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Abstract

Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high
biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often
seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often
overlooked that more than half of all Recent spider species have abandoned web building or never developed such an
adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating
the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely
associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal
importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary
function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those
purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the
scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary
development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged
setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. Hypotheses about
the origin of the adhesive setae and their diversification throughout evolution are provided.
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Introduction

Spiders are, besides insects and mites, the most successful

terrestrial arthropods and are of superior ecological importance as

predators [1,2]. Their ecological success is reflected in a high

biodiversity [3,4], the conquest of nearly every terrestrial habitat

[5] as well as high densities and biomass production in those

habitats [1]. As active predators spiders have the ability to capture

and manipulate agile prey, which often are capable of causing

severe injuries. Studies on spiders often emphasize web building

behaviour, as silk use has reached superior specialization and

predatory success in these animals (i. e. [6]). However, silken

materials are well-adapted for static adhesion. Once applicated

they are restricted to a specific foraging site. Damages in the web

(occurring through prey capture or disturbances) have to be

repaired with new synthesised silk. Depending on the adhesive

properties of the silk a high amount of silken material has to be

applied to get an effective trap [7]. This is especially the case in

sheet or funnel webs, which are the basic trapping webs. A change

of the foraging site is therefore associated with high costs in those

spiders [8]. The evolution of viscid silk and orb webs radically

reduced the web associated costs and therefore led to an enormous

radiation and success of those lineages [9,10]. However, another

strategy was at least equally successful: Many spider lineages never

developed a silk-dependent prey capture mode or have in-

dependently abandoned web building and explored alternative

hunting strategies [9], resulting in more than one half of all Recent

spider species hunting without webs [10].

Free hunting lifestyles implicate alternative mechanisms for

capturing, securing and handling of prey. Hairy adhesive pads

(scopulae, Fig. 1) located on spider extremities have been

previously hypothesized to aid in controlling the struggling prey

[11,12]. High speed video recordings [11,13,14] and experimental

manipulation [11,15] have shown the use of adhesive scopulae in

prey capture. The lamelliform setae that scopulae are composed

of, were shown to produce high adhesion [16] and friction on

smooth [17,18] and rough surfaces [19]. Furthermore, the distal

most pretarsal scopulae (claw tufts, Fig. 1) were repeatedly

reported to be responsible for impressive climbing abilities

[16,17,18,19,20,21,22,23,24], presumably supporting the wander-

ing lifestyle. Thus, we may hypothesize that the evolution of

adhesive setae is a valid alternative to the development of snares

and is strongly associated with the loss of web based foraging.

Although it was previously mentioned that scopulae and claw

tufts primarily are found in free hunting spiders [11], this was

neither systematically studied nor set in a phylogenetic context.

Furthermore, adhesive setae were found to exhibit a variety of

shapes [25], sometimes used in spider classification (i.e. [26]),

although it was hypothesized, that different shapes of setae and

their organization types evolved convergently due to similar

functional demands [11,23,27]. However, this was never further
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studied. Thus, it remains unknown, (1) whether the adhesive setae

occurring in spiders are homologous, (2) where they originate from

and (3) which pad organisation and setal types are the more basic

and which are more derived. This is especially important as spider

adhesive pads are central in ecological [28,29,30], behavioural

[11,12,13,14,15,31], taxonomic [2,23,26,27,32], biomechanical

[16,17,18,19,20,24,33], and biomimetical research

[34,35,36,37,38]. We studied the distribution and morphology of

adhesive setae phylogenetically to resolve homology, origin and

derivation.

For our understanding of the relationship between morphology

and function as well as the use of morphological characters in

taxonomy, it is important to clearly separate the influence of

functional demands and evolutionary constrains. It was previously

demonstrated, for the density of the spatulate contact elements of

hairy attachment devices in geckoes, insects and arachnids, that

this is of high importance for conclusions on functional effects [39].

Therefore we independently compared setal sizes between

families, groups of similar body size and groups of similar

microhabitat preferences. We hypothesize that differences in setal

sizes are a result of phylogeny, not scaling effects or ecological

adaptation as previously stated [25,40].

Due to the recent progress in resolving the phylogeny of

spiders and the developments in bioinformatics and statistics,

evolutionary paths of single characters can be reconstructed,

getting closer to resolving the evolution of adhesive pads in

spiders. Here we tested the previous hypothesis that adhesive

setal pads are restricted to free hunting spiders [5,15].

