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Background: Diffuse large B-cell lymphoma (DLBCL) is the most common non-
Hodgkin’s lymphoma with considerable heterogeneity and different clinical prognosis.
However, plasma metabomics used to forecast occurrence and prognosis of DLBCL are
rarely addressed.

Method: A total of 65 volunteers including 22 healthy controls (Ctrl), 25 DLBCL patients
newly diagnosed (ND), and 18 DLBCL patients achieving complete remission (CR) were
enrolled. A gas chromatography mass spectrometry-based untargeted plasma
metabolomics analysis was performed.

Results: Multivariate statistical analysis displayed distinct metabolic features among Crtl,
ND, and CR groups. Surprisingly, metabolic profiles of newly diagnosed DLBCL patients
undergoing different prognosis showed clear and distinctive clustering. Based on the
candidate metabolic biomarkers (glucose and aspartate) and clinical indicators
(lymphocyte, red blood count, and hemoglobin), a distinct diagnostic equation was
established showing improved diagnostic performance with an area under curve of
0.936. The enrichment of citric acid cycle, deficiency of branched chain amino acid,
methionine, and cysteine in newly diagnosed DLBCL patients was closely associated with
poor prognosis. In addition, we found that malate and 2-hydroxy-2-methylbutyric acid
were positively correlated with the baseline tumor metabolic parameters (metabolically
active tumor volume and total lesion glycolysis), and the higher abundance of plasma
malate, the poorer survival.

Conclusion: Our preliminary data suggested plasma metabolomics study was
informative to characterize the metabolic phenotypes and forecast occurrence and
prognosis of DLBCL. Malate was identified as an unfavorable metabolic biomarker for
prognosis-prediction of DLBCL, which provided a new insight on risk-stratification and
therapeutic targets of DLBCL. More studies to confirm these associations and investigate
potential mechanisms are in the process.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL), the most common non-
Hodgkin’s lymphoma, displays great heterogeneity in the clinic
(1). With the advent of anti-CD20-based immunochemotherapy,
the survival of DLBCL patients has significantly improved.
However, approximately 40% of patients with DLBCL still
experience therapeutic failure resulting in progression or
relapses (2). At present, the major risk-stratification for
prognosis in the clinic is the clinically based International
Prognostic Index (IPI), and the higher IPI scores, the worse
prognosis (3). But the IPI system is less capable of identifying
individual high-risk patients in the rituximab era (4). More
recently, the molecular heterogeneity of DLBCLs is considered
as a major factor influencing the response to therapy, like cell-of-
origin classification and double-hit/triple-hit lymphomas (5, 6),
while multiple studies failed to reproduce the predictive power (7–
10). Hence, discovery of new therapeutic targets and prognostic
markers is urgently needed to improve the current DLBCL-
stratification system and guide the optimization of clinical therapy.

Reprogramming metabolism to ensure steady supply of
intermediary metabolites for massive proliferation and
malignant progression is a hallmark of a tumor (11). The
exuberant metabolism of DLBCL cells was observed with
increased uptake of glucose analog (18F-fluoro-2-deoxy-D-
glucose, FDG), as well as up-regulated expression of glucose
transporter and hexokinases (12, 13). Moreover, metabolic
heterogeneity indicated by the distinct dependence on substrate
in tumors is not only common in different types of tumors but
also in subgroups within a tumor, which may influence
therapeutic vulnerabilities and predict clinical outcomes (14,
15). There is increasing evidence that DLBCL is metabolically
heterogeneous (16) and has been further classified into oxidative
phosphorylation (OxPhos) cluster and B cell receptor (BCR)
cluster (10). To date, very few studies have been reported to
uncover distinct metabolic biomarkers involved in prognosis of
DLBCL (17, 18). While due to the lack of healthy controls, more
work is needed to verify reported results and discover new
biomarkers. To our knowledge, plasma metabomics used to
diagnose and prognosticate DLBCL are rarely addressed.

In this study, we profiled the plasma metabolome of
peripheral plasma from DLBCL patients newly diagnosed,
DLBCL patients achieving complete remission, and healthy
controls to identify the potential metabolic markers for
diagnosis. According to prognostic outcome after follow-up,
we also systematically investigated the metabolic characteristics
of two distinct groups subdivived from newly diagnosed patients.
The prognostic biomarker and metabolic pathway correlated to
clinical prognosis were further identified in DLBCL, which will
throw light on metabolic pathogenesis and provide new
alternative diagnoses and prognostic biomarkers for DLBCL.

