0.025 ± 0.007	0.560	0.138	1.000	0.069
	ABS	20	0.042 ± 0.019	0.017 ± 0.008	0.028 ± 0.022	0.607	0.649	1.000	0.317
	non-ABS	61	0.023 ± 0.007	0.013 ± 0.004	0.025 ± 0.008	0.520	0.133	1.000	0.077
DRB	All	79	0.212 ± 0.028	0.141 ± 0.023	0.114 ± 0.025	1.228	0.429	0.202	1.000
	ABS	15	0.524 ± 0.057	0.594 ± 0.132	0.128 ± 0.080	4.640	0.001	0.001	1.000
	non-ABS	64	0.144 ± 0.025	0.076 ± 0.015	0.112 ± 0.029	0.678	0.247	1.000	0.129

Table 3 The Indices of selection at the DQA, DQB, DRA and DRB loci.

Notes.

aa distance, average pair-wise amino acid distance;.

 $d_{N:}$ nonsynonymous, $d_{S:}$ synonymous, Z test p-values for rejecting the null hypothesis of neutrality ($d_N = d_S$) for the alternative hypotheses of non-neutrality ($d_N \neq d_S$), positive selection ($d_N > d_S$), and purifying selection ($d_N < d_S$).

Figure 4 The ABS binding residues of *DQA* (A), *DQB* (B), *DRA* (C) and *DRB* (D) in GZP. The non-ABS region was circled in white color, the equivalent position of ABS were in red (Non-polar R-amino acids), blue (polar R-amino acids), green (positively charged R-amino acids) and purple (negatively charged R-amino acids), respectively.

Full-size 🖾 DOI: 10.7717/peerj.9889/fig-4

15, 16, 18, 19, 49, 64, 68) were under significant positive selection. However, only two sites (19 and 49) were known as putative ABS based on the HLA equivalents (Fig. 4).

The M3 model estimated that 14.6% of codon sites had ω values greater than one $(\omega 1 = 1.351, \omega 2 = 6.823)$ at the *DRB* (Table 4), which was higher than the other MHC class II codons (*DQA*, *DQB* and *DRA*). The posterior means of ω across the *DRB* codon sites were estimated by the M2a ($\omega = 5.972$) and M8 ($\omega = 5.961$) models and predicted that twelve codons (positions 1, 2, 23, 28, 47, 48, 58, 61, 62, 65, 69, and 77) were under significant positive selection, seven (2, 28, 48, 58, 61, 69, and 77) of which were also putative ABS based on the HLA equivalents (Fig. 4).

Evolutionary analysis

We could not determine the genealogy of DQA, DQB, DRA and DRB due to the presence of loops in the network (Figs. 5A–5D). Some alleles were more likely to be ancestral based on their internal position in the network and a greater frequency of mutational connections. These alleles seemed more likely to be ancestral at the DQA locus, including DQA1, DQA3, *Eqca17*, and *Eqca18*. Allele *DQA1* appears to be ancestral for most alleles, namely *DQA12*, DQA13, DQA14, DQA15, DQA9, Eqca10, Eqbu6, Eqca20, Eqas1, Eqas2, Eqbu5, Eqca19, *Eqbu4*, and *Eqbu12*. Three haplotypes of Przewalski's horse (*Eqpr3*, *Eqpr4* and *Eqpr2*) were separated from DQA3 by two mutational steps and were most closely related to GZP haplotypes. Meanwhile, the DQA1 allele was shared among four species (Eqca15, Eqgr1, Eqbu2 and Eqze1), DQA2 was shared with Eqca14, and DQA3 was shared between two species (Eqca16 and Eqbu20). At the DQB locus, allele DQB1 appears to be ancestral for most alleles, including DQB31, DQB23, DQB32, DQB10, DQB30, DQB33, DQB29, DQB3, DQB24, DQB34, DQB40, Eqas7 and Eqas4. We found that haplotypes DQB5 and DQB13 were shared between Eqca1 and Eqca7, respectively. Allele DRA5 was shared between Eqbu7 and Eqca5, and DRA1 was shared with DRA3 for the DRA locus. Interestingly, allele DRA1 seemed more likely to be ancestral, containing twenty alleles, including DRA21, DRA15, DRA13, DRA8, DRA18, DRA7, DRA14, DRA6, DRA20, DRA19, DRA17, DRA16, DRA2, DRA11, DRA10, DRA12, Eqca2, Eqca6, Eqca7, and Eqca8. Haplotypes Eqhe and DRA9 were separated from DRA1 by as two mutations step as are most closely related GZP haplotypes. Allele DRA5 seemed more likely to be ancestral, Eqbu, Eqze, Eqgr, Egas were separated from DRA5 by one or two mutational step and are most closely related to the GZP haplotypes. Most DRB alleles were dispersed throughout the whole network, and there was a closer genetic relationship between GZP and other horse species. Wild ass haplotypes, *Eqas3*, *Eqas4* and *Eqas6*, were separated from *DRB28* by one mutational step, as are most closely-related GZP haplotypes. Furthermore, the haplotypes DRB2 (Eqpr1) and DRB3 (Eqpr2) were shared by GZP and Przewalski's horse. The haplotypes DRB1 (Eqca5), DRB2 (Eqca12), DRB4 (Eqca7), DRB5 (Eqca1), DRB15 (Eqca2) and DRB23 (Eqca8) were shared between GZP and the European horse.

