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irrigated rice hybrids for grain yield 
under high temperature
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Y. Manasa1, A. S. Hari Prasad1, P. Brajendra1, C. Gireesh1, M. S. Anantha1, K. Suneetha1, 
R. M. Sundaram1, M. Sheshu Madhav1, M. D. Tuti1, L. V. Subbarao1, C. N. Neeraja1, 
V. P. Bhadana2, P. R. Rao1, S. R. Voleti1 & D. Subrahmanyam1

Recent predictions on climate change indicate that high temperature episodes are expected to impact 
rice production and productivity worldwide. The present investigation was undertaken to assess 
the yield stability of 72 rice hybrids and their parental lines across three temperature regimes over 
two consecutive dry seasons using the additive main effect and multiplicative interaction (AMMI), 
genotype and genotype × environment interaction (GGE) stability model analysis. The combined 
ANOVA revealed that genotype × environment interaction (GEI) were significant due to the linear 
component for most of the traits studied. The AMMI and GGE biplot explained 57.2% and 69% of the 
observed genotypic variation for grain yield, respectively. Spikelet fertility was the most affected yield 
contributing trait and in contrast, plant height and tiller numbers were the least affected traits. In case 
of spikelet fertility, grain yield and other yield contributing traits, male parent contributed towards 
heat tolerance of the hybrids compared to the female parent. The parental lines G74 (IR58025B), 
G83 (IR40750R), G85 (C20R) and hybrids [G21 (IR58025A × KMR3); G3 (APMS6A × KMR3); G57 
(IR68897A × KMR3) and G41 (IR79156A × RPHR1005)] were the most stable across the environments 
for grain yield. They can be considered as potential genotypes for cultivation under high temperature 
stress after evaluating under multi location trials.

Abbreviations
AMMI	� Additive main effect and multiplicative interaction
PCA	� Principal component analysis
GGE	� Genotype and genotype × environment interaction
GEI	� Genotype environment interaction
IIRR	� Indian Institute of Rice Research
DS	� Date of sowing
DFF	� Days to fifty percent flowering
PH	� Plant height
GY	� Grain yield
SF	� Spikelet fertility
PL	� Panicle length
PW	� Panicle weight
NRT	� Number of productive tiller
GP	� Grains per panicle
TW	� 1000 seed weight

OPEN

1Crop Improvement Section, ICAR - Indian Institute of Rice Research, Hyderabad  500030, India. 2ICAR - Indian 
Institute of Agricultural Biotechnology, Ranchi 834010, India. *email: senguttuvel@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-95264-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15825  | https://doi.org/10.1038/s41598-021-95264-4

www.nature.com/scientificreports/

SPY	� Single plant yield
YLD	� Plot yield

Rice cultivation is adapted to a wide range of agro-climatic zones across the globe and staple diet for more than 
3.5 billion people, provides 35–80% of total calorie uptake globally1. The global population is expected to be 
nine billion by 2050, which demands 60–110% more rice production than the present-day2. Recent estimates on 
climate change indicate that high-temperature episodes may affect the 20 Mha of the rice-growing area in Asian 
countries and, consequently, productivity by 14% in south Asia, 10% in East Asia and the Pacific, and 15% in 
sub-Saharan Africa. The Intergovernmental Panel on Climate Change (IPCC) projected severe crop damages 
by climate change, especially due to higher temperatures by 2 °C by 2050. The atmospheric CO2 concentration, 
which is likely to increase approximately 450 ppm by 2030 and 750 ppm by 2100 will result in earth mean sur-
face temperature rise of 3.7–7.8 °C. Changing climate and genotype × environment interactions (GEI) affect the 
improvement of rice yield potential. Therefore, there is a prerequisite to adapt the available technologies and 
mitigate increasing temperature that could deliver estimated results.

The average annual yield increase has steadily declined from 3.2% per annum in 1960 to 1.5% in 2000 after 
the introduction of semi-dwarf rice varieties3. With available technologies, hybrid rice provides one important 
avenue for higher yields4. The advent of hybrid rice technology resulted in yield gain of 10–15% over high yield-
ing pureline varieties5. Compared to conventional varieties, hybrids exhibit better vigour and yield potential6. 
The performance of the hybrids collectively dependent on the genotype, GEI of hybrids and identifying the best 
growing environments which helps in realizing the maximum grain yield.