MATERIALS AND METHODS

Study Design
To ensure the accuracy of this experiment, volunteers with other
malignancies and metabolic disease such as diabetes, and liver
Frontiers in Oncology | www.frontiersin.org 2
and kidney dysfunction were excluded. All DLBCL patients were
diagnosed and reviewed by experienced hematopathologists and
received an anti-CD20-based chemotherapy regimen. Finally, a
total of 65 volunteers including 22 healthy controls (Ctrl), 25
DLBCL patients newly diagnosed (ND), and 18 DLBCL patients
achieving complete remission (CR) were enrolled between
Feburary 2018 and March 2019 in this analysis. This study was
approved by the Medical Ethical Committee of Nanjing Drum
Tower Hospital. Informed consent for plasma samples was
obtained from all volunteers in accordance with the
Helsinki Declaration.

Newly diagnosed DLBCL patients were further classified
according to Han’s algorithm (the germinal center B cell
subtype (GCB) vs. non-GCB) and the Ann Arbor stage (stage
I-II vs. stage III-IV). Han’s algorithm was performed by senior
pathologists based on immunohistochemistry (the expression of
immune molecule markers including CD10, Bcl-6, and MUM1)
(19). Efficacy of CR was evaluated based on the standards revised
by the Lugano meeting (2014), including the length of target
lesions (lymph nodes) was less than 1.5 cm, and no extranodal
lesions were found; unmeasurable lesions disappeared; enlarged
organs returned to normal; no new lesions; and bone marrow
morphology was normal. Clinical characteristics of DLBCL
patients and healthy volunteers involved are summarized
in Table 1.

Sample Preparation and GC/MS Analysis
The plasma was extracted from peripheral blood which was
collected using EDTA tubes and then centrifuged at 1000 g for
10 min. The collected plasma samples were immediately frozen
at -80°C until metabolomics analysis. All plasma samples were
collected from volunteers after overnight fasting (for at least
10 h), and newly diagnosed patients were new diagnosis and
prior to any medications.

The metabolomics method based on GC/MS was performed
as previously reported (20). Briefly, 50 µL of plasma supernatants
was extracted with 200 µL of methanol which contains 5 µg/mL
of [13C2]-myristic acid internal standard (IS). The mixture was
vortexed for 5 min and centrifuged (20,000×g, 4°C) for 10 min to
remove protein. An aliquot of 100 µL of supernatant was
collected and concentrated to dryness. The extract was then
oximated with 30 µL of pyridine containing 10 mg/mL
methoxyamine for 16 h at room temperature, followed by
trimethylsilylation with 30 µL of MSTFA + 1% TMCS for
another 1 h. Subsequently, 30 µL of n-heptane containing
methyl myristate (15.0 µg/mL) as the quality control reference
standard was added and thoroughly mixed. The quality control
samples (QC) were pooled with the remaining upper layers of
samples in the study set and mixed.

A 0.5 mL portion of the prepared samples was injected into
Shimadzu GC/MS QP2010Ultra/SE equipped with a 30 m ×
0.25 mm ID, fused silica capillary column, which was chemically
bonded with 0.25 m DB1-MS stationary phase. The column
temperature was programed as follows: kept at 80°C for 3.0 min,
then increased to 300°C at 20°C/min and held for 5.0 min. The
transfer line temperature was set at 220°C and the ion source
temperature at 200°C. Ions were generated by a 70-eV electron
June 2022 | Volume 12 | Article 894891
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beam at a current of 3.2 mA. The mass spectra were acquired
over the mass range of 50-700 m/z at a rate of 25 spectra/s after a
solvent delay of 160 s. To diminish the systematic variation
during instrumental analysis, all the samples were randomly
selected for analysis by GC/MS and QC samples spaced evenly
among the injections.

The metabolites were identified by comparing the mass
spectrum and retention indexes for the analyte with the
corresponding values from Wiley 9, the National Institute of
Standards and Technology (NIST) library 2.0, and an in-house
mass spectra library database. A match factor greater than 80% is
considered to be reliable.