DISCUSSION

Our study revealed the diversity of the four ELA class II gene regions, *DQA*, *DQB*, *DRA* and *DRB*, and the contribution of many novel alleles identified in GZP. Our data determined

			_		
Locus	Nested model pairs	р	ln L	Parameter estimates	Site under positive selection
DQA	M0: one-ratio	2	-1411.41	$\omega = 1.002$	NA
	M3: discrete	6	-1,286.74	$\omega 0 = 0.000, p0 = 0.585$	NA
				$\omega 1 = 0.283, p1 = 0.361$	
				$\omega 2 = 6.020, p2 = 0.054$	
	M1a: nearly neutral	3	-1,336.18	$\omega 0 = 0.000, p0 = 0.851$	NA
				$\omega 1 = 1.000, p1 = 0.149$	
	M2a: positive selection	5	-1,281.72	$\omega 0 = 0.000, p0 = 0.775$	10,17,18,30,46,51,60,61,65,69,70,72
				$\omega 1 = 1.000 \text{ p1} = 0.205$	
				$\omega 2 = 8.583, p2 = 0.020$	
	M7: beta	3	-1,338.52	p = 0.008, q = 0.054	
	M8: beta& ω	5	-1,281.73	p0 = 0.979, p1 = 0.021	10,17,18,30,46,51,52,60,61,65,68,69,70,72
				$p = 0.005, q = 0.020, \omega = 8.425$	
DQB	M0: one-ratio	2	-1,682.05	$\omega = 0.449$	NA
	M3: discrete	6	-1,461.64	$\omega 0 = 0.054, p0 = 0.921$	NA
				$\omega 1 = 1.283, p1 = 0.073$	
				$\omega 2 = 6.935, p 2 = 0.006$	
	M1a: nearly neutral	3	-1,508.29	$\omega 0 = 0.025, p0 = 0.951$	NA
				$\omega 1 = 1.000, p1 = 0.048$	
	M2a: positive selection	5	-1,462.34	$\omega 0 = 0.043, p0 = 0.913$	16,27,57,61
				$\omega 1 = 1.000, p1 = 0.081$	
				ω 2 = 6.240 , p2 = 0.005	
	M7: beta	3	-1,519.53	p = 0.008, q = 0.054	16,27,47,57,61
	M8: beta& ω	5	-1,467.39	p0 = 0.994, p1 = 0.005	
				$p = 0.072, q = 0.490, \omega = 6.373$	
DRA	M0: one-ratio	2	-632.76	$\omega = 0.778$	NA
	M3: discrete	6	-612.55	$\omega 0 = 0.000, p0 = 0.924$	NA
				$\omega 1 = 0.000, p1 = 0.010$	
				$\omega 2 = 10.031, p2 = 0.066$	
	M1a: nearly neutral	3	-626.11	$\omega 0 = 0.000, p0 = 0.687$	NA
				$\omega 1 = 1.000, p1 = 0.313$	
	M2a: positive selection	5	-612.55	$\omega 0 = 0.000, p0 = 0.934$	12,14,15,16,18,19,49,64,68
				$\omega 1 = 1.000 \text{ p1} = 0.001$	
				ω 2 = 10.286 , p2 = 0.065	
	M7: beta	3	-627.68	p = 0.013, q = 0.020	12,14,15,16,18,19,49,64,68
	M8: beta& ω	5	-612.54	p0 = 0.934, p1 = 0.065	
				$p = 0.005, q = 6.831, \omega = 10.323$	
DRB	M0: one-ratio	2	-1,720.32	$\omega = 0.772$	NA
	M3: discrete	6	-1,534.47	$\omega 0 = 0.074, p0 = 0.854$	NA
				$\omega 1 = 1.351, p1 = 0.131$	
				$\omega 2 = 6.823, p2 = 0.015$	
	M1a: nearly neutral	3	-1,580.21	$\omega 0 = 0.030, p0 = 0.913$	NA