Hybrids and their parental lines, must be evaluated across diverse environments to identify stable and high 
yield potential genotypes7. It was reported that over 80% of released hybrids in India are sensitive to heat and 
drought8,9. Heat tolerance in hybrid rice significantly correlates with their parents10. Male parent plays a major 
role in exhibiting tolerance level in resultant hybrids11–13. The heat stress index of F1 combinations was signifi-
cantly correlated with the heat stress index of restorer lines but not with the heat stress index of maintainer lines11, 
whereas Gong10 reported that female parent influence the heat tolerance of three-line hybrid rice. The drought 
resistance of hybrids depends on selecting both the parental lines with better yield potential; high combining 
ability and drought tolerance contributing traits14. The indica hybrid rice combinations with pure indica male 
parent show higher heat tolerance than those with permeability japonica male parent8. Therefore, there is a 
need to develop parental lines (both maintainer and restorer lines) that are tolerant to heat and drought stresses. 
Parental lines and derivative hybrids, which perform stably at higher temperatures, are essential for develop-
ment and wide-scale adoption of hybrid rice technology. In the case of hybrids developed for lowland irrigated 
cultivation, the genotype by season interaction and genotype by season by temperature interaction are critical to 
achieving potential grain yield. The selection of hybrids based on performance from a single environment is not 
considered effective, as grain yield of hybrids shows a complex quantitative inheritance and is heavily influenced 
by the environment. Therefore, it is imperative to execute the evaluation of rice hybrids for grain yield stability 
across multiple season and environments. Thus, the study was undertaken to evaluate rice hybrids for high yield 
and stability across seasons under variable temperature regimes.

Results
Yield and yield‑related traits.  In the present study, a total of 103 test entries were evaluated (through 
pooled analysis) and wide range of variation was recorded for all the traits namely, grain yield per plot (4506.86–
9918.81 kg/ha), panicle weight (1.81–3.41 g), 1000 seed weight (15.33–21.11 g), single plant yield (14.4–30.87 g), 
spikelet fertility (75.04–90.61%), grains per panicle (107.78–225.71), panicle length (20.52–23.75 cm), number 
of productive tillers (9–13), plant height (77.66–112.77 cm) (Table 1). The replicated data from six environments 
were assessed and compared with the hybrid check (G98-KRH2) using significant pair-wise mean comparison.

G65 (IR68897A × IR-66R) was found significantly better in terms of single plant yield and grain yield com-
pared to hybrid check G99 (DRRH3), variety checks G96 (NDR359) and G100 (IR64), tolerant check G102 
(Nagina22) and susceptible check G103 (Azucena). Among all the entries, G102 (Nagina22) recorded very early 
DFF and 30 days early than G99 (DRRH3) and G98 (KRH2) check entries. G12 (APMS6A × Akshayadhan), 
G13 (APMS6A × SG27-105), G32 (IR58025A × 363–5) and G71 (IR68897A × BK-49–180) were significantly 
shorter plant height in comparison with G103 (Azucena) and G96 (NDR359). G65 (IR68897A × IR-66R) and 
G60 (IR68897A × RPHR-517) recorded higher grain number per panicle as compared to checks G102 (Nagina22), 
G99 (DRRH3), G98 (KRH2) and G100 (IR64). G6 (APMS6A × RPHR-517) and G33 (IR58025A × RPHR611-1) 
have significantly higher spikelet fertility percentage than the tolerant check G102 (Nagina22) and hybrid check 
G99 (DRRH3).

DFF showed earliness in E1B and E2B environments; however, there was no significant difference observed 
for PH across the environments. For NRT, PL and TW considerable variation was observed for different sow-
ing environments for the second year only. The PL and PW showed better performance in first set of sowing 
(E1A, E2A—No stress). The GP and SF showed reduction in E1B and E2B whereas SPY and YLD showed much 
reduction in performance in third set of sowing (E1C, E2C—Heat stress) during both the years (Fig. 1 and Sup-
plementary Figure 1) indicating the existence of optimum environment for crop growth even with moderate 
temperature stress than high temperature stress. Similarly, a significant genotypic variation or expression as 
observed from higher phenotypic range was also observed in the second set of sowing (E1B and E2B) indicating 
that yield was not affected by moderate heat stress in that environment. Data of second and third set of sowing 
clearly exhibited reduction in yield levels compared to timely sowing condition.

Correlations among the studied traits across the individual environments were represented in Fig. 2. Plot yield 
showed a significant trait correlation with all yield associated traits such as TW, PL, SPY, PW and GP across the 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15825  | https://doi.org/10.1038/s41598-021-95264-4

www.nature.com/scientificreports/

six environments. Similarly, SPY showed a significant positive association with PL, PW and YLD. Among the six 
environments, GP has shown significant positive association with PW. In addition, PW also showed significant 
positive correlation with PL, SPY and Plot Yield.

