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Abstract: In this paper, by developing a mathematical model, the temperature of PSCs under different
operating conditions has been calculated. It is found that by reducing the density of tail states at
the interfaces through some passivation mechanisms, the operating temperature can be decreased
significantly at higher applied voltages. The results show that if the density of tail states at the
interfaces is reduced by three orders of magnitude through some passivation mechanisms, then the
active layer may not undergo any phase change up to an ambient temperature 300 K and it may not
degrade up to 320 K. The calculated heat generation at the interfaces at different applied voltages
with and without passivation shows reduced heat generation after reducing the density of tail states
at the interfaces. It is expected that this study provides a deeper understanding of the influence of
interface passivation on the operating temperature of PSCs.
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1. Introduction

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has grown drastically
during recent years, and a PCE of higher than 23% for single PSCs and about 28% for perovskite/silicon
tandem solar cells have been reported recently [1–6]. One of the factors that can influence the PCE of
solar cells is their temperature during the operation or the operating temperature T. It is well-known
that if the operating temperature decreases then the diffusion length of charge carriers and PCE of
PSCs increase for T > 200 K [7–9]. A high operating temperature may lead to the degradation in PSCs
due to the decomposition of the active layer. Conings et al. [10–12] have investigated the thermal
stability of PSCs and found that perovskite may decompose into PbI2 even at as low a temperature as
85 ◦C. Philippe et al. [11–13] have investigated the thermal stability of PSCs by maintaining them for 20
minutes at room temperature, 100 ◦C and 200 ◦C and observed that MAPbl3 starts to decompose into
Pbl2 at 100 ◦C. They carried out this experiment under high vacuum conditions of 10−8 mbar. Also, it
is found that the temperature becomes much too high at the points of creation of localized defects,
which may lead to physical or chemical changes in any semiconductor device [14]. Another challenge
with perovskites is that their crystal structure becomes unstable by increasing the temperature, leading
to phase changes. For example, it is reported that the phase change from tetragonal to cubic can
occur at around 327 K in PSCs [15–17]. However, methyl-ammonium (MA)-based perovskites show a
higher phase stability in comparison to formamidinium (FA) [18,19]. Therefore, understanding and
controlling the factors that may lead to an increase in the operating temperature of PSCs is crucial for
increasing their efficiency and stability.

In this paper, only the non-radiative recombination in the tail-states is considered and the higher
order Auger-type recombination is neglected. In Auger recombination, an excited pair of charge
carriers recombines and the energy released is transferred non-radiatively to another charge carrier
to excite it to higher energy states [20]. Thus, an Auger recombination is a secondary process and
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its rate of occurrence is usually much lower, unless the excitation density is very high. The eventual
recombination of high-energy charge carriers in an Auger process may occur at any trapping centres, as
considered here. Therefore, the non-radiative recombination as considered here where a charge carrier
can be trapped at a trapping centre in the tail states is considered to be dominant [21–24]. It is known
that in a PSC, the interfaces of the active layer-ETL (electron transport layer) and active layer-HTL
(hole transport layer) are found to have more defects than within the active layer which act as trapping
centres leading to non-radiative recombination [25,26]. It is shown that the hysteric J-V behaviour of
PSCs can be attributed to several factors such as ferroelectricity, ion migration, unbalanced charge
collection rates and trap recombination at the interfaces and grain boundaries [27–32]. However, as the
non-radiative recombination generates heat, leading to an increase in the operating temperature of
solar cells and may reduce PCE and stability of PSCs. Snaith et al. [33] have found that the cp-TiO2 ETL
modified with C60-SAM could effectively passivate the formation of trap states at the interfaces, which
reduces the non-radiative recombination and suppresses the J-V hysteresis in PSCs thus fabricated.
Thote et al. [11] have achieved efficient and stable ZnO-based PSCs using a high-working pressure
sputtering technique. This technique produces higher quality ZnO films with fewer surface defects
compared with conventional sputtering or sol-gel ZnO solution processes. However, the influence of
passivation of the interfaces on the operating temperature which may lead to phase transition and
degradation in the active layer of PSCs has not yet been clearly understood.