 Table 4
 Estimation of codon evolution models for the ELA class II DQA, DQB, DRA and DRB loci.

(continued on next page)

Table 4 (continued)

Locus	Nested model pairs	р	ln L	Parameter estimates	Site under positive selection
				$\omega 1 = 1.000, p1 = 0.087$	
	M2a: positive selection	5	-1,535.16	$\omega 0 = 0.054, p0 = 0.827$	1,2,23,28,48,58,61,62,65,69,77
				$\omega 1 = 1.000 \text{ p1} = 0.158$	
				<i>ω</i> 2= 5.972 , p2 = 0.015	
	M7: beta	3	-1,583.97	p = 0.016, q = 0.104	1,2,23,28,47,48,58,61,62,65,69,77
	M8: beta& ω	5	-1536.75	p0 = 0.984, p1 = 0.015	
				<i>p</i> =0.087, <i>q</i> =0.328, <i>ω</i> = 5.961	

Notes.

p, number of free parameters in the ω distribution; ln L, log-likelihood; Model parameter estimates include the nonsynonymous to synonymous rate ratio (ω) and proportion of sites (p) under each ω site class. Sites under selection were predicted by the Bayes Empirical Bayes (BEB) approach: sites inferred to be under positive selection with posterior probabilities >99%.

within-species variation using the numbers of alleles. 21 *DQA* alleles, 45 *DQB* alleles, 22 *DRA* alleles, and 31 *DRB* alleles were unequivocally identified from the GZP.

The DRA locus was relatively well-conserved in four GZP loci compared with the other three loci. The alignments of the DQA, DQB, and DRB genes revealed considerable sequence diversity. However, DRA had a lower nucleotide diversity. Our results are consistent with the level of nucleotide diversity at the genus level for Equus *ELA* genes as reported by *Kamath & Getz (2011)*. DQB had the highest level of polymorphisms with a ratio of polymorphic sites of 46.08%, this was followed by DRB and DQA. DRA had the lowest level of polymorphisms (15.04%), which was consistent with the results of the DRA locus in dogs (*Wagner, Burnett & Storb, 1999*), cats (*Yuhki & O'Brien, 1997*), goats (*Takada et al., 1998*), and pigs (*Chardon, Renard & Vaiman, 1999*). The genetic diversity of ELA is reportedly important for immune functions involving the resistance and susceptibility to pathogens (*Trowsdale & Parham, 2004*) with a probable mechanism of gene selection in the evolution process of the pony (*Penn & Potts, 1999*).

We detected the balancing selection events by determining the rate of non-synonymous/ synonymous substitutions (d_N/d_S ratio) of nucleotides. Our results revealed a high genetic variability at the DQA, DQB, DRA, and DRB loci. The d_N/d_S ratio ($d_N/d_S = 0.560$) at the DRA locus was the lowest, which was similar to the low levels of polymorphisms detected by sequence alignment. It has been established that the number of synonymous substitutions is greater than non-synonymous substitutions due to strong functional and structural constraints on the protein (*Kamath & Getz*, 2011). The number of polymorphisms at the DRA locus may be attributed to the selective pressure for DRA haplotypes that present pathogenic antigens for the host species more efficiently (*Albright-Fraser et al.*, 1996).