Statistical Analysis
After identification, statistical analyses were performed using
normalized peak area (normalized by IS). The normalized peak
area was introduced in SIMCA software for multivariate statistical
analysis. The goodness offit for a model was evaluated using three
quantitative parameters as follows: R2X (the explained variation
in X), R2Y (the explained variation in Y), and Q2 (the predicted
variation in Y based on the model using cross-validation).
Statistical analyses were performed using the GraphPad Prism
software. Metabolomics pathway analysis of the metabolic
biomarkers was carried out using MetaboAnalyst (21). Fold
change (FC) was calculated by comparing average level between
Frontiers in Oncology | www.frontiersin.org 3
groups. PET-derived metrics include: tumor maximum
standardized uptake value (SUVmax); metabolically active
tumor volume (TMTV), calculated as the total volume of tumor
with FDG uptake; and total lesion glycolysis (TLG), the sum of the
tumor volume weighted by the intensity of FDG uptake. The
correlation analysis was performed by R software. Relative
distance values (RDV) were calculated as previously reported
(22). Survival functions were estimated using the Kaplan-Meier
method and compared with the log-rank test. All data are
expressed as the means ± SDs. Differences among groups were
evaluated by two-tailed Student’s t-test or one-way ANOVA. P
values less than 0.05 were considered to indicate
statistical significance.
RESULTS

The Demographics and Clinical
Characteristics of DLBCL Patients and
Healthy Volunteers
The demographics of all volunteers included in this study are
summarized in Table 1. All participants were age‐matched and
sex‐matched in the Ctrl, ND, and CR groups. Compared with
healthy controls, no obvious liver and kidney dysfunction were
observed in newly diagnosed DLBCL patients according to the
TABLE 1 | The demographics and clinical characteristics of DLBCL patients and healthy volunteers.

Characteristics Ctrl ND CR

Numbers 22 25 18
Age (years) 58.32 ± 14.70 59.68 ± 15.81 51.00 ± 16.48
Gender: M/F 13/9 12/13 9/9
Classification
GCB/Non-GCB 13/12
Stage I-II/III-IV 13/12
Blood routine
WBC (109/L) 5.80 ± 1.13 5.98 ± 3.03 5.82 ± 1.84
Neutrophil (109/L) 3.18 ± 0.82 4.10 ± 2.73 3.31 ± 1.12
Lymphocyte (109/L) 2.07 ± 0.46 1.30 ± 0.57** 1.85 ± 0.80#

Monocyte (109/L) 0.40 ± 0.12 0.41 ± 0.17 0.50 ± 0.16
RBC (1012/L) 4.75 ± 0.41 3.99 ± 0.61** 4.64 ± 0.63##