In this paper, by assuming that the reduction in the density of tail states at the interfaces occurs
due to passivation, a mathematical model is developed to calculate the operating temperature of PSCs.
Our results show that by reducing the interfacial density of tail states, the operating temperature of
PSCs can be decreased significantly at higher applied voltages. Thus, by passivating the interfaces in
PSCs and hence reducing the operating temperature, the degradation effects and phase transitions
may be prevented.

2. Methods

For an illuminated solar cell, the factors which may influence the operating temperature are solar
radiation, heat generation due to the non-radiative recombination, wind velocity, ambient temperature
and the heat transfer in solar cell’s material. An illuminated solar cell can transfer heat by radiation to
sky, surroundings and ground and by convection to the ambient air. The thermal power generation (P)
due to the non-radiative recombination in the active layer of an illuminated PSC can be considered as a
heat source. Figure 1 presents different heat transfer mechanisms described above in an illuminated
solar cell schematically.

Although several simulations have been carried out by solving the drift diffusion equations,
the effect of non-radiative recombination contributing to heat generation and hence, enhancing
operating temperature in PSCs and organic solar cells has not yet been considered to the best of
authors’ knowledge [27,34,35]. Therefore, in this paper, the temperature is considered as non-radiative
recombination dependent and it is varied in the iteration of solving drift-diffusion equations. The
simulation is started using an initial temperature which is changed after the first iteration and used as
the initial temperature in the second iteration and so on until the convergence is achieved. For our
simulation, the active layer of PSC is divided into meshes as shown in Figure 2. As the non-radiative
recombination rate can be different at different points in the active layer, here, it is considered as
position-dependent within the active layer starting from the HTL interface to the ETL interface, but it
is assumed to be position independent in the lateral directions. Therefore, the heat generated power
through the non-radiative recombination is considered to be position x dependent as P(x). However,
as the Biot number is usually very small in thin films of perovskites, the heat gets distributed instantly
in the active layer and the solar cell temperature can be assumed to be uniform within the whole active
layer leading to the same temperature in all meshes considered in Figure 2. To show this, we have
applied the lumped capacitance method for a PSC with the active layer CH3NH3PbI3 as discussed
later in the Results and Discussion section.
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Figure 1. Schematic of heat transfer mechanisms in an illuminated solar cell: yellow arrows show 
incident solar power, orange arrow represents heat generation due to non-radiative recombination, 
blue arrows represent heat loss to the ambient air due to convection and black arrows represent heat 
loss due to radiation. 
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as the initial temperature in the second iteration and so on until the convergence is achieved. For our 
simulation, the active layer of PSC is divided into meshes as shown in Figure 2. As the non-radiative 
recombination rate can be different at different points in the active layer, here, it is considered as 
position-dependent within the active layer starting from the HTL interface to the ETL interface, but 
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as the Biot number is usually very small in thin films of perovskites, the heat gets distributed instantly 
in the active layer and the solar cell temperature can be assumed to be uniform within the whole 
active layer leading to the same temperature in all meshes considered in Figure 2. To show this, we 
have applied the lumped capacitance method for a PSC with the active layer CH3NH3PbI3 as 
discussed later in the Results and Discussion section. 

For simulating the influence of the non-radiative recombination at the two interfaces of active 
layer and HTL (A: HTL) and active layer and ETL (A: ETL), it is assumed that the most non-radiative 
recombination may occur in an area within 5 nm in the perovskite active layer from each interface as 
shown in Figure 2. 
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Figure 1. Schematic of heat transfer mechanisms in an illuminated solar cell: yellow arrows show
incident solar power, orange arrow represents heat generation due to non-radiative recombination,
blue arrows represent heat loss to the ambient air due to convection and black arrows represent heat
loss due to radiation.
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Figure 2. Division of the active layer of a PSC into meshes considered in the simulation. A distance of 
5 nm from A: hole transport layer (HTL) and A: electron transport layer (ETL) interfaces into the 
active layer has been considered as the main areas of non-radiative recombination. 
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Figure 2. Division of the active layer of a PSC into meshes considered in the simulation. A distance of
5 nm from A: hole transport layer (HTL) and A: electron transport layer (ETL) interfaces into the active
layer has been considered as the main areas of non-radiative recombination.