Genotypic adaptation and environment analysis.  Stability analysis.  From Finlay–Wilkinson 
analysis15, the genotypes viz., G54 (IR79156A × RPHR-1096), G21 (IR58025A × KMR3), G74 (IR58025B), G3 

Table 1.   Phenotypic variability and Descriptive statistics of traits under study across the environments. Var, 
Variable; DFF, days to fifty percent flowering; PH, plant height; NRT, number of productive tillers; PL, panicle 
length; PW, panicle weight; GP, grains per panicle; SF, spikelet fertility; TW, 1000 seed weight; SPY, single plant 
yield; YLD, plot yield.

Variable Min Max Mean Median Q1 Q3 Range IQR

DFF (days) 78.89 116.94 107.58 108.21 103.81 111.83 38.05 8.02

PH (cm) 77.66 112.77 94.41 94.27 89.64 98.57 35.11 8.92

NRT 8.66 12.83 10.88 10.93 10.35 11.41 4.17 1.07

PL (cm) 20.52 23.75 22.29 22.31 21.95 22.66 3.23 0.72

PW (g) 1.81 3.41 2.75 2.75 2.58 2.92 1.6 0.34

GP 107.78 225.71 151.85 151.06 138.34 161.68 117.93 23.34

SF (%) 75.04 90.61 86.09 86.86 85.26 87.88 15.57 2.61

TW (g) 15.33 21.11 18.39 18.45 17.79 19.15 5.77 1.37

SPY (g) 14.4 30.87 19.91 19.69 17.46 21.58 16.47 4.12

YLD (kg) 4506.86 9918.81 6290.61 6245.19 5511.7 6847.26 5411.94 1335.56

Variable Variance SD SEM CV CSS UCSS Skewness Kurtosis

DFF (days) 31.77 5.64 0.56 5.24 3240.19 1,195,380.07 − 1.46 5.32

PH (cm) 53.68 7.33 0.72 7.76 5475.37 923,570.29 0.01 − 0.29

NRT 0.6 0.77 0.08 7.11 61.11 12,252.02 − 0.34 0.15

PL (cm) 0.38 0.61 0.06 2.75 38.28 51,227.19 − 0.23 0.19

PW (g) 0.08 0.28 0.03 10.08 7.82 784.67 − 0.34 0.92

GP 440.32 20.98 2.07 13.82 44,912.67 2,420,018.52 0.77 1.66

SF (%) 6.37 2.52 0.25 2.93 649.35 764,108.82 − 1.3 2.55

TW (g) 1.25 1.12 0.11 6.07 127.29 34,956.84 − 0.16 0.1

SPY (g) 8.73 2.95 0.29 14.84 890.29 41,733.6 0.71 0.88

YLD (kg) 877,525.8 936.76 92.3 14.89 89,507,631.4 4,165,404,837 0.7 1.14

Figure 1.   Box plot representation of genotypes performance for SPY and Yield traits across the environments.
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(APMS6A × KMR3) and G62 (IR68897A × 50–10) recorded regression value very close to zero exhibiting their 
yield stability.

AMMI Biplot analysis.  The analysis showed significant PC1 and PC2 components for most of the traits stud-
ied. The AMMI biplot indicated that most of the hybrids and their parental lines varying PC1 scores with mean 
grain yield of 6.29 t/ha (Fig. 3a, 3b and Supplementary Figure 2). Six environments differed from each other in 
both the years for main and interaction effects. The environment E1A and E2A had PC1 scores near zero and 
hence had small interaction effects, which indicated that all genotypes performed well in this environment and 
considered as the favourable environment for all the genotypes tested for SPY and YLD. The genotypes with 
zero score on the first PC were less affected by the interaction, while the genotypes with PC1 score close to zero 
and with above average yield were observed to show stability in yield levels with general adaptation to all the 
environments. A genotype with higher yield and PC1 had positive interaction showed that particular genotype 
is stable and adaptable to a specific environment. AMMI biplot showed a PC1 value of 54.4 and 57.2 for SPY and 
YLD, respectively. All the traits under study showed PC1 values above 50% and PC2 values above 20% except PL, 
which had a PC1 of 47% and PC2 of 24.7%. Hybrids such as G21 (IR58025A × KMR3), G3 (APMS6A × KMR3), 
G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005) had average yield across environments and posi-
tive PC1 score indicating they are stable and favourably adapt to all environments or different sowing dates. G21 
(IR58025A × KMR3) was also found stable for SPY; however, G88 (Akshyadhan) and G92 (IBL57) was more 
suited to stress tolerance due to their closeness to early and late sowing dates in both years with high yield and 
negative PC1 scores.