We found nine DQA codons, five DQB codons, nine DRA codons, and seven DRB codons under significant positive selection. The majority of these codons were predicted to be the ABS of *ELA*. The amino acids under site-specific selection were located on the protein surface based on SWISS-MODEL prediction results (Fig. 4) and were found on the inner surface of the MHC cleft with bound peptides in the antigen presentation (*Madden et al.*, 1995). Several reports indicated that the diversity and nonsynonymous mutations at the ABS could improve the hosts ability to recognize pathogens (*Hughes & Nei*, 1988; *Hughes & Nei*, 1989). These data suggest that the different rates of non-synonymous and

Figure 5Median-joining network of DQA (A), DQB (B), DRA (C) and DRB (D) sequences in theEquidae family. The circle size was proportional to haplotype frequency.Full-size IDOI: 10.7717/peerj.9889/fig-5

synonymous substitutions in DQA, DQB, DRA and DRB were closely related to the ABS changes in the GZP. In particular, the d_N/d_S ratio in the ABS was greater than that in the non-ABS region at the DQA, DQB and DRB loci, which is common in the Argentine Creole horse (*Díaz et al., 2001*). The d_N/d_S ratio of ABS was higher than the other regions, which may be due to balancing selection (*Albright-Fraser et al., 1996*), and the positive selection results in MHC polymorphisms (*Yang et al., 2000*).

The haplotype median network of DQA, DQB, DRA and DRB between GZP and other horses (Eqca, E. callabus; Eqpr, E. przewalski; Eqki, E. kiang; Eqgr, E. grevyi; Eqas, E. asinus; Eqbu, E. burchelli; Eqze, E. zebra; Eqhe, E. hemionus) were analyzed. Among these, several wild ass haplotypes were separated from DQA1, DQB1, and DRB28 by one or two mutational steps and are more closely related to GZP haplotypes. The divergence time between the horse and ass has been estimated to be 0.88–2.3 Ma (Krüger et al., 2005). One E. hemionus haplotype (Eqhe2) was separated from DRA by two mutational steps and is most closely related to GZP haplotypes. It suggested that DQA1, DQA3, DQB1, DRA1, DRA5, and DRB28 may be the oldest alleles. The haplotypes DRB2 and DRB3 were shared between GZP and the Przewalski's horse at the DRB locus. Przewalski's horse haplotypes Eqpr3, Eqpr4 and Eqpr2 were separated from DQA3 by two mutational steps. Przewalski's horse was discovered on the Asian steppes in the 1870s and it is the only surviving species of wild horse in the world (*Wakefield et al., 2002*). It is thought that the Przewalski's horse and the domesticated horse populations separated about 45,000 years ago and maintained a certain degree of gene-flow (Der Sarkissian et al., 2015). Some haplotypes were shared between the GZP and European horses, including DQA1, DQA3, DQB5, DQB13, DRB1, DRB2, DRB15, DRB23, DRB4, and DRB5. The allele DQA1 appears to be the ancestor for the three alleles, *Eqca10, Eqca20*, and *Eqca19*. Allele *DRA1* seemed more likely to be ancestral for four alleles, including *Eqca2, Eqca6, Eqca7*, and *Eqca8*. The genes of the domesticated Asian horse may have dispersed into European populations because of the gene flow (*Bjørnstad, Nilsen & Røed, 2003*). Interestingly, the haplotypes DQA1, DQA3, and DRA5 were shared between the GZP and E.burchelli, E.grevyi and zebra. The divergence time between horses and zebras is estimated to be 0.86–2.3 Ma based on microsatellite trees (*Krüger et al., 2005*). The common ancestor of all extant forms may have existed about 3.9 Ma, and speciation leading to the zebra, ass, and horse may have occurred within the following 0.5 Ma (*George & Ryder, 1986*). These data and our results indicated that the GZP is an ancient variety of equid. Additional studies on the GZP may advance our knowledge of unique haplotypes and their roles in the adaptation to local environmental pressures such as the unique pathogenic microorganisms in the mountainous and humid districts in Guizhou province, China.