Evolutionary trends in pad organisation and setal shapes, as

well as the origin of adhesive setae are discussed. Furthermore,

we present the first comprehensive study of the distribution of

adhesive setae among the Araneae, indicating their evolutionary

success and high ecological importance.

Methods

Morphological Studies
Spider legs (anterior and posterior) were studied by means of

stereo microscopy, scanning electron microscopy (SEM) on air

dried, critical point dried and cryo dried samples, and transmission

electron microscopy (TEM). Additionally, morphological data was

accessed from the Spider AToL project, provided on morphbank ::

biological imaging (Florida State University, Department of

Scientific Computing, Tallahassee, USA; http://www.

morphbank.net) under cc 3.0 (by-nc-sa) license. Further, primary

literature data were included. A list of all analyzed spider species

and corresponding references can be found in the supplementary

material (Figure S1).

The presence and the types of adhesive setae and their

organisational variety (scopula, claw tuft) were documented.

Adhesive setae (AS) are defined as setae featuring spatulate

microtrichia (see [25] for details). Scopula (sc) is defined as a group

of adhesive setae at the leg, regardless of setal density. Claw tuft (ct)

is defined as a dense array of adhesive setae located at the distal

tarsal tip, being clearly delimited from the scopula and situated on

a rather flat, articulated plate (‘tenent plate’ [25,31,32]) or, at least,

emerging from the pretarsal membranous area (onychium).

Clearly delimited scopulate parts, located at the distal ventral

tarsus but not emerging from the pretarsal parts, are termed ‘false’

claw tufts (f-ct). Setal types are classified according to the shape of

the distal lamella (Fig. 2; see [25] for details). For part of the

material studied a closer inspection of the fine structure was done,

including information on (1) the spatula shape, (2) the structure of

setal backing, and (3) the cross section of the setal lamella. Based

on the SEM images, morphometric measurements (seta width,

spatula width) were performed on the adhesive setae of claw tufts

and ‘false’ claw tufts.

Figure 1. Schematic illustration of a distal spider tarsus bearing scopula and claw tuft. The adhesive setae are coloured in dark grey. In
a living specimen they usually appear dark, with the lamellate part being translucent and with an iridescent lustre on the adhesive side.
doi:10.1371/journal.pone.0062682.g001
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Meta Analysis
Species numbers and taxonomic information were taken from

Platnick [3]. Phylogeny is based on Coddington [2,9], including

key findings of further new studies (for details, see [30]).

For each analyzed species foraging guild was defined as follows:

(wb) Spiders that build webs, with the function to capture and

immobilize the prey due to adhesion (viscid or cribellar silk in orb

webs and cob webs) or entangling (sheet webs and funnel webs).

That means the web causes a reduction of mobility of the prey,

which facilitates getting overwhelmed by the spider. Some spiders

were included here, which capture the prey with silks by bonding it

while running around (Oecobiidae, Hersiliidae) or spitting glue

onto the prey (Scytodidae). (fh) Spiders that do not build prey

capture webs, but primarily grasp and capture the prey directly

with the legs. This includes spiders that only use silk threads or

webs for prey sensing (i. e. trapdoor spiders), shelter or

reproduction and those that do not build any web. Data on

foraging behaviour was obtained from Joqué and Dippenaar-

Schoeman [4], Cardoso et al. [41] and the primary literature

(Figure S1).

For each spider family included, the proportion of each pad

type (scopulae, claw tufts, both, none) and the foraging guild (wb,

fh) among the investigated species was calculated and both

separately multiplied with the total species number. Meta data and

the corresponding references are included in the species list

provided in the supplementary material (Figure S1).

To find indications for parallel evolutionary processes Ancestral

State Reconstruction was performed with Mesquite [42] using the

parsimony principle. For this purpose traced characters were

binary coded: (1) spatulae ( = adhesive setae in general); (2)

scopulae; (3) ‘false’ claw tufts; (4) claw tufts; (5) web abandoning; (6)

the occurrence of setal type dominant in the distal tarsus (each

setal type analyzed separately).

Morphometric data on (‘false’) claw tuft setae were set in context

with the body size, microhabitat preferences and phylogeny (see

below) to separate influences of scaling effects, ecological

adaptation and phylogenetic restrictions. Body size was either

measured in the samples (body length from the chelicerae to the

spinnerets) or such information was taken from literature.