For DFF, G1 (APMS6A × BCW56) was found to be a more stable line in late duration, and the genotype G93 
(BK 49–180) and G102 (Nagina22) was observed to be a stable line in the early crop duration group. Most of 
the genotypes clustered near to the second set of sowing environments, indicating their adaptability to normal 
sowing season. In GP, G65 (IR68897A × IR-66R) and G60 (IR68897A × RPHR517) had the highest trait values; 
however, hybrid G20 (IR58025A × EPLT104) and restorer line RPHR1005 were found to be more stable followed 
by G102 (Nagina22) and G35 (IR58025A × BK-49–180) which were more adapted to normal (E1A & E2A) and 
heat stress (E1C & E2C) environments. G69 (IR68897A × RPHR611-1), G71 (IR68897A × BK-49–180) and G70 
(IR68897A × IBL57) were the most stable genotypes for NRT. However, most of the genotypes showed positive 
adaptation to moderate stress conditions. G12 (APMS6A × Akshyadhan) and G21 (IR58025A × KMR3) were 
stable genotypes with medium-tall stature and not influenced by high stress, while G69 (IR68897A × RPHR611-
1) and G102 (Nagina22) showed stable SF trait. Highest PW was recorded in G72 (IR68897A × RPHR1096), 
whereas G92 (IBL57) was stable, while G23 (IR58025A × RPHR-1005) and G76 (IR68897B) expressed highest 
TW; However, G70 (IR68897A × IBL57) and G57 (IR68897A × KMR3) showed more stability for TW trait.

Figure 2.   Phenotype correlation coefficient analysis using the Pearson method for all traits under study across 
the environments—E1A (Top Left), E1B (Top Middle), E1C (Top Right), E2A (Bottom Left), E2B (Bottom 
Middle), E2C (Bottom Right).
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Figure 3.   AMMI biplot for the primary component of interaction (PC1) and mean or main effect of rice 
genotypes in different environments showing relationship between environments and tested genotypes (For 
SPY (a), Yield (b)). GGE biplot for the primary component of interaction (PC1) and mean or main effect of rice 
genotypes in different environments showing relationship between environments and tested genotypes (For SPY 
(c), Yield (d)).
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GGE analysis.  GGE biplot analysis dissects the complex nature of GEI and simplifies them into various PC. 
According to GGE biplot environment view for yield (Fig. 3c and 3d), the environments E1A, E2A, E1B and E2B 
had a longer vector angle showing exertion of relatively strong interaction forces. The environment E1C and 
E2C had shorter vector angle and did not exert strong interactive forces. The specific adaptation to a target envi-
ronment is not determined by the position and perpendicular projection of genotypes relative to environment 
vectors. If a genotype showing higher grain yield and the position of the genotype was further along the positive 
direction of an environment, they specifically adapted to that environment. Genotypic stability results of GGE 
were similar to that of AMMI biplot. Even though there was no severe high-temperature effect on plant estab-
lishment to the vegetative stage, the high temperature was most effective on the reproductive (grain filling) stage.

Figure 4 and Supplementary Figure 3 shows GGE biplot genotype view indicates that PC1 values accounted 
for more than 50% (69%) of total variability for all the traits under study and graphically represented PC1 and 

Figure 3.   (continued)
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PC2 of the data set. In the case of DFF, ideal genotypes were not found in the late type, but G93 (BK 49-180) and 
G102 (Nagina22) was identified as mid-early and early stable line. The hybrids viz., G65 (IR68897A × IR-66R) 
and G51 (IR79156A × RPHR611-1) were found closer to ideal and average environments for GP but were not 
stable as they were placed farther from Average Environment Axis (AEA). G78 (EPLT104), G100 (IR 64) and G50 
(IR79156A × 363-5) were next in the order and closer to AEA and was observed to be more stable for the trait GP. 
For NRT, G58 (IR68897A × RPHR619-2) was found to show the highest value across the environments while G75 
(IR79156B) and G3 (APMS6A × KMR3) were most stable. In the case of plant height, G12 (APMS6A × Akshyad-
han) and G100 (IR64) were most stable, and the general trend of stability showing closeness to AEA was found in 
most of the genotypes for this trait. G1 (APM6A × BCW56) was found ideal for panicle length with the longest 
panicle followed by G29 (IR58025A × IR-66R), whereas G2 (APMS6A × EPLT104) was found most stable. G102 
(Nagina22) was observed to have one of the shortest panicle lengths among the genotypes. For panicle weight, 
G73 (APMS6B) and G72 (IR68897A × RPHR1096) were most stable with the highest panicle weight as ideal 
genotypes for this trait. G67 (IR68897A × SG27-105) and G5 (APMS6A × RPHR1005) were found ideal genotype 
for SF and most of the genotypes centers around and found ideal for TW. Hybrid G18 (APMS6A × RPHR1096) 
and G17 (APMS6A × BK-49–180) were identified as stable and ideal genotype for SPY and YLD followed by G83 
(IR40750R), G15 (APMS6A × RPHR611-1) and G100 (IR64).