CONCLUSION

Nucleotide diversity was detected from exon 2 of ELA-DQA, DQB, DRA, and DRB genes in the GZP using direct sequencing technology. Of those four loci, the DRA locus was relatively well-conserved and possessed the lowest diversity. Many codons in the ABS underwent positive selection, including nine DQA codons, five DQB codons, nine DRA codons, and seven DRB codons. The amino acids coded by selected codons were found on the inner surface of the cleft of the *ELA* complex and were bound to an antigen peptide. The selected sites may be related to the GZP's ability to defend against foreign pathogens from the surrounding habitat. Many ancient alleles were detected at the DQA, DQB, DRA and DQB gene regions of GZP. Two older haplotypes of DRB (DRB2 and DRB3) were shared by the GZP and Przewalski's horse. Two older haplotypes of DRA (DRA1 and DRA5) were separated from Eqbu, Eqze, Eqgr, and Egas by one or two mutations steps, and four older haplotypes of GZP (DQA1, DQA3, DQB1, and DRB28) were closer to the wild ass and Przewalski's horse by only one or two mutational steps. The indigenous breed, GZP, may have retained ancient haplotyes in *ELA* genes. There may be a large number of unique haplotypes dispersed in GZP resulting from the long process of ELA molecule evolution. The unique genetic characteristics of GZP have been unclear, undervalued, and confused with other ponies. The genetic uniqueness revealed in our study is helpful to understand its genetic conservation of this ancient variety of pony.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by The Talents of Guizhou Science and Technology Cooperation Platform (QKHPTRC[2019]-5615), The Guizhou Province Hundred Innovative Talents Project (QKHRC[2016]-4012], and the Guizhou Agriculture Research program (QKHNYZ[2012]3009, QKHNYZ[2009]3068). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: The Talents of Guizhou Science and Technology Cooperation Platform: QKHPTRC[2019]-5615.

The Guizhou Province Hundred Innovative Talents Project: QKHRC[2016]-4012]. The Guizhou Agriculture Research program: QKHNYZ[2012]3009, QKHNYZ[2009]3068.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Chang Liu conceived and designed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Hongmei Lei performed the experiments, prepared figures and/or tables, and approved the final draft.
- Xueqin Ran and Jiafu Wang conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Animal Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

All animal procedures were approved by the Institutional Animal Care and Use Committee of Guizhou University (Approval number EAE-GZU-2018-P007) and were conducted in accordance with the National Research Council Guide for the Care and Use of Laboratory Animals.

Data Availability

The following information was supplied regarding data availability: Raw data is available as Supplemental Files.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.9889#supplemental-information.

REFERENCES

- Albright-Fraser DG, Reid R, Gerber V, Bailey E. 1996. Polymorphism of DRA among equids. *Immunogenetics* 43(5):315–317 DOI 10.1007/s002510050068.
- Anisimova M, Bielawski JP, Yang Z. 2001. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. *Molecular Biology and Evolution* 8:1585–1592 DOI 10.1093/oxfordjournals.molbev.a003945.
- Anisimova M, Nielsen R, Yang Z. 2003. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. *Genetics* 3:1229–1236.

- Ansari HA, Hediger R, Fries R, Stranzinger G. 1988. Chromosomal localization of the Major Histocompatibility Complex of the horse (ELA) by insitu hybridization. *Immunogenetics* 28(5):362–364 DOI 10.1007/BF00364235.
- Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution* 16(1):37–48 DOI 10.1093/oxfordjournals.molbev.a026036.
- Bernatchez L, Landry C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? *Journal of Evolutionary Biology* **16(3)**:363–377 DOI 10.1046/j.1420-9101.2003.00531.x.
- Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Research* 42:W252–W258 DOI 10.1093/nar/gku340.
- Bielawski JP, Yang Z. 2003. Maximum likelihood methods for detecting adaptive evolution after gene duplication. *Journal of Structural and Functional Genomics* 3(1–4):201–212 DOI 10.1023/A:1022642807731.
- Bjørnstad G, Nilsen NØ, Røed KH. 2003. Genetic relationship between Mongolian and Norwegian horses? *Animal Genetics* 34(1):55–58 DOI 10.1046/j.1365-2052.2003.00922.x.
- **Bolnick DI, Stutz WE. 2017.** Frequency dependence limits divergent evolution by favouring rare immigrants over residents. *Nature* **546**(**7657**):285–288 DOI 10.1038/nature22351.
- Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC.
 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. *Nature* 364(6432):33–39 DOI 10.1038/364033a0.
- Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC. 1988. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. *Nature* 333(6175):845–850 DOI 10.1038/332845a0.
- **Buhler S, Nunes JM, Sanchez-Mazas A. 2016.** HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. *Immunogenetics* **68(6–7)**:401–416 DOI 10.1007/s00251-016-0918-x.
- Chardon P, Renard C, Vaiman M. 1999. The major histocompatibility complex in swine. *Immunological Reviews* 167:179–192 DOI 10.1111/j.1600-065X.1999.tb01391.x.
- Cutrera AP, Lacey EA. 2007. Trans-species polymorphism and evidence of selection on class II MHC loci in tuco-tucos (Rodentia: Ctenomyidae). *Immunogenetics* 59(12):937–948 DOI 10.1007/s00251-007-0261-3.
- Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Bar-Gal GK, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L.