Ecological data were obtained from Joqué and Dippenaar-

Schoeman [4], Cardoso et al. [41], Nentwig et al. [43] and the

primary literature. For statistical analysis R software package [44]

was used.

Results

Phylogenetic Analysis
Adhesive setae (spatulae) evolved at least eight times in spiders,

resulting in the clustered occurrence of the trait. (1) Adhesive setae

are present in the derived Mygalomorphae, including Nemesiidae,

Cyrtaucheniidae, Paratropidae, Barychelidae, Theraphosidae, and

Idiopidae. (2) Among the haplogyne spiders in the superfamily

Dysderoidea. (3) Within the superfamily Palpimanoidea the

Palpimanidae, Stenochilidae, Huttoniidae, and Archaeidae. (4)

Among all dionychian families and the Miturgidae, Ctenidae,

Zoropsidae, Psechridae, and Lycosidae within the grade-shaped

tapetum clade. (5) Some species of Desidae. (6) Single species of

Dictynidae. (8) Species of Tengellidae and Homalonychidae, at the

base of the RTA-clade.

Multiple evolution is supported by the analysis of character

traces of spatulae (Fig. 3A), pad types (Fig. 3B), and setal types

(Figure S2.A). It is reflected by observed differences in the fine

structure of adhesive setae (i. e. shape of the distal lamella,

structure of setal backing and shape of the spatula; Figure S3).

Analysis of combined character traces of pad types suggests that

scopulae evolved first, followed by claw tuft development.

Scopulae are homologous in the derived taxa of the RTA-clade,

but claw tufts are not. Similarities in the fine structure of the

adhesive setae (esp. setal shape) and the occurrence of intermediate

forms (distally extended scopula) indicate that claw tufts previously

evolved from scopulae in the mygalomorph lineage, Tengellidae,

Desidae, Zoropsidae, Ctenidae, and higher Dionycha, excluding

Liocranidae, Clubionidae, and Anyphaenidae. In the latter ones

and Zoridae there is a shape of the claw tuft setae divergent from

the scopula setae (setae with lateral asymmetry tapered in one

direction; Fig. 4A b–c) and a considerably smaller spatula size than

in previously mentioned lineages (Fig. 5).

We found cases where scopulae or claw tufts are reduced or lost.

Adhesive setae were totally lost in Oxyopidae, Senoculidae, and

Figure 2. Characters of setal types occurring in the distal tarsus/claw tuft. For detailed description see [25]. AS, adhesive seta (with
spatulae); FS, frictional seta (without spatulae); SB, serrated bristle (see [55]).
doi:10.1371/journal.pone.0062682.g002
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Trechaleidae, within Pisauridae (Thalassius), Liocranidae (Jacaena),

Salticidae (Proszynskiana), Gallieniellidae (Galianoella, Legendrena,

Meedo), and Thomisidae (Thomisus, Misumena, Ebrechtella). Scopulae

were lost among most salticids (excluding the Spartaeinae and

Phidippus) and within Ctenidae (Amauropelma), Clubionidae (Carter-

onius), Corinnidae (Phrurolithus, Phrurotimpus, Hortipes), and Any-

phaenidae (Amaurobioides, Melenella). Claw tufts are reduced in some

salticids (Freya, Asianellus, Nannenus) and totally lost in Ancylometes

(Ctenidae). For Thomisidae, Anyphaenidae, and the super family

Gnaphosoidea, an ancestral loss of claw tufts is assumed, followed

by partial regain of this trait.

Flattened tapered setae with an anisotropic coverage of

microtrichia, lacking spatulae (FS-II) are widespread in the ventral

tarsus of araneomorph spiders. The evolution of this character was

reconstructed to be an early event, just before the split into

haplogynes and entelegynes (Figure S2.A), thus all setae of this

type being homologous among the Araneomorphae. We found

setae with a similar structure, but bearing spatulae and thus being

adhesive, in Dysdera (Dysderidae) and some thomisids, and in the

proximal part of claw tufts in zorids and anyphaenids. Thus, we

interpret those as directly originating from the FS-II setae.

There is a significant difference of the setal width (Kruskal-

Wallis rank sum test: p = 0.000) and spatula width (p = 0.030)

between members of different families, which is not reflected by

either body size or preferred microhabitat (Fig. 5).

Distribution of Adhesive Setae
Slightly more than one half of all spider species are estimated to

bear adhesive setae, with 21.2% having scopulae (or/and ‘false’

claw tufts), 14.7% only claw tufts and 16.7% both scopulae and

claw tufts (Fig. 6).