Hemoglobin (g/L) 142.32 ± 13.68 116.04 ± 18.37** 139.29 ± 17.11##

Platelet (109/L) 218.50 ± 48.39 240.44 ± 94.83 198.88 ± 82.09
Biochemistry analysis
Glutamic-pyruvic transaminase (U/L) 23.98 ± 18.13 21.37 ± 19.71 11.53 ± 7.54
Glutamic-oxalacetic transaminease (U/L) 21.41 ± 6.84 20.12 ± 7.96 14.08 ± 3.63
Alkaline phosphatase (U/L) 58.05 ± 11.96 97.32 ± 98.23 68.55 ± 18.16
Direct bilirubin (mmol/L) 2.57 ± 1.81 3.37 ± 2.75 2.20 ± 0.28
Total bilirubin (mmol/L) 10.06 ± 5.41 9.93 ± 5.42 8.98 ± 2.94
Lactate dehydrogenase (U/L) 197.05 ± 27.39 270.61 ± 241.19 195.50 ± 64.73
Triglyceride (mmol/L) 1.52 ± 1.61 1.26 ± 0.59 1.50 ± 0.87
Cholesterol (mmol/L) 4.51 ± 0.85 3.82 ± 1.08* 3.89 ± 0.78
HDL-C (mmol/L) 1.31 ± 0.38 0.89 ± 0.36** 0.68 ± 0.24
LDL-C (mmol/L) 2.64 ± 0.70 2.27 ± 0.89 2.45 ± 0.80
Apolipoprotein A (g/L) 1.27 ± 0.29 0.83 ± 0.29** 0.67 ± 0.20
Creatinine 64.16 ± 14.58 63.78 ± 27.46 67.50 ± 13.48
Urea 6.12 ± 1.21 5.43 ± 2.07 5.95 ± 1.44
Uric acid 378.11 ± 81.82 345.39 ± 143.54 402.00 ± 87.85
eGFR (ml/min/1.73m^2) 111.55 ± 29.90 116.33 ± 37.03 104.28 ± 15.67
June 2022 | Volume 1
WBC, white blood cell counts; RBC, red blood cell counts; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; *: p < 0.05 vs. Ctrl; **: p < 0.01 vs. Ctrl;
#: p < 0.05 vs. ND; ##: p < 0.01 vs. ND.
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biochemistry analysis. In contrast, abnormal cholesterol
metabolism was observed in the ND group as indicated by
significantly decreased cholesterol, high-density lipoprotein
cholesterol, and apolipoprotein A. The level of lymphocyte, red
blood count (RBC), and hemoglobin was also significantly
reduced in the ND group, while these laboratory characteristics
were restored in the CR group. Moreover, a multivariate
statistical model was constructed based on clinical
characteristics, showing obvious cluster classification among
collected samples (Supplementary Figure S1A), and the
variable of importance (VIP, Supplementary Figure S2) values
indicated that lymphocyte, RBC, and hemoglobin contributed
the most to distinguishing these three groups. This result
suggested that lymphocyte, RBC, and hemoglobin may be the
candidate clinical indicators related to diagnosis in
DLBCL patients.
Plasma Metabolic Patterns and
Discriminant Metabolites of DLBCL
Patients
Deconvolution of the plasma chromatograms produced a total of
128 distinct peaks and 87 were authentically identified. The
overall process variability was calculated based on the intensity
of methyl myristate; the RSD was 6.8%. Moreover, pooled QC
samples were clustered well in a PCA plot (Supplementary
Figure S3), indicating stable instrument operation and good
reproducibility of the assay throughout the experiment. To
explore the metabolic characteristics among the Ctrl, ND, and
CR groups, a supervised PLS-DA model was created to obtain an
Frontiers in Oncology | www.frontiersin.org 4
overview of the data set. The score plot (Figure 1A) showed that
samples within each group tended to cluster closely, indicating
that the metabolic features within each group were similar.
Furthermore, the ND group was well separated from the
control group, while the CR group moved much closer to the
control group, suggesting the metabolic profile could well
characterize the disease states of DLBCL. To further
quantitatively evaluate the perturbed metabolism, the relative
distance values (RDV) were calculated. The RDV between the
Ctrl group and the ND group, the CR group was decreased from
7.1 ± 2.1 to 3.3 ± 2.2, indicating the metabolic fluctuation was
restored after achieving complete remission. Compared with
clinical characteristics (Supplementary Figures S1B, C), the
OPLS-DA score plots of metabolomics presented better fitness
and higher predictability of models for the Ctrl group vs. the ND
group (Figure 1B) and the CR group vs. the ND group
(Figure 1C). This indicated the metabolic profiles illustrated
stronger recognition among the Ctrl, ND, and CR groups.

To recognize the differential metabolites, volcano plots were
processed to display metabolites changed greatly (fold change >
1.5 or < 0.667) and significantly (p <0.05). Compared with the
control group, 3 metabolites were identified with 2 metabolites
decreased (glucose and aspartate) and one metabolite increased
(2-hydroxy-2-methyl-butyric acid) in the ND group (Figure 1C).
While compared with the CR group, 3 metabolites were
identified with 2 metabolites decreased (glucose and aspartate)
and 1 metabolite increased (malonic acid) in the ND group
(Figure 1C). These metabolites screened above suggested that
glucose and aspartate may be the candidate metabolic
biomarkers for the diagnosis in DLBCL patients (Figure 1D).
A B