For simulating the influence of the non-radiative recombination at the two interfaces of active
layer and HTL (A: HTL) and active layer and ETL (A: ETL), it is assumed that the most non-radiative
recombination may occur in an area within 5 nm in the perovskite active layer from each interface as
shown in Figure 2.

It is also assumed that the heat transfer through conduction in the adjacent solar cells is negligible
in a module. This assumption can be justified from the conduction heat transfer equations in the x-, y-
and z-directions (z- towards the sun see Figure 3) given, respectively, by [36]:

Qx = kAyz
∂T
∂x

(1)
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Qy = kAxz
∂T
∂y

(2)

Qz = kAxy
∂T
∂z

(3)

where Qx
(
Qy and Qz

)
is the thermal energy transferred through conduction mechanism in the x

(y and z) direction, and Ayz (Axz and Axy) is the area of the lateral surface of the cell in the yz- (xz- and

xy-) plane. ∂T
∂x

(
∂T
∂y and ∂T

∂z

)
is the gradient of temperature along the x (y and z) direction and k is the

thermal conductivity of the solar cell material. According to Equations (1) and (2), in thin-film solar
cells such as PSCs, as Ayz and Axz are of the nanoscale and hence very small, leading to negligible
conduction heat transfer (Qx, Qy → 0) towards the x- and y-directions. In addition, the conduction
heat transfer along the z-axis is also negligible because the thickness of PSCs is of the nm scale, leading
to the temperature gradient (∂T

∂z ), which is negligibly small and hence, according to Equation (3),
the conduction heat transfer along the z-direction becomes negligible (Qz → 0) . However, PSCs are
encapsulated before being used and the effect of encapsulation should be considered in this analysis.
As the thickness of encapsulation is only a few millimeters [37], the temperature gradient in the
encapsulation layer can be neglected (∂T

∂z ≈ 0, in the encapsulation layer). Therefore, it is justified to
assume that the solar cell temperature and the temperature of the surface of the encapsulation are the
same. This also leads one to assume that there is no air gap between the solar cell and encapsulation
and then the only heat transfer from the surface of the solar cell to the encapsulation can occur through
the conduction heat transfer but without the temperature gradient, this will be zero and thus no heat
transfer may occur through the conduction.Materials 2019, 12, x FOR PEER REVIEW 5 of 15 

 

 
 

 
 
 
 
 
 

 

Figure 3. The conduction heat transfer directions in a solar cell. 

In accordance with the above discussions, the operating temperature T of an illuminated PSC will 
depend on the radiation and convection heat transfers and non-radiative recombination of the photo 
excited charge carriers. Thus, we need to solve the following energy balance equation to determine 
푇 [36]: 

퐼푟훼퐴 + 푃 = ℎ , 퐴 (푇 − 푇 ) +  ℎ , 퐴 (푇 − 푇 )
+ ℎ , 퐴 푇 − 푇 + ℎ , 퐴 (푇 − 푇 ) (4) 

where 퐼푟 is the incident solar radiation, 훼 is absorption and 푃 is the thermal power generated 
through the non-radiative recombination given by: 

푃 = 푅 퐸 퐴 푑 (5) 

where 푅  (m−3 s−1) is the rate of tail state recombination calculated by solving the Poisson and drift-
diffusion equations [38–40], 퐸  (eV) is the heat energy generated per recombination and 푑 (nm) is 
the active layer thickness. ℎ ,  is convection heat transfer from encapsulation surface to 
ambient, ℎ , ,  ℎ ,  and ℎ ,   in Equation (4) are the radiation heat transfer 
coefficients from encapsulation surface to sky, ground and surrounding, respectively, 푇  is 
ambient temperature, 푇  is sky temperature which can be determined by 푇 = 0.0552 푇 .  
[41]. 푇   and 푇  are ground and surrounding temperatures which are considered equal to 
푇 . 