Among the Mygalomorphae, adhesive setae are estimated to

occur in 72.1% of species, in the Haplogynae 33.4% (84.8% of the

Dysderoidea), in the Palpimanoidea 47.4%, the Dionycha 96.6%,

the Lycosoidea 78.1% and the Agelenoidea 6.6%.

According to the lifestyle 82.8% of free hunting spiders feature

adhesive setae, in contrast to only 1.1% of web building spiders.

Scopulae and claw tufts each occur in more than half of the free

hunting spiders. Among the web building spiders bearing adhesive

setae, 75% bear scopulae and 25% claw tufts.

Discussion

Exploring Alternative Adhesives
An important demand on a predatory lifestyle is the capability

of capturing and securely handling the struggling prey. For this

purpose, spiders use silks of high adhesive strength [45,46] for

capturing and immobilising prey. However, this always comes

with material and energetic costs [7,8]. Thus, there must have

been a great selective advantage towards the evolution of reusable

adhesives.

This hypothesis is well supported by the widespread occurrence

of adhesive setae among the phylogenetic tree of spiders and by

their convergent evolution within different spider lineages.

Evidence for convergent evolution of similar structured adhesive

pads was recently presented for insects [47] and gekkotan lizards

[48]. Especially the latter are generally analogous in function and

structure to spider adhesive pads. However, in geckos these

exclusively serve attachment to the substrate and locomotion. Our

results on spiders indicate that, with some exceptions, adhesive

setae have rarely evolved first in the distal most tarsal parts that

make contact with the substrate while walking. The more ancient

organization types, such as leg scopulae, are likely to play a major

role in prey capture, supporting our hypothesis that the adhesive

setae evolved as a substitute for silk capture threads.

There are several arguments that speak for the assumption that

scopulae in spiders are generally an adaptation for prey capture.

(1) Scopulae are often restricted to or more developed in the

anterior legs [11,25,28]. (2) Scopulate setae are mainly distributed

in the pro- and retro-lateral parts of the tarsus, metatarsus and

tibia, whereas at the ventral side they are lacking [11,23,25,28]. (3)

Most spiders walk on their pretarsal tips. Thus, scopulate tarsal

and metatarsal parts are rarely in contact with the ground

substrate (J. Wolff, pers. obs.). (4) The adhesive sides of the scopula

setae are often facing away from the ground in resting animals and

become erect by increased hemolymph pressure [11,12] (J. Wolff,

pers. obs.). Presumably, it leads to the activation of the adhesive

function of the setae, however, this statement needs further

experimental proof.

In salticids, leg scopulae are only reported from the araneo-

phagous genera Portia, Brettus, and Cyrba [12]. In Palpimanidae

they are obviously used to overwhelm the dangerous arachnid

prey [14]. Thus, the presence of leg scopulae may facilitate

handling oversized and dangerous prey and therefore access new

food sources. Other adaptations include the erectable spines

(widespread), elongated chelicerae (especially in Archaeidae), and

legs (i. e. Sparassidae [11]). These features prevent the bitten prey

from getting too close to injure the spider, but being kept from

escaping as long as it is still active.

However, scopulae may play a further role in attachment on

highly structured or uneven substrates (such as coniferous foliage

or twigs; J. Wolff, pers. obs.), or in attachment to a mate during

copulation, especially in the species with strong sexual dimorphism

of scopula distribution, such as some ctenizids [49], philodromids,

lycosids (J. Wunderlich, pers. comm.), and even burrowing in sand

dwelling species [50].

From Scopulae to Claw Tufts – Extending the Functional
Role of Adhesive Pads

Most previous studies emphasized the locomotory function of

the adhesive setae, indicated by the impressive climbing ability of

these spiders [16,17,19,20,21,22,23,24,33], although this pre-

dominantly includes the distal most claw tufts. Rovner proposed

that prey capture was the original evolutionary driving force in the

evolution of attachment organs in spiders, and that their use in

locomotion was a secondary benefit that led to the occupation of

new habitats [11]. This idea was also supported by Miller et al.

[28].