Which-won-where polygon plots formed by linking the farthest genotypes from the biplot origin, including 
all the remaining genotypes in the polygon and those at the vertex, are the winning genotypes in the specific 
sector containing environments16. There were five sectors identified for, which won where the plot (Fig. 5 and 
Supplementary Figure 4). Cross of G65 (IR68897A × IR-66R) was the winner in the sector where the four envi-
ronments were located and similarly G65 (IR68897A × IR-66R) was the vertex genotype for YLD where E1B, 
E2B, E1C and E2C were located.

For DFF, three sowing dates placed in three distinct sectors, early environments E1A and E2A fell in the sec-
tor in which G83 (IR40750R) and G47 (IR79156A × IR-66R) were the vertex cultivars, showing they were the 
best-suited genotypes for normal sown environments E1A and E1B (Non-heat stress environment). Similarly, 
G11 (APMS6A × IR-66R) was suited for second sowing environments E1B and E2B (Moderate heat stress envi-
ronment), and G79 (KMR3) was best suited for late sown environments E1C and E2C (High heat stress environ-
ment). For GP, G94 (RPHR1096) was best suited in E1A and E2B and remaining environments placed together 
and G60 (IR68897A × RPHR517), G65 (IR68897A × IR-66R) and G69 (IR68897A × RPHR611-1) were the most 
adapted genotypes across these environments. For NRT, G5 (APMS6A × RPHR1005) was the best suited in E1A, 
E2A; G10 (APMS6A × RPHR695-1) in E1B, E2B; G69 (IR68897A × RPHR611-1), G14 (APMS6A × 363–5) and 
G38 (IR79156A × EPLT104) in E1C, E2C. The field view of G38 (IR79156A × EPLT104) in E2C was represented 
in Fig. 6.

For PH, G101 (PA6444) and G23 (IR58025A × RPHR1005) was winners for E1C and E2C and G3 
(APMS6A × KMR3) for the remaining four environments. G78 (EPLT104) and G43 (IR79156A × IR40750R) 
showed no change in PL in early and late sown environments. G73 (APMS6B) and G65 (IR68897A × IR-
66R) were winners for PW in late sown environments. G72 (IR68897A × RPHR1096) for moderate stress 
and G96 (NDR359), G39 (IR79156A × KMR3) for early sown environments. G35 (IR58025A × BK-49–180), 
G41 (IR79156A × RPHR1005) and G78 (EPLT104) were the vertex genotypes for stress environments (E1B, 
E2B and E1C, E2C) respectively. For TW, G57 (IR68897A × KMR3) and G59 (IR68897A × RPHR1005) 

Figure 4.   GGE biplot-Genotype view, including performance of test genotypes in comparison of to an 
estimated average environment and ideal genotype (For SPY and Yield Traits).
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Figure 5.   Polygon views of the GGE biplot based on symmetrical scaling for ‘which-won-where’ pattern of rice 
genotypes in six environments showing which genotype performed best in which environment (For SPY and 
Yield Traits).

Figure 6.   Overview of field at anthesis stage (E1C) during 2013–14 (Top); Hybrid (IR79156A × EPLT104) 
(E2C) during 2014–15 (Bottom left); Hybrid (IR58025A × 50-10) (E2C) during 2014–15 (Bottom right).
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was the vertex genotype in which won where polygon harbouring E1A, E2A and E1C, E2C, whereas G23 
(IR58025A × RPHR1005) was were adapted to moderate stress environments.