2015. Evolutionary genomics and conservation of the endangered Przewalski's horse. *Current Biology* **25(19)**:2577–2583 DOI 10.1016/j.cub.2015.08.032.

Díaz S, Giovambattista G, Dulout FN, Peral-García P. 2001. Genetic variation of the second exon of ELA-DRB genes in Argentine Creole horses. *Animal Genetics* 32(5):257–263 DOI 10.1046/j.1365-2052.2001.00779.x.

Edwards SV, Hedrick PW. 1988. Evolution and ecology of MHC molecules: from genomics to sexual selection. *Trends in Ecology & Evolution* 13(8):305–311.

Eizaguirre C, Lenz TL, Kalbe M, Milinski M. 2012. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. *Nature Communications* **3**:621 DOI 10.1038/ncomms1632.

Fraser DG, Bailey E. 1996. Demonstration of three DRB loci in a domestic horse family. *Immuno genetics* **44(6)**:441–445 DOI 10.1007/bf02602805.

Fraser DG, Bailey E. 1998. Polymorphism and multiple loci for the horse DQA gene. *Immunogenetics* 47(6):487–490 DOI 10.1007/s002510050387.

George Jr M, Ryder OA. 1986. Mitochondrial DNA evolution in the genus Equus. *Molecular Biology and Evolution* 3(6):535–546 DOI 10.1093/oxfordjournals.molbev.a040414.

Hill AV. 2001. The genomics and genetics of human infectious disease susceptibility. *Annual Review of Genomics and Human Genetics* 2:373–400 DOI 10.1146/annurev.genom.2.1.37

Hughes AL, Hughes MK. 1995. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. *Immuno Genetics* 42(4):233–243
 DOI 10.1007/bf00176440.

- Hughes AL, Nei M. 1988. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. *Nature* 335(6186):167–170 DOI 10.1038/335167a0.
- Hughes AL, Nei M. 1989. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. *Proceedings of the National Academy of Sciences of the United States of America* 86(3):958–962 DOI 10.1073/pnas.86.3.958.
- Janova E, Matiasovic J, Vahala J, Vodicka R, Van Dyk E, Horin P. 2009. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae. *Immunogenetics* 61(7):513–527 DOI 10.1007/s00251-009-0380-0.
- Kamath PL, Getz WM. 2011. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus. *BMC Evolutionary Biology* 11:128 DOI 10.1186/1471-2148-11-128.
- Klein J, Satta Y, Takahata N, O'hUigin C. 1993. Trans-specific Mhc polymorphism and the origin of species in primates. *Journal of Medical Primatology* 22(1):57–64 DOI 10.1111/j.1600-0684.1993.tb00637.x.
- Kloch A, Babik W, Bajer A, Siński E, Radwan J. 2010. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodesglareolus. *Molecular Ecology* 19(Suppl 1):255–265 DOI 10.1111/j.1365-294X.2009.04476.x.