Untypically for representatives of lycosids, Trabea paradoxa is

found exclusively on grasses (Grabolle, pers. comm.). In its

scopula, a shift of adhesive setae towards the distal part of the

tarsus is observed, resulting in the formation of a pad-like structure

with a high setal density (Fig. 7D) and in the ability to climb steep

glass surfaces (J. Wolff, pers. obs.). Similar observation has been

reported for Rabidosa hentzi, whose foot pad structures were

described as ‘claw tufts’ [28]. However, close inspection of T.

Figure 3. Evolution of hairy adhesive pads and web loss in spiders. A. Phylogenetic relationships among the Araneae, adapted from the
most recent literature survey (see [30] for details), and the distribution of adhesive (spatulae-bearing) setal pads and web abandoning. Character
traces follow the Ancestral State Reconstruction performed with the Mesquite software. B. Combined character traces of pad type distribution in the
RTA-clade. The model clearly suggests an early origin of scopulae and the derived state of claw tufts.
doi:10.1371/journal.pone.0062682.g003
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Figure 4. Electron microscopy of isolated setae, different scales. A. SEM micrographs of distal tips of claw tuft setae, rear view. Arrowheads
indicate the remaining tapered tip of the expanded setae. a. Adhesive seta type IIb in Micaria formicaria (Gnaphosidae). b. Adhesive seta type III in
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paradoxa showed the pads emerging from the distal tarsal margin,

not the pretarsal region, and the lack of basal plane plates (tenent

plates) that define the derived claw tufts [31,32]. This is assumed

to also be the case in R. hentzi. The same is true for Gnaphosidae

which lack claw tufts, but contain such genera as Drassodes and

Micaria being able to climb on glass due to the presence of a distal

extension of the scopula (‘false’ claw tuft; Fig. 7E). This indicates

that claw tufts previously evolved from the scopulae among

representatives of those lineages. This hypothesis is further

supported by a similar structure of scopula and claw tuft setae

(both of Type IIb with the rounded tip).

However, at least in zorids, anyphaenids, and clubionids, claw

tuft setae could have evolved independently from scopulae,

indicated by the differences in their shapes (AS-Ib AS-IIa and

AS-III with lateral asymmetry, thus, being still tapered in one

direction). Those setae may have directly evolved from the FS-II

Clubiona pallidula (Clubionidae). c. Large adhesive seta type IIa in Anyphaena accentuata (Anyphaenidae). B. SEM micrographs of setae, lateral view.
Arrowheads indicate the twisted lamella shaft occurring in claw tuft setae. d. Frictional seta type II in Xysticus lanio (Thomisidae) ventral tarsus. e.
Scopula seta of type IIb in Clubiona lutescens (Clubionidae) prolateral tarsus. f. Scopula seta of type IIb in Palpimanus gibbulus (Palpimanidae)
prolateral metatarsus. g. Brush like claw tuft seta of type Ia in Homalonychus selenopoides (Homalonychidae), a presumably primitive character. h.
Claw tuft seta of type IIb in Euophrys frontalis (Salticidae). i. Claw tuft seta of type III in Clubiona pallidula. k. Claw tuft seta of type IIa in Anyphaena
accentuata. C. TEM micrographs of sections of the distal part of tarsal setae. l. Frictional seta type II in Nops largus (Caponiidae). m. Adhesive seta type
Ia in Xysticus cristatus (Thomisidae). n. Adhesive seta type IIb in Evarcha arcuata (Salticidae). o. Adhesive seta type IIa in Anyphaena accentuata.
doi:10.1371/journal.pone.0062682.g004

Figure 5. Body size and preferred microhabitat. Box plots showing the 25th and 75th percentiles and the median line; error bars define the 1.5
times interquartile range; rest values are marked by single circles. Numbers at the bottom give the species numbers sampled (each including the
mean width of ten randomly chosen setae/spatulae of the distal part of the claw tuft). Seta width differs significantly between species of different
families (Kruskal-Wallis rank sum test: p = 0.000), but not between differently sized (p = 0.155) and ecological groups (p = 0.102) of the overall sample.
The same holds for spatula size (families: p = 0.030; size = 0.377; microhabitat = 0.860).
doi:10.1371/journal.pone.0062682.g005
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setae and expanded through an asymmetric broadening of the

distal part, which can be reconstructed by the intermediate forms

often occurring in the proximal part of those claw tufts [25].

Additionally, the small spatula size recorded supports this

hypothesis, as the evolution from small to large spatulae is

presumed to be an overall trend, with the exception of strictly

ambushing hunters specialized for a particular microhabitat (esp.