Discussion
The primary constraint to hybrid rice cultivation and seed production during the dry season is elevated tem-
perature, specifically during the reproductive stage, severely affecting spikelet fertility and eventually, grain yield. 
Therefore, the development of hybrids with higher yield heterosis coupled with stability at varying temperature 
levels should be the long-term objective of the modern breeding program. In the present study, variance analysis 
revealed significant GE difference for yield traits. GEI on phenotypic expression was observed due to change in 
the sowing date, causing different temperature regimes throughout the crop growth and development period. 
The performance of genotypes under varying temperature regimes was different. It was observed that PL was 
having high environmental influence on phenotypic expression. The percentage of explanation of phenotype 
by genotypic contribution was high for PH, DFF, GP, TW, and SPY, while genotype × environment interaction 
effect was high for yield, PW, and SF. DFF, PW, SPY and Yield showed a similar trend in phenotypic variability 
across 3 temperature regimes in both the seasons. In case of SPY and yield, the reduction in yield according to 
increase in temperature stress was very obvious for all the genotypes under the study. NRT, PL, PW and SF also 
showed the reduction in trait values in both moderate and severe heat stress compared to normal temperature 
condition. Traits like PH, GP and TW showed the variation due to environment with different temperature 
regimes only in second season.

Genotype and environment interactions were found to be significant in the pooled analysis for all the traits. 
Given the higher spikelet number, hybrids having a substantial yield advantage over conventional cultivars (IR64) 
at 29 °C to 35 °C; however, advantage fades away when the temperature shoots beyond 38 °C17. The AMMI, 
GGE biplots provides information on interaction of genotypes and environments, the AMMI model18 collectively 
considers environment (E), genotype (G), and their interaction with each other (GEI) as an individual param-
eter for the evaluation purpose, whereas the GGE biplot19 evaluate the interaction by considering the genotype 
(G) and genotype’s environmental interaction (GE). The PC scores and ASV values reveal more information 
on variation among genotypes20. The AMMI biplot for SPY and YLD indicated that most genotypes inclined 
to have PC1 scores of nearly zero, and their mean grain yield was close to around 600–700 g m−2. The environ-
ments differed from each other not only for the main effect but also for the interaction effect. The environments 
E1A/B and E2A/B had PC1 scores near zero for SPY and hence with small interaction effects, indicating that 
most of the genotypes performed well in these two early sown environments. Thus, these two environments can 
be considered favourable environments for all the genotypes tested for SPY.

Similarly, those genotypes with zero score for any trait on the first PC1 were less influenced by the environ-
ments. Furthermore, those lines with above average yield and PC1 score close to zero were considered stable 
and had a general adaptation to all the environments. The genotypes located near to the ideal genotypes in GGE 
biplots were showing higher trait values. However, the distance from AEA determines their stability. Similar 
kinds of observations were reported earlier21–25.

AMMI and GGE generally clustered the early (E1A, E2A), mid (E1B, E2B) and late (E1C, E2C) sowing envi-
ronments in both the years separately for DFF, GP, NRT, PL, PW, SF, SPY, TW and yield. While DFF for E2C, 
GP and PL for E2B, SPY for E2A and PH and NRT for E1A, E2B were the environments placed in negative PC1 
axis. Biplots are useful in determining the significant relationship of cropping season and weather parameters 
on grain yield, contributing to the GEI26. The conclusion on the relationship between the testing environments 
can be estimated based on the angle between their vectors. The present study indicated that the environments 
were related based on their sowing time and further temperature regime variations in the cropping season. The 
discriminating ability of environments on genotypes was interpreted from GGE biplots environment view indi-
cated from projections of the environment vectors concerning the concentric circles19. Thus late environments, 
E1C, and E2C with lower vector length, were less discriminating than medium and early sowing environments 
in case of yield. This is mainly due to the general yield decline in most of the genotypes in late sown as they were 
subjected to severe temperature stress. Wide obtuse angles between environment vectors in case DFF, NRT, PL, 
SPY and YLD showed strong negative correlation among the testing environments suggesting the presence of 
strong crossover GE. This indicates that the genotypes performing better in one environment might be perform-
ing poorly in other environments suggesting the specific adaptability of genotypes. The existence of crossover 
and non-crossover GEI in multi-environment testing is widespread, especially in multi-location trials27. Which-
won-where graphs of GGE biplot address different factors like crossover GE, mega-environment differentiation 
and specific adaptation24,28–30. Based on GGE biplot analysis, the testing environments were classified into three 
mega-environments, comprising early (E1A and E2A), medium (E1B and E2B) and late (E1C and E2C).