- Krüger K, Gaillard C, Stranzinger G, Rieder S. 2005. Phylogenetic analysis and species allocation of individual equids using microsatellite data. *Proceedings of the National Academy of Sciences of the United States of America* 122(Suppl 1):78–86.
- Kubinak JL, Ruff JS, Hyzer CW, Slev PR, Potts WK. 2012. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proceedings of the National Academy of Sciences of the United States of America 109(9):3422–3427 DOI 10.1073/pnas.1112633109.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* **33**(7):1870–1874 DOI 10.1093/molbev/msw054.
- Landry C, Bernatchez L. 2001. Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). *Molecular Ecology* 10(10):2525–2539.
- Lau Q, Chow N, Gray R, Gongora J, Higgins DP. 2015. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea). *Journal of Heredity* 106(4):395–402 DOI 10.1093/jhered/esv022.
- Lenz TL. 2011. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. *Evolution* 65(8):2380–2390 DOI 10.1111/j.1558-5646.2011.01288.x.
- Lenz TL, Eizaguirre C, Kalbe M, Milinski M. 2013. Evaluating patterns of convergent evolution and trans-species polymorphism at MHC immunogenes in two sympatric stickleback species. *Evolution* 67(8):2400–2412 DOI 10.1111/evo.12124.
- Lenz TL, Wells K, Pfeiffer M, Sommer S. 2009. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys Sabanus). *BMC Evolutionary Biology* 9:269 DOI 10.1186/1471-2148-9-269.
- Levitan DR, Ferrell DL. 2006. Selection on gamete recognition proteins depends on sex, density, and genotype frequency. *Science* 312:267–269 DOI 10.1126/science.1122183.
- Li L, Wang BB, Ge YF, Wan QH. 2014. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. *International Journal of Immunogenetics* **41**:401–412 DOI 10.1111/jji.12135.
- Lian XD, Zhang XH, Dai ZX, Zheng YT. 2017. Characterization of classical major histocompatibility complex (MHC) class II genes in northern pig-tailed macaques (Macaca Leonina). *Infection, Genetics and Evolution* **56**:26–35 DOI 10.1016/j.meegid.2017.10.015.
- Luís C, Cothran EG, Oom MM, Bailey E. 2005. Major histocompatibility complex locus DRA polymorphism in the endangered Sorraia horse and related breeds. *Journal of Animal Breeding and Genetics* 122(1):69–72 DOI 10.1111/j.1439-0388.2004.00485.x.
- Madden KS, Felten SY, Felten DL, Bellinger DL. 1995. Sympathetic nervous systemimmune system interactions in young and old Fischer 344 rats. *Annals of the New York Academy of Sciences* 771:523–534 DOI 10.1111/j.1749-6632.1995.tb44707.x.

- Mäkinen A, Chowdhary B, Mahdy E, Andersson L, Gustavsson I. 1989. Localization of the equine Major Histocompatibility Complex (ELA) tochromosome-20 by insitu hybridization. *Hereditas* 110(1):93–96.
- Mashima S. 2003. Comparative sequence analysis of equine and human MHC class II DQB genes. *Cytogenetic and Genome Research* 102(1–4):196–200 DOI 10.1159/000075748.
- McGahern AM, Edwards CJ, Bower MA, Heffernan A, Park SD, Brophy PO, Bradley DG, MacHugh DE, Hill EW. 2006. Mitochondrial DNA sequence diversity in extant Irish horse populations and in ancient horses. *Animal Genetics* 37(5):498–502 DOI 10.1111/j.1365-2052.2006.01506.x.
- Meyer JR, Kassen R. 2007. The effects of competition and predation on diversification in a model adaptive radiation. *Nature* **446**:432–435 DOI 10.1038/nature05599.
- Meyer-Lucht Y, Sommer S. 2005. MHC diversity and the association to nematode parasitism in the yellow-necked mouse (*Apodemus flavicollis*). *Molecular Ecology* 14(7):2233–2243 DOI 10.1111/j.1365-294X.2005.02557.x.
- Miller D, Tallmadge RL, Binns M, Zhu B, Mohamoud YA, Ahmed A, Brooks SA, Antczak DF. 2017. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes. *Immunogenetics* **69**(3):145–115 DOI 10.1007/s00251-016-0964-4.
- Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. *Molecular Biology and Evolution* **3**(5):418–426 DOI 10.1093/oxfordjournals.molbev.a040410.
- O'Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O'Connor DH. 2007. Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. *Immunogenetics* **59(6)**:449–462 DOI 10.1007/s00251-007-0209-7.
- Paterson S, Wilson K, Pemberton JM. 1998. Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population. *Proceedings of the National Academy of Sciences of the United States of America* **95**(7):3714–3719 DOI 10.1073/pnas.95.7.3714.
- **Penn DJ, Potts WK. 1999.** The evolution of mating preferences and major histocompatibility complex genes. *The American Naturalist* **153**(2):145–164 DOI 10.1086/303166.
- Phillips KP, Cable J, Mohammed RS, Herdegen-Radwan M, Raubic J, Przesmycka KJ, Van Oosterhout C, Radwan J. 2018. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. *Proceedings of the National Academy of Sciences of the United States of America* 115(7):1552–1557 DOI 10.1073/pnas.1708597115.
- Pierini F, Lenz TL. 2018. Divergent allele advantage at human MHC genes: signatures of past and ongoing selection. *Molecular Biology and Evolution* **35(9)**:2145–2158 DOI 10.1093/molbev/msy116.
- **Piertney SB, Oliver MK. 2006.** The evolutionary ecology of the major histocompatibility complex. *Heredity* **96**(1):7–21 DOI 10.1038/sj.hdy.6800724.