The radiation heat transfer coefficients from encapsulation surface to sky, ground and 
surrounding can be determined, respectively, by [36,42]: 

ℎ , = 휀 휎 (푇 + 푇 )(푇 + 푇 ) (6) 

ℎ , = 휀 휎 (푇 + 푇 )(푇 + 푇 ) (7) 

ℎ , = 휀 휎 (푇 + 푇 )(푇 + 푇 ) (8) 

where 휀  is the emissivity coefficient of solar cell and 휎 = 5.67 × 10  is the Stefan–Boltzmann 
constant. The convection heat transfer coefficient from encapsulation surface to the ambient air can 
be determined by [43]: 

ℎ , = 5.62 + 3.9 푣 (9) 

where 푣 is the wind velocity in the ambient. 
The thermal power generated through the non-radiative recombination in the illuminated PSC 

is found to be dominant [21–24] and can be considered as a heat source [44]. In the non-radiative 
recombination, it is assumed that one of the charge carriers (electron or hole) is trapped in the tail 
states and the other (electron or hole) is free in the conduction band (CB) or valence band (VB). Thus, 
sum of the thermal energy released due to the non-radiative recombination of free electrons in the 

퐴  

퐴  

푄  

푄  

푥 

z 

y 

퐴  

푄  

Figure 3. The conduction heat transfer directions in a solar cell.

In accordance with the above discussions, the operating temperature T of an illuminated PSC will
depend on the radiation and convection heat transfers and non-radiative recombination of the photo
excited charge carriers. Thus, we need to solve the following energy balance equation to determine
T [36]:

IrαAxy + P = hc,e−ambAxy(T − Tamb) + hr,e−skyAxy
(
T − Tsky

)
+hr,e−groundAxy

(
T − Tground

)
+ hr,e−surAxy(T − Tsur)

(4)

where Ir is the incident solar radiation, α is absorption and P is the thermal power generated through
the non-radiative recombination given by:

P = RtailERAxyd (5)
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where Rtail (m−3 s−1) is the rate of tail state recombination calculated by solving the Poisson and
drift-diffusion equations [38–40], ER (eV) is the heat energy generated per recombination and d
(nm) is the active layer thickness. hc,e−amb is convection heat transfer from encapsulation surface to
ambient, hr,e−sky, hr,e−ground and hr,e−sur in Equation (4) are the radiation heat transfer coefficients from
encapsulation surface to sky, ground and surrounding, respectively, Tamb is ambient temperature, Tsky
is sky temperature which can be determined by Tsky = 0.0552 Tamb

1.5 [41]. Tground and Tsur are ground
and surrounding temperatures which are considered equal to Tamb.

The radiation heat transfer coefficients from encapsulation surface to sky, ground and surrounding
can be determined, respectively, by [36,42]:

hr,e−sky = εcσsb
(
T + Tsky

)(
T2 + Tsky

2
)

(6)

hr,e−ground = εcσsb
(
T + Tground

)(
T2 + Tground

2
)

(7)

hr,e−sur = εcσsb(T + Tsur)
(
T2 + Tsur

2
)

(8)

where εc is the emissivity coefficient of solar cell and σsb = 5.67× 10−8 is the Stefan–Boltzmann constant.
The convection heat transfer coefficient from encapsulation surface to the ambient air can be determined
by [43]:

hc,e−amb = 5.62 + 3.9v (9)

where v is the wind velocity in the ambient.
The thermal power generated through the non-radiative recombination in the illuminated PSC

is found to be dominant [21–24] and can be considered as a heat source [44]. In the non-radiative
recombination, it is assumed that one of the charge carriers (electron or hole) is trapped in the tail
states and the other (electron or hole) is free in the conduction band (CB) or valence band (VB). Thus,
sum of the thermal energy released due to the non-radiative recombination of free electrons in the CB
with the trapped holes in the VB tail states, and free holes in VB with the trapped electrons in the CB
tail states may be assumed to be equal to the band gap energy, i.e., ER ≈ Eg in Equation (5). Using this
in Equation (4), the temperature T can be determined by solving the following transcendental equation
in T:

T = (IrαAxy + RtailEgAxyd + hc,e−ambAxyTamb + hr,e−skyAxyTsky
+hr,e−groundAxyTground + hr,e−surAxyTsur)/(hc,e−ambAxy

+hr,e−skyAxy + hr,e−groundAxy + hr,e−surAxy

(10)

where hc,e−amb, hr,e−sky, hr,e−ground and hr,e−sur are used as a function of T given in Equations (6)–(8) and the
rate of tail state recombination Rtail is calculated by solving Poisson and drift-diffusion equations. We
solve Equation (10) by iteration. First, we start with an initial temperature T to solve the drift-diffusion
equations and calculate the heat transfer coefficients in Equations (6)–(8). Then, by substituting back
these calculated Rtail, hc,e−amb, hr,e−sky, hr,e−ground and hr,e−sur in Equation (10), we determine the new
solar cell temperature. The iteration is continued until the self-consistency is achieved. The above
procedure of simulation of temperature is presented in the data flow chart as shown in Figure 4.
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Figure 4. The data flow chart for solving the proposed simulation.

3. Results and Discussions

The simulation of the operating temperature of an illuminated PSC of the structure
Glass/ITO/PEDOT: PSS/CH3NH3PbI3/PCBM/Al is presented here. However, first we would like
to present the validation of our simulation by calculating the J-V characteristics of the above PSC
considered in this paper and compare these with the experimental results measured by Kim et al. [45].
The input data required for the simulation of the J-V characteristics and operating temperature are
listed in Table 1. The J-V characteristics obtained from the simulation are shown as a solid curve in
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Figure 5 along with the experimental results as the dotted curve. As it can be seen from Figure 5, our
simulation results agree very well with the experimental ones.

Table 1. Input parameters used for simulation in this paper [9].

Parameter Value

εc 0.9
Ir
(
wm−2

)
1000

U (m/s) 0.1
Tamb (K) 300

α 0.6
Eg (eV) 1.5
d (nm) 200

Nc, Nv (m−3) 1026

Nti (density of tail state at interface) ((m−3(eV)−1) 1015

Nta (density of tail state in the active layer)
(m−3(eV)−1)

1014

µn
(
m2V−1s−1

)
0.5× 10−4

µp
(
m2V−1s−1

)
0.5× 10−4

β0
n (cm3s−1) 2.5 ×10−10

β0
p (cm3s−1) 5 ×10−10

EUc = EUv(meV) 45
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Figure 5. The J −V characteristics of a PSC of structure Glass/PEDOT: PSS/CH3NH3PbI3/PC60BM/Al
obtained from our simulation (solid curve) and from experiment [45] (dotted curve) to check the validity
of our simulation.

In our simulation, following the observed density of tail states before and after the passivation at
the interfaces by thermal admittance spectroscopy [24], it is assumed that the density of tail states at
the interfaces Nti may reduce from 1018 to 1015 m−3 (eV)−1 passivating the interfaces. The operating
temperature is calculated for Nti = 1018 and 1015 m−3 (eV)−1 at two different ambient temperatures of
300 K and 320 K and plotted as a function of the applied voltage Va as shown in Figure 6. According
to Figure 6, for low applied voltages, Va ≤ Vmax, where Vmax is the voltage at the maximum power
point, it is found that the (i) operating temperature remains constant and (ii) influence of the density of
tail states in the interface on the temperature of the solar cell is not very significant. It may be noted
that in Figure 6, the maximum voltage is Vmax ≈ 0.77 V at the ambient temperature Tamb = 300 K and
Vmax ≈ 0.75 V at Tamb = 320 K. However, at Va ≥ Vmax, the operating temperature increases by nearly
21 K at the Voc at both the ambient temperatures of 300 K and 320 K in the PSC without the passivation
of the interfaces with the higher density of tail states Nti = 1018 m−3 (eV)−1. This is in contrast with
the passivated PSC with the lower density of tail states Nti = 1015 m−3 (eV)−1 where the operating
temperature remains nearly constant with the increase in the voltage. At the ambient temperature
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Tamb = 300 K and applied voltage Va ≈ 0.81 V, the temperature in the active layer of PSC without
interface passivation increases to 327 K (red arrow), which is the temperature of phase transition in
perovskite from tetragonal to cubic.
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two ambient temperatures of 300 K and 320 K.