DC

FIGURE 1 | Metabolic patterns and perturbed metabolites of DLBCL patients based on plasma metabolome. (A) The PLS-DA score plot, the parameters of the
model were: R2X = 0.306, R2Y = 0.351, and Q2 = 0.176. (B) The OPLS-DA score plot of the Ctrl group vs. the ND group, the parameters of the model were:
R2X = 0.222, R2Y = 0.855, and Q2 = 0.532. The OPLS-DA score plot of the CR group vs. the ND group, the parameters of the model were: R2X = 0.381, R2Y =
0.872, and Q2 = 0.587. (C) Volcano maps of the metabolites identified from the Ctrl group and the ND group (left) and the CR group and the ND group (right). Red
dots represent metabolites with higher abundance while green dots represent metabolites with lower abundance in the ND group. (D) The plasma abundance of
glucose and aspartate. ND: patients newly diagnosed; CR: patients achieving complete remission. *: p < 0.05; **: p < 0.01.
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The Diagnostic Model for DLBCL
To verify the sensitivity and specificity of the above potential
biochemical indicators and metabolic biomarkers for diagnosis,
receiver operating characteristic (ROC) curve was performed. As
presented in Figure 2A, the area under the ROC (ROC-AUC)
calculated with lymphocyte, RBC, hemoglobin, glucose, and
aspartate achieved a ROC-AUC of 0.874, 0.858, 0.879, 0.742,
and 0.702, respectively. To improve the performance of the
diagnostic model, combined diagnosis with multiple indexes is
usually used. With the metabolic biomarkers (glucose and
aspartate) and the hematological indicators (lymphocyte, RBC,
and hemoglobin), a logistic regression to establish a diagnostic
model was applied to predict diagnosis of DLBCL. The
corresponding ROC curve had an AUC of 0.936 (Figure 2B)
which was higher than that of each candidate biomarker. This
indicated that the combined diagnostic model could significantly
improve the diagnostic performance with respect to DLBCL.

Metabolic Biomarkers for Prognosis-
Prediction of DLBCL Patients
According to prognostic outcome after follow-up (update to
September 2021, four patients were lost to follow-up), the
remaining patients in the ND group were divided into the
progression-free group (n=14) and the progression group
(n=7). A multivariate statistical analysis showed that the
progression group was well separated from the control group,
while the progression-free group moved much closer to the
control group (Figure 3A). However, the PLS-DA plots of
subgroups divided based on Ann Arbor stage and Han’s
algorithm displayed little difference of metabolic profiles
(Supplementary Figures S4A, C). Furthermore, the OS
Frontiers in Oncology | www.frontiersin.org 5
(overall survival) had no significant difference between stage I-
II vs. stage III-IV (p=0.998, 95% C.I): 35.5 months (30.0- 41.1
months) vs. 33.4 months (25.4-41.5 month), as well as GCB vs.
non-GCB (p=0.128, 95% C.I): 38.0 months (32.4-43.6 months)
vs. 30.5 months (23.1-37.9 months) (Supplementary Figures
S4B, D). This suggested that Ann Arbor stage and Han’s
algorithm displayed little prediction power for prognosis. The
OPLS-DA model showed a clear and distinctive clustering
between the samples of the progression-free group and the
progression group (Figure 3B), indicating that some
metabolites contributed to discriminate progression-free
patients from progression patients before treatment. This
suggested that the plasma metabolic profile of patients before
treatment could well predict the prognosis of DLBCL.

To identify the biomarkers associated with prognosis,
statistically different metabolites (p < 0.05) with a large change
(fold change> 1.5 or <0.67) between the progression group and
the progression-free group were screened out, including 10
metabolites (malate, fumarate, citrate, 2-hydroxy-2-
methylbutyric acid, 2-hydroxybutytic acid, cysteine,
methionine, leucine, isoleucine, and valine) (Figure 4C). The
metabolites set enrichment analysis revealed that citric acid cycle,
valine, leucine and isoleucine degradation, and methionine
metabolism were markedly perturbed (Figure 4D).

Some clinic indexes or derived parameters before treatment
including neutrophil/lymphocyte ratio (NLR), derived
neutrophil/lymphocyte ratio (dNLR), platelet/lymphocyte ratio
(PLR), lymphocyte/monocyte ratio (LMR), and monocyte were
reported to have the important significance for prognosis-
prediction of the patients with DLBCL (23–25). Correlation
analysis was performed between the above 8 metabolites and
A