- **Prystupa JM, Hind P, Cothran EG, Plante Y. 2012.** Maternal lineages in native Canadian equine populations and their relationship to the Nordic and Mountain and Moorland pony breeds. *Journal of Heredity* **103(3)**:380–390 DOI 10.1093/jhered/ess003.
- Richman AD, Herrera LG, Nash D. 2001. MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculatus): implications for models of balancing selection. *Molecular Ecology* 10(12):2765–2773 DOI 10.1046/j.0962-1083.2001.01402.x.
- Schad J, Ganzhorn JU, Sommer S. 2005. Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, *Microcebus murinus*. *Evolution* 59(2):439–450 DOI 10.1111/j.0014-3820.2005.tb01002.x.
- Schwensow N, Dausmann K, Eberle M, Fietz J, Sommer S. 2010. Functional associations of similar MHC alleles and shared parasite species in two sympatric lemurs. *Infection, Genetics and Evolution* 10(5):662–668 DOI 10.1016/j.meegid.2010.03.012.
- **Sommer S. 2005.** The importance of immune gene variability (MHC) in evolutionary ecology and conservation. *Frontiers in Zoology* **2**:16 DOI 10.1186/1742-9994-2-16.
- Takada T, Kikkawa Y, Yonekawa H, Amano T. 1998. Analysis of goat MHC class II DRA and DRB genes: identification of the expressed gene and new DRB alleles. *Immuno Genetics* **48(6)**:408–412 DOI 10.1007/s002510050452.
- Takahata N, Nei M. 1990. Allelic genealogy under overdominant and frequencydependent selection and polymorphism of major histocompatibility complex loci. *Genetics* 124(4):967–978.
- Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R,
 Fugate M, Theiler J, Hsu YS, Kunstman K, Wu S, Phair J, Erlich H, Wolinsky S.
 2003. Advantage of rare HLA supertype in HIV disease progression. *Nature Medicine* 9(7):928–935 DOI 10.1038/nm893.
- Trowsdale J, Parham P. 2004. Mini-review: defense strategies and immunity-related genes. *European Journal of Immunology* 34(1):7–17 DOI 10.1002/eji.200324693.
- Wagner JL, Burnett RC, Storb R. 1999. Organization of the canine major histocompatibility complex: current perspectives. *Journal of Heredity* 90(1):35–38 DOI 10.1093/jhered/90.1.35.
- Wakefield S, Knowles J, Zimmermann W, vanDierendonck M. 2002. Chapter 7: status and action plan for the Przewalski's Horse (Equus ferus przewalskii). In: Moehlman PD, ed. *Equids: zebras, asses, and horses: status survey and conservation action plan.* Gland Switzerland and Cambridge: IUCN/SCC Equid Specialist Group, IUCN (The World Conservation Union).
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Research* 46(W1):W296–W303 DOI 10.1093/nar/gky427.
- Westerdahl H, Wittzell H, Von Schantz T, Bensch S. 2004. MHC Class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. *Heredity* **92(6)**:534–542 DOI 10.1038/sj.hdy.6800450.

- Wu TT, Kabat EA. 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. *Journal of Experimetnal Medicine* 132(2):211–250 DOI 10.1084/jem.132.2.211.
- Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology and Evolution* 24(8):1586–1591 DOI 10.1093/molbev/msm088.
- Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular adaptation. *Trends in Ecology & Evolution* 15(12):496–503 DOI 10.1016/S0169-5347(00)01994-7.
- Yang Z, Nielsen R, Goldman N, Pedersen AM. 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. *Genetics* 155(1):431–449.
- Yuhki N, O'Brien SJ. 1997. Nature and origin of polymorphism in feline MHC class II DRA and DRB genes. *Journal of Immunology* 158(6):2822–2833.