Thomisidae, see below). In Palpimanidae, the morphology of claw

tuft setae differs greatly between and even within genera

(Palpimanus). Thus, we assume that evolution of this character is

highly dynamic within this family, presumably due to the high

specialisation of the scopula, generally restricted to the anterior

legs (Fig. 7F). The origin of claw tufts is unclear in this case. The

same holds for the Dysderoidea, as no scopulae have been

recorded in this group.

The evolution of claw tufts is associated with the formation of

a highly sclerotized basal plate (tenent plate [31]) in the pretarsal

region, thus being articulated with the tarsus. The latter occurs in

the derived lineages of the Dionycha (except gnaphosids, most

thomisids and some salticids), Dysderoidea, Theraphosidae, and

Ctenidae. It permits spreading and mobility of the pads [24,31,51]

(Fig. 8). This may facilitate control of both attachment and

detachment. The movement of the pretarsus during locomotion

has been previously observed in salticids [31].

There are some arguments that speak for a primary locomotory

function of the claw tufts differing from the function of the

scopulae. (1) Claw tufts typically contact the substrate in walking

and climbing spiders. (2) In contrast to the scopulae, claw tufts are

always well developed in all the legs of those species which feature

them. (3) Whereas scopulae are more developed in the anterior

legs, claw tufts are often larger in the posterior legs presumably

because these produce the highest forward thrust [25]. (4) Among

free hunting spiders those having claw tufts make up a significantly

higher proportion found in above-ground and highly structured

habitats such as broad leaf litter, than found at ground level and

on even substrates (J. Wolff, unpublished). This argument speaks

for claw tufts being an adaptation to enhance climbing ability.

For free hunting spiders claw tuft evolution might have been

crucial for the colonization of herbs, shrubs and trees. Thus this

can be regarded as a key innovation resulting in great radiations of

the Dionycha in the Eocene and of the Theraphosidae in the

Miocene [52].

Additionally, claw tufts are used for prey capturing, mating, and

grooming [31].

For Desidae, Forster proposed an evolutionary path from an

initial, single large adhesive seta towards a typical claw tuft with

numerous setae of smaller size and the reduction of the third claw

[53]. However, it remains unclear, from where those large setae

are derived. The idea by Ubick and Vetter of the seta being

a derivate of the third claw [27] seems to be erroneous, as this claw

is still present in those groups. We assume that it is an enlarged

scopula seta, because of its typical setal shape (AS-IIb). This is

likely as scopulae are still found in some representatives of the

Desidae [53]. The desid genera carrying the enlarged adhesive

setae have abandoned web building. The same is the case for two

genera of Dictynidae [53]. Both families thus might include species

reflecting several states of similar evolutionary processes and are

therefore worthy of being studied in more detail.

Indeed the trend from some large setae to numerous slender

ones seems to be ubiquitous and we assume the large setae (i.e. in

Philodromidae, Anyphaenidae, Ammoxenidae, some Gnaphosi-

dae and Liocranidae and Oonopidae; Fig. 5) to be an ancient trait.

In the ‘false’ claw tufts of Drassodes and Micaria seta width doubles

from proximal to distal (Fig. 7E). This can be explained by the

restricted space at the distal margin of the tarsus contacting the

ground. Thus the beneficial increase of the contact area cannot be

achieved solely by an increase of setal number. The formation of

the planar tenent plate permitting a very dense array of setal

sockets comes with a higher degree of sclerotization to retain

stability. Because it emerges from a membranous area, normally

lacking any setal structures, this is a more complex transformation

and must be interpreted as a derived character. Morphometric

comparisons showed that the setal size is primarily an effect of

phylogenetic relationships rather than body size or the preferred

microhabitat (Fig. 5). Thus, the previous general hypothesis that

setal enlargement is an adaptation to smooth substrates [25]

should have limitations at a level higher than the family. However,

the results of the present paper do not exclude both scaling and

adaptation effects within families.

The main functional difference between scopula and claw tuft

setae is given by the different target surfaces. If the scopula evolved

for prey retention, the targets are small bodies with regularly

structured surfaces often including setae (arthropod cuticle). In

contrast, claw tufts primarily adhere to plane substrates often

including fractal surfaces (surfaces with many superimposed

wavelengths, i.e. barks, rocks or some complex specialised plant

surfaces). So in claw tuft setae the size of the distal most lamellate

part is crucial for establishing contact, whereas scopula setae are

assumed to adhere with a great portion of the spatulate part.