B

FIGURE 2 | The diagnostic model for DLBCL. (A) Receiver operating characteristic (ROC) curve of lymphocyte, RBC, hemoglobin, glucose, and aspartate with
AUC= 0.874, 0.858, 0.879, 0.742, and 0.702, respectively. (B) ROC curves of the combined equation with AUC = 0.936.
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reported indexes (Figure 4A), and no significant correlation was
found. Apart from staging and response assessment, the baseline
18F-fluoro-2-deoxy-D-glucose positron emission tomography
(FDG-PET/CT) parameters (SUVmax, TMTV, and TLG) have
important prognostic significance for DLBCL patients receiving
R-CHOP chemotherapy (26). We were delighted to find that the
level of malate and 2-hydroxy-2-methylbutyric acid was
positively related with TMTV (r=0.58, p=0.015 for malate and
r=0.56, p=0.018 for 2-hydroxy-2-methylbutyric acid) and TLG
(r=0.69, p=0.002 for malate and r=0.63, p=0.008 for 2-hydroxy-
2-methylbutyric acid), respectively (Figure 4B). Furthermore,
ND patients with higher levels of malate (p=0.0217, 25.57
months (15.83-35.31 months) for the high subgroup vs. 39.07
months (35.43-42.71 months) for the low subgroup) not 2-
hydroxy-2-methylbutyric acid (p=0.43, 37.57 months (33.16-
41.98 months) for the high subgroup vs. 32.85 months (26.07-
39.64 months) for the low subgroup) were associated with a
poorer survival (Figures 4C, D), which further indicated the
malate was a preferential metabolic biomarker for prognosis-
prediction of DLBCL patients.
DISCUSSION

DLBCL is the most common B-cell non-Hodgkin’s lymphoma,
while up to 40% of patients become refractory and display a poor
Frontiers in Oncology | www.frontiersin.org 6
survival outcome (27). Efforts to discover biomarkers that
uncover coordinate signaling could help to provide a novel
perspective of DLBCL. In the present study, we systematically
explored the metabolic characteristics of peripheral plasma
collected from DLBCL patients and healthy controls, and
identified metabolic pathways and biomarkers associated with
diagnosis and prognosis-prediction of DLBCL.
The Differential Metabolic Patterns of
DLBCL Patients Displayed Disease Status
and Predicted Prognosis
A supervised PLS-DA model revealed that the ND group was
well separated from the control group, while the CR group
moved much closer to the control group (Figure 1A), which
was further confirmed by quantitative RDV. It was suggested that
the plasma metabolic profile of newly diagnosed DLBCL patients
deviated significantly from the healthy controls, and the
metabolic fluctuation was restored after achieving complete
remiss ion . The OPLS-DA model es tab l i shed wi th
metabolomics data (Figures 1B, C) showed better fitness and
higher predictability than models with clinical characteristics
(Supplementary Figures S1B, C), indicating the metabolic
profile could well characterize disease states of DLBCL and
illustrate stronger recognition among healthy controls, DLBCL
patients, and patients after achieving complete remission.
A

B D

C

FIGURE 3 | Metabolic patterns and perturbed metabolites associated with the different outcomes of newly diagnosed DLBCL patients. (A) The PLS-DA score plot
of the Ctrl, progression and progression-free groups, the parameters of the model were: R2X= 0.347, R2Y= 0.468, and Q2 = 0.254. (B) The OPLS-DA score plot of
the progression and progression-free groups, the parameters of the model were: R2X= 0.594, R2Y= 0.992, and Q2 = 0.558. (C) Volcano maps of the metabolites
identified from the progression-free group and progression group. Red dots represent metabolites with higher abundance while green dots represent metabolites
with lower abundance in the progression group. (D) Metabolite pathway enrichment overview of plasma metabolites that displayed statistical significance and
changed to a substantial extent.
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Patients in the ND group were further divided into two groups
based on risk stages, subtypes based on Han’s algorithm and
prognosis, respectively. The PLS-DA model clearly displayed the
poorer prognosis group tended to shift further away from the Ctrl
group (Figure 3A). However, high-stage subgroups and low-stage
subgroups were not well separated, as well as the GCB subgroup
and the non-GCB subgroup (Supplementary Figures S4A, C)
which was consistent with the result reported by Mi et al. (17).
This further indicated that information on individual prognosis
was contained in the metabolic patterns of pre-treatment bio-
fluids. In summary, metabolomics study was informative for us to
characterize the metabolic phenotypes, forecast risk and
prognosis, and understand the metabolic mechanisms of DLBCL.