In this study, it was observed that restorer lines are comparatively more tolerant to high-temperature stress 
than the maintainer lines. Hence male parent contributes more to the tolerance under elevated temperature. 
These results were similar to the earlier reports11, where the heat stress index of F1 combinations was significantly 
correlated with the heat stress index of restorer lines but not with the heat stress index of maintainer lines. The 
indica hybrid rice combinations with pureline indica male parent showed higher heat tolerance than those with 
permeability from japonica male parent8. Moreover, it was identified that the hybrid IR82378H performed well 
under severe drought conditions than in well-watered conditions and could be due to the effect contributed by 
the male parent14. The heat tolerant hybrids derived from the heat-susceptible × heat-tolerant combination can 
be useful to identify the major QTLs governing heat tolerance in rice. However, the interaction of some minor 
genes with the QTLs, maternal inheritance may play a vital role in modifying effect as the hybrid combinations 
showed a moderate level of tolerance. This could also be attributed to the buffering capacity of hybrids to stress 
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conditions. The study inferred that hybrids are generally tolerant to stress and exploitation of heterosis depends 
on yield per se and combining ability of parental lines.

There was no correlation between the duration of the genotype and the level of tolerance to high temperature 
stress. Some early maturing and few late maturing genotypes and hybrids showed tolerance to increased tem-
perature. In farmer’s field conditions, early maturing genotypes have an advantage of escape from heat stress, 
and mostly their critical growth and development stages will be under minimal heat stress.

The genotypes under the present investigation were grouped into stable and adaptable across the environ-
ments for each trait. The AEC abscissa (AEA) is higher mean trait value indicator across environments. Thus, the 
hybrid G65 (IR68897A × IR-66R) had the highest mean yield and SPY with better stability, followed by hybrids 
G21 (IR58025A × KMR3), G3 (APMS6A × KMR3), G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005) 
in terms of both yield and stability and are good candidates for cultivation across different environments (Sup-
plementary Tables 1 and 2). Rice is adapted to a wide range of environmental conditions in India with varying 
sowing dates and temperature regimes and these stable genotypes are expected to be suitable across extensive 
range of environmental conditions.

Conclusion
To maximize the yield potential of hybrids, it is imperative to select stable parental lines adaptable to suitable 
locations with favourable temperature and relative humidity with minimal risk from climatic conditions. In 
India, dry (Rabi) season is mostly affected by high-temperature stress at the reproductive stage, especially in April 
and May. The selection of early genotypes with high yield potential to the target environments and early sowing 
would be useful to minimize yield losses due to high-temperature stress. By analysing the effects G × E interaction 
on rice yield under different temperature regimes, some promising hybrids viz., G21 (IR58025A × KMR3), G3 
(APMS6A × KMR3), G57 (IR68897A × KMR3) and G41 (IR79156A × RPHR1005) were identified for cultivation 
in the different temperature regimes whereas G65 (IR68897A × IR-66R), G74 (IR58025B), G83 (IR40750R), G85 
(C20R) were found to be more adapted and perform better in higher temperature regimes whereas hybrids G18 
(APMS6A × RPHR1096), G17 (APMS6A × BK-49–180) and G100 (IR64) expressed higher yield potential in 
favourable non-stress environments.

The stability analysis involving hybrids and parental lines from breeding programmes for irrigated ecosys-
tems across three testing environments, in the present study, indicated the significant role of GEI for grain yield 
under different temperature regimes. Further investigation on the mechanisms of temperature tolerance in terms 
of physiological and molecular parameters for identifying the better genotype for grain yield is essential. The 
identified tolerant genotypes can be utilized further in the crop improvement programme.

Material and methods
Experiment particulars.  The experimental material comprises of 103 genotypes which includes 72 rice 
hybrids, 18 restorer lines, four cytoplasmic male sterile (CMS) lines and nine varietal & hybrid checks (Supple-
mentary Table 3). The experiment was conducted under three temperature regimes accomplished through three 
different dates of sowing with 15 days intervals over two dry seasons (2013–14 and 2014–15). Each sowing date 
is expected to result in a different environmental condition with varying temperatures across the crop growth 
stages. Environmental conditions during the crop growth period are presented in Supplementary Figure 5a and 
5b. Three temperature regimes consist of six environments over two years (E1A, E1B and E1C in 2013–14; E2A, 
E2B, and E2C in 2014–15).

i) Ambient temperature regime—E1A (DS: 09-Dec-2013) and E2A (DS: 10-Dec-2014) considered as a 
control condition (timely sown) and the flowering period of crop escapes with no temperature stress (~ during 
the second fortnight of March).

ii) Moderate temperature stress regime—E1B (DS: 24-Dec-2013) and E2B (DS: 26-Dec-2014) belonging to 
mid-late sowing (over 15 days after sowing the first set) and the flowering period of crop matches with moderate 
temperature stress (~ during the first fortnight of April).

iii) High-temperature stress regime—E1C (DS: 08-Jan-2014) and E2C (DS: 10-Jan-2015) belonging to late 
sowing (over 15 days after the sowing of the second set) and the flowering period of crop matches with high-
temperature stress (~ during the second fortnight of April).