Furthermore, claw tufts have to resist much more attachment-

detachment cycles and provide a stable contact in complex

movements (i. e. a sideward turning of the body). Those functional

demands resulted in the claw tuft setae being distally broadened

and including a twisted lamellate shaft (Fig. 4B g–k). These trends

can be observed in most lineages featuring claw tufts.

Adhesive Setae in Web Building Spiders
Adhesive setae appear almost exclusively in wandering spiders.

This indicates that these are adaptations to a free hunting lifestyle.

The other major foraging guild, mainly comprising the orb web

weavers (Orbiculariae), attained their ecological success through

the improvement and diversification of silken materials and web

trap structure, achieving higher economical use of silk material

[10,54]. Especially for Orbiculariae the development of scopulae

conflicts with higher adaptations to web hunting. For example,

their serrated bristles (Fig. 7L) are important for thread grasping

[55] and simultaneously prevent sticking to their own web [56].

However, scopulae do not generally disable moving among webs,

as they occur in some web building lineages (Psechridae (Fig. 7M),

some Lycosidae). Furthermore, movement in webs, even on sticky

threads, has been observed to be unproblematic for web invading

salticids with well-developed claw tufts [57]. The claw tuft bearing

clubionids and salticids are also known for their habit of building

silk retreats, in which they can move with ease.

In the case of Psechridae having a claw tuft might indicate that

these spiders evolved from a free hunting ancestor and regained

Figure 6. Distribution of adhesive setae in spiders. Above: proportions of species bearing claw tufts, scopulae (incl. ‘false’ claw tufts), both or
none, combined with lifestyle. Tree and plots below indicate proportions among the different lineages, with sizes of first plots resembling the
number of species (numbers given in italic font). Results show the two major evolutionary pathways of spiders, web builders and free hunters, out of
which the latter ones are often associated with adhesive setae.
doi:10.1371/journal.pone.0062682.g006
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web building behaviour later on. This is also indicated by the

pseudo-orb web shape [58].

Adhesive setae may even have been evolved from an anti-

adhesive device among web building spiders. This is indicated by

the widespread occurrence of the spatula-less flattened branched

setae (formerly termed frictional setae Type-II (FS-II) [25]) among

sheet web weavers (Figure S1), which facilitate movement on the

silk sheets [5]. These share some of the derived characters with

scopula setae (high directionality of microtrichious coverage,

beginning of both broadening and flattening in their distal regions;

Fig. 2; Fig. 4B d, C l). Thus, we assume these to be ancestral states

for further development of adhesive setae.

The Secondary Loss of Adhesive Setae
Despite the great advantages in prey capture and climbing, the

hairy adhesive pads may also be associated with costs: (1)

Attachment and detachment relies on the applied shear forces

elicited by muscular activity [18]. Thus, locomotion using claw

tufts might rely on higher energy consumption thus limiting

maximal running speed. (2) Spatulae are exposed to high

mechanical stress and might be damaged due to abrasion wear

[19], which then leads to a loss of their efficiency. (3) Adhesive

setae might be less effective or even disadvantageous on some

substrates, such as plant surfaces with a crystalline wax coverage of

small scale roughness [19]. (4) Adhesive setae are very complex

structures, which might be associated with higher developmental

costs. (5) Moulting problems might occur more frequently, as the

scopulae or claw tufts could be entangled within the exuvia. (6)

Claw tufts may reduce the efficiency of the claws, because of the

basal plates, limiting the freedom of claw movements within the

articulation, and the setal array might hinder substrate interlock-

ing by claws. This would cause a loss of attachment ability on

highly corrugated surfaces, such as wooden or rocky substrates.

This would explain why some groups (i. e. among salticids) exhibit

reverse evolution back to ‘false’ claw tufts.

Thus, it is likely that there are trade-offs that should lead to a loss

of adhesive setae, when the benefits do not compensate the costs.

According to the major functional role, the distribution of scopulae

may reflect prey preferences, whereas the occurrence of claw tufts

should reflect the habitat preference (climbing demands) and

activity of the spider (runner vs. ambusher). Many ground living

species, especially in the families of Liocranidae, Ctenidae,

Lycosidae, and Gnaphosidae lack claw tufts. On the other hand,

they are frequently abundant in the ground-dwelling species of

Corinnidae, Clubionidae, Salticidae, Philodromidae, Sparassidae,

and even in the burrowing Ammoxenidae, Homalonychidae and

Trochanteriidae [50]. From diverse representatives of Salticidae

only one single genus is known to lack claw tufts [59], although

there are much more ground-dwelling species within this family.