Abnormal Glucose and Aspartate in the
Pathogenesis and Diagnosis of DLBCL
The level of glucose and aspartate in plasma was decreased in ND
patients and elevated in CR patients, indicating that glucose and
aspartate may be involved in the pathogenesis of DLBCL
(Figures 1C, D). Most tumor cells depend largely on aerobic
glycolysis which converts glucose into essential metabolic
intermediates for energy production and cell proliferation (28).
Pathological lymph nodes of DLBCL also exhibit increasing
Frontiers in Oncology | www.frontiersin.org 7
glucose uptake measured by FDG-PET/CT (12), resulting in a
decrease in peripheral glucose. Thus, anti-glycolytic cancer
therapy has become a rising research focus for developing
anticancer drugs (29), metformin could sensitize therapeutic
agents and improve prognosis in pre-clinical and clinical
DLBCL (30). More and more evidence demonstrates that
aspartate is an endogenous metabolic limitation for tumor
growth (31), and up-regulated aspartate metabolism
contributed to epithelial-mesenchymal transition in tumor
(32). Moreover, the lower level of aspartate in newly diagnosed
DLBCL patients may be related to the disorders of asparagine
metabolism. Asparaginase catalyzes the hydrolysis of the
asparagine into aspartic acid and ammonia and has been used
in the treatment of leukemia. Attempts have been made on the
effect of asparaginase on DLBCL, and inspiring results were
obtained in both the preclinical experiment (33) and clinical
trials with a low number of patients (10). More evidence with
multi-center clinical trials and an enlarged number of patients
are needed to validate the effect of asparaginase on DLBCL.

A clinical diagnosis of DLBCL requires the patient to undergo a
pathological biopsy, which is an invasive complex operation (6).
Our results suggested that glucose and aspartate were deeply
involved in the occurrence and pathogenesis of DLBCL.
A B

DC

FIGURE 4 | Metabolic biomarkers for outcome-prediction of DLBCL patients. (A, B) Pearson’s correlation coefficient between candidate metabolites and potential
outcome-predictive indexes including biochemical parameters (A) and tumor metrics derived from FDG-PET/CT (B) in the clinic. (C, D) The survival of DLBCL
patients according to malate (C) and 2-hydroxy-2-methylbutyric acid (D) levels at diagnosis, respectively. Blue color represents a positive correlation while red color
represents a negative correlation. NLR, neutrophil/lymphocyte ratio; dNLR, derived neutrophil/lymphocyte ratio; PLR, platelet/lymphocyte ratio; LMR, lymphocyte/
monocyte ratio; SUVmax, tumor maximum standardized uptake value; TMTV, metabolically active tumor volume; TLG, total lesion glycolysis.
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According to the diagnostic model established based on
the identified hematological indicators (Table 1) and plasma
metabolic indicators (Figure 1), favorable performance
(AUC =0.936) was achieved with the combination of five
candidate indicators, which was higher than with each single
indicator (Figure 2B).

Disrupted Metabolic Pathways Related to
Prognosis and Underlying Mechanism
According to the prognostic outcome, we found that patients
with poor prognosis showed vigorous oxidative phosphorylation
(OxPhos) metabolism indicated by enrichment of typical
metabolites in a citric acid cycle (TCA), such as citrate,
fumarate, and malate (Figures 3 and 5). It has been reported
that the subtype of DLBCL cell lines which rely on mitochondrial
energy transduction called OxPhos-DLBCLs provide pro-
survival benefits (34) and the intermediates in the TCA cycle
have a multifaceted contribution to tumor progression (35).
Citrate is a critical metabolic checkpoint involved in several
important metabolic pathways, a certain level of citrate is
necessary for cancer cell proliferation and tumor growth by the
production of acetyl-CoA which is important for lipogenesis,
membrane expansion, and acetylation (36). Fumarate is another
physiological metabolic intermediate of the TCA cycle, the
accumulation of fumarate which could permeate multiple
subcellular compartments (37) as well as an extracellular
microenvironment (38). The abnormally increased fumarate is
a key activator of a variety of oncogenic cascades (39). Growing
evidence supports the idea that malate accumulation may be
essential for cancer growth by contributing to both redox balance
(40, 41) and an elevated glycolytic flux (42, 43). Hence, it has
seemed that the flux of oxidative phosphorylation was closely
related to tumor growth and progression, which can indicate the
prognosis of the tumor.
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In addition, an obvious decline of methionine and cysteine
and consistent decrease of branched-chain amino acids (BCAAs)
were observed in the plasma of DLBCL patients with poor
prognosis. Valine, leucine, and isoleucine are essential BCAAs
whose metabolism can both influence multiple cancer
phenotypes and serve as a marker of disease pathology (44).
Valine was reported as a candidate biomarker for the prognosis
of DLBCL by Stenson et al. (18) and Mi et al. (17). It is likely that
the degradation of BCAAs to acetyl-CoA is enhanced, which
further supports the generation of TCA cycle intermediates
(Figure 5) to fuel cancer growth. Methionine metabolism
coordinates nucleotide and redox status which are relevant to
cancer pathogenesis (45). The decreased methionine and
cysteine may maintain cellular redox status by producing the
antioxidant glutathione (GSH) against reactive oxygen species
(ROS) which was generated in remarkable OxPhos metabolism
(Figure 5). Elevated 2-hydroxybutyric acid, a byproduct of
glutathione anabolism, indirectly indicated the robust
requirement to maintain the redox state (Figure 5). Moreover,
2-hydroxybutyric acid has previously been identified as a
biomarker of diabetes risk (46, 47) and mitochondrial
disorders (48). This suggested that DLBCL patients with higher
risk of diabetes were more likely to have a poor prognosis. 2-
hydroxy-2-methlbutyric acid belongs to hydroxy fatty acid and
little is known about its biological functions. Further study is
needed to exploit its role in DLBCL. Overall, elucidation of the
metabolic mechanisms underlying the DLBCL progression is still
needed in our further study.