The experiment was carried out under irrigated conditions at Research Farm of ICAR-Indian Institute of Rice 
Research (IIRR), Hyderabad, India, located at 17° 19′ N and 78° 29′ E and an altitude of 549 m above mean sea 
level. The farm soil is alkaline vertisol, with a pH of 7.94. Before sowing, the seeds were treated with Carbendazim 
50% WP (Wettable Powder) and allowed to germinate in petri dishes layered with blotting paper. Germination 
rate were recorded and after five days, the pre-germinated seeds were transferred to wet nursery bed topping 
with a layer of vermicompost and sand. The top dressing was applied before one week of uprooting with Di-
Ammonium Phosphate (DAP) @40 kg ha−1 and need-based plant protection measures were undertaken to raise 
healthy and vigorous seedlings. Twenty-seven days old healthy seedlings were transplanted to the main field in 
randomized complete block design (RCBD) with two replications of 10 m2 with 20 cm spacing between rows, 
15 cm between plants within row and no vacant row was left between two genotypes. The recommended dose of 
fertilizers 100 kg ha−1 of Nitrogen in three split doses with one fourth as basal dose, one half at the time of initial 
tillering stage and one fourth at active tillering stage, entire dose of 40 kg ha−1 of phosphorus and 60 kg ha−1 of 
Muriate of Potash (MOP) per hectare were applied at the time of transplanting as basal dose. Required weed 
management and plant protection measures were timely undertaken for healthy crop production.

Measurement of grain yield and component traits.  A total of 103 genotypes were phenotyped for 
different yield and yield-related traits. Days to 50% flowering (DFF) was measured on plot basis. Data on plant 
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height (PH), number of productive tillers (NRT), panicle length (PL), panicle weight (PW), number of grains 
per panicle (GP), spikelet fertility (SF), thousand seed weight (TW), single plant yield (SPY) and grain yield per 
plot (YLD) were recorded at maturity. The data on above traits were recorded in all the entries using modified 
Standard Evaluation System for Rice (SES)31 at flowering and maturity stages respectively.

Statistical analysis.  Replicated phenotypic data of the agro-morphological and yield traits across six envi-
ronments were subjected to the combined analysis of variance (ANOVA) using PB Tools ver.5 statistical soft-
ware (http://​bbi.​irri.​org/​produ​cts) (Supplementary Table 4). Correlation coefficients were estimated according 
to the Karl Pearson method32. In this study multivariate model such as AMMI biplot and GGE biplot was used 
to determine the genotype and environment interaction and its relationship with stability parameters using 
PB Tools ver.5 statistical software (http://​bbi.​irri.​org/​produ​cts) and R33. The performance of hybrids and cor-
responding parental lines were tested over two seasons and assessed using stability models for G × E and yield 
stability analyses based on the principal component analysis (PCA): viz., Additive main effects and multiplica-
tive interaction (AMMI)34 and GGE Biplot or site regression model35. In AMMI, the GEI effects are presented 
by genotype and environment effects plotted in a biplot whereas in GGE, the genotype and GEI effect using 
environment-centered PCA were presented. ANOVA is used to estimate main effects while PCA decomposes 
the interaction into PCA axes. The AMMI model separates the additive variance from multiplicative variance. 
The AMMI stability value (ASV) was calculated (Purchase et al. 2000) and PCA is required to study the geno-
type and environment interaction component. ANOVA, which is an additive model, is effective in apportioning 
the total sum of squares into genotype main effect, environment main effect and GE interaction, but does not 
provide insight into the GEI structure.

The analytical model can be written as

Both G and GE variation were graphically represented by GGE biplots36 using sites regression (SREG) lin-
ear–bilinear model as given in the formula

where, Yij.—mean yield of ith genotype in jth environment, μ—Overall mean, δi—genotypic effect, βj -environ-
ment effect, λk—singular value for PC axis k, δik—genotype eigenvector value for PC axis n, βjk—environment 
eigenvector value for PC axis k, εij—residual error assumed to be normally and independently distributed (0, 
σ2/r), σ2—pooled error variance and r is the number of replicates.

Ethical approval.  All the experiments carried out on plants were carried out in accordance with the guide-
lines of ICAR – Indian Institute of Rice Research.
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