This may indicate that either costs associated with adhesive setae

are rather low, or that, once evolved, these are highly conservative

in some lineages, limiting a secondary loss.

Figure 7. SEM micrographs of the distal portion of spider tarsi bearing the tarsal claws and setal pads; ventral or prolateral view;
scale bar - 50 mm. A. Primitive pretarsus in the ancient Heptathela sp. (Liphistiidae), juvenile, lacking specialized setae. B. Distal tarsus of Malthonica
ferruginea (Agelenidae) with a dense ventral coverage of FS-II setae typically occurring in spiders of the basic web types. C. Distal tarsus of the desert
dwelling Sicarius sp. (Sicariidae), with reduced setal structures. D. Distal tarsus of Trabea paradoxa (Lycosidae), showing distally extended scopula,
resulting in a primitive foot pad (‘false’ claw tuft). E. Distal tarsus of Drassodes lapidosus (Gnaphosidae), with an extended scopula, including a ‘false’
claw tuft. Note the seta width increasing in the distal part of the pad. F. Derived prey capture leg in Palpimanus gibbulus (Palpimanidae), bearing the
scopula with spatulate setae. G. Distal tarsus of Clubiona terrestris (Clubionidae) featuring both scopulae and claw tufts. Note the foot pad emerging
from the pretarsus, thus being retracted together with the claws. H. Distal tarsus of Marpissa muscosa (Salticidae), bearing only the restricted claw
tufts. I. Distal tarsus of the sand-dwelling desert spider Homalonychus selenopoides (Homalonychidae), bearing claw tufts with brush-like, non-
widened adhesive setae. K. Distal tarsus of Misumena vatia (Thomisidae), lacking adhesive setae, a presumed secondary loss. L. Distal tarsus of
Araneus quadratus (Araneidae), bearing the serrated bristles and the enlarged third claw, adaptations of the derived web building taxa. M. Distal
tarsus of the web building Fecenia cylindrata (Psechridae), including claw tufts, a great exception in silk trappers.
doi:10.1371/journal.pone.0062682.g007

Figure 8. Cryo-SEM micrograph of male Euophrys frontalis (Salticidae) pretarsus, showing mechanics of claw tuft spreading. A.
Pretarsus with the claw tuft retracted (low hemolymph pressure). B. Claw tuft protracted under high hemolymph pressure, caused by tight squeezing
of the femur. Deformation causes a spreading of the divided claw tuft und protraction of the claws, probably important for fast detachment.
doi:10.1371/journal.pone.0062682.g008
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In Thomisidae a reduction of adhesive scopulae (low number of

‘simple’ tapered setae with spatulae small or lacking, Fig. 7K) is

widespread, although most of these spiders are plant-dwelling [4]

and capable of overpowering oversized prey [60]. Interestingly,

scopulae are more developed in the basic thomisid groups of the

Borboropactus and the Stephanopis clade, mainly found on the ground

and on tree bark. This leads to the hypothesis that some derived

thomisids specialized in ambushing on flowers and leaves of herbal

plants, which often feature conical cells and crystalline wax

coverage [61], producing a small scale roughness where spatulae

loose their efficiency [19]. In the following there may have been

a trend of reduction of both seta and spatula width in those

specialists. Adaptation effects may be indicated by the high

variance of spatula sizes within this family (Fig. 5).

The hypothesis that adhesive setae are costly not only explains

why they repeatedly got lost during evolution, but also why

evolution favoured either adhesive setae or using silk, and why

both together occur only rarely.

Conclusions and Outlook
The widespread distribution of adhesive setae among spiders

reflects their important ecological role. They provide a reusable

adhesive alternative to using silk for prey capture and locomotion

purposes. The ecological success of adhesive setae is reflected by

their convergent evolution in several spider lineages. Morpholog-

ical variations, reflecting habitat or prey specialisation (i.e.

Thomisidae, Palpimanidae), and the adhesion-related evolutionary

processes among Desidae and Dictynidae are worthy of more

detailed studies in the future. Two important questions regarding

the evolution of adhesive setae should also be answered in further

experimental studies: (1) Which costs are associated with hairy

attachment devices and (2) are there trade-offs between adhesive

setae and other attachment devices, such as claws or adhesive silk.
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