Malate as the Potential Plasma Metabolic
Biomarker for Prognosis-Prediction
of DLBCL
Due to the heterogeneity and different prognosis of DLBCL
patients, it is urgent to exploit new biomarkers for prognosis-
FIGURE 5 | Typical metabolites and associated pathways perturbed in DLBCL patients.
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prediction. Candidate metabolites including malate, fumarate,
citrate, 2-hydroxy-2-methylbutyric acid, cysteine, methionine,
leucine, isoleucine, and valine were first screened out, correlation
analysis was then performed to evaluate the talent of these
markers. No significant correlation was found between the
above metabolites and reported biochemical parameters which
have predictive power to predict prognosis (Figure 4A). It is
probably because these reported parameters (derived from
lymphocytes, neutrophils, and monocyte) just reflect the
abnormal immune responses which is an essential pathogenic
factor for DLBCL (49), while metabolic markers, signs of
metabolic status, may be independent risk factors and could
not be simply associated with hematological parameters.

Functional imaging with FDG integrated with PET-CT
provides valuable measurements of tumor metabolism and
activity of DLBCL. The derived tumor metrics (SUVmax,
TMTV, and TLG) not only has been affirmed in metabolic
characteristics, staging, and end-of-treatment evaluation, but
they have the potential to improve the accuracy of
prognostication (50). Interestingly, the level of malate and 2-
hydroxy-2-methylbutyric acid was positively related with TMTV
and TLG (Figure 4B). Furthermore, ND patients with higher
levels of malate but not 2-hydroxy-2-methylbutyric acid had a
poorer survival (Figures 4C, D). Thus, malate was a preferential
plasma metabolic biomarker for prognosis-prediction of DLBCL
patients. Attempts should be made to get more samples to
further validate our result on a larger scale, and the role
of malate metabolism in DLBCL will be verified in
subsequent studies.

There were still some limitations in this study. Although the
interference of metabolic diseases such as diabetes was excluded
as much as possible, the influence of other concomitant diseases
was still unknown. Furthermore, a validation dataset with more
samples is needed, which is underway by us to verify
these results.
CONCLUSION

In this study, distinct metabolic features of DLBCL patients in
different disease status (before treatment and achieving complete
remission) was displayed, and metabolic profiles of newly
diagnosed DLBCL patients undergoing different prognosis
showed clear and distinctive clustering indicating prognosis-
prediction capacity. Based on screened metabolites and clinical
indicators, a distinct diagnostic equation was established and
improved the diagnostic performance. We found specific
disturbance of TCA metabolism, BCAA metabolism, and
methionine metabolism in newly diagnosed DLBCL patients
Frontiers in Oncology | www.frontiersin.org 9
was strongly associated with poor prognosis. In addition,
malate was further identified as a potentially unfavorable
metabolic biomarker for prognosis-prediction of DLBCL.
However, the hidden mechanism of abnormal key metabolic
pathways especially malate on pathogenesis of DLBCL should be
explored in future work.
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