It may be noted that the decomposition of perovskite can be started at 358 K [10–12]. According
to Figure 6, although the operating temperature of PSC without the interface passivation at the
ambient temperature 300 K (red dotted curve) increases with applied voltage, it may never reach the
decomposition temperature of 358 K because the maximum increase in temperature at the Va = Voc is
only about 343 K. However, at Tamb = 320 K, the PSC without interface passivation may reach 358
K at Va ≈ 0.85 V (black dashed curve) and may decompose, which will not occur in the passivated
PSC. It should be mentioned that the Voc of solar cells decreases slightly by the increase in the
ambient temperature.

It may be desirable to investigate the influence of thermalisation due to the non-radiative
recombination on the open circuit voltage (Voc), short circuit current (Jsc) and fill factor (FF). To address
this issue, we have calculated Voc, Jsc and FF using the proposed iteration method by: (i) varying
the operating temperature due to non-radiative recombination and (ii) keeping it constant equal to
the ambient temperature during the iteration. The results obtained show that Voc decreases from
0.90 to 0.87 V and FF from 78% to 77% due to the increase in the operating temperature from the
non-radiative recombination. However, Jsc remains almost unchanged in both calculations. Thus, as
expected, a slight reduction in Voc and FF are found due to the thermalisation effects caused by the
non-radiative recombination.

In order to investigate the heat generation due to the non-radiative recombination at an applied
voltage Va and at a position (x) in the active layer measured from the anode, we have shown the
contour plots of the power generated by the non-radiative recombination P in Equation (5) as a function
of the applied voltage Va and position x with Nti of 1018 and and 1015 m−3 (eV)−1 in Figure 7a and b,
respectively. As it can be seen in Figure 7a, for Nti = 1018 m−3 (eV)−1 P increases when x approaches
the interfaces at all the applied voltages, and becomes red in colour at the interfaces, which means that
it becomes high at the interfaces. This is expected because more non-radiative recombinations occur at
the interfaces and hence more heat generation at the interfaces. However, according to Figure 7b for
Nti = 1015 m−3 (eV)−1, the power generation at the interfaces is much less (blue in colour), showing
much less heat generation at the interfaces due to the passivation. It may be noted that the power P
plotted in Figure 7a and b is nearly independent of the ambient temperature Tamb.
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In order to calculate the total P through the active layer, we have integrated P over the active layer
and the results are shown in Figure 8 at different applied voltages for Nti = 1018 m−3 (eV)−1 and 1015

m−3 (eV)−1. According to Figure 8, P is almost constant and close to 0 for Nti = 1015 m−3 (eV)−1 at
the interfaces, while it grows to roughly 5 W by increasing the voltage of the cell with Nti = 1018 m−3

(eV)−1. Therefore, it may be concluded that at an ambient temperature higher than 300 K, PSCs may
degrade faster without the passivation of the interfaces if subjected to a higher applied voltage.
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active layer as a function of the applied voltage Va.

As mentioned in the mathematical model section, by using a lumped capacitance method, we can
assume the temperature of the solid is spatially uniform at any instant and the temperature gradient
within the solid is negligible [36]. To validate this method, the Biot number, which is a dimensionless
number for validation of the lumped capacitance method, should be less than 0.1 (Biot << 0.1). The
Biot number can be determined by [36]:

Biot =
Lchc,c−amb

k
(11)

where Lc is characteristic length and can be determined by Lc = Vol/Axy and Vol is volume of solar
cell. Also, we have calculated hc,c−amb by using Equation (9), and it is 5.62 to 44.62 (W/m2K) for wind
velocities between 0 to 10 m/s. Heiderhoff et al. [46] have found that the thermal conductivity (k) of
CH3NH3PbX3 single crystals with X = I, Br, and Cl is 0.34 ± 0.12, 0.44 ± 0.08, and 0.50 ± 0.05 W/(mK),
respectively, at room temperature. By considering CH3NH3PbI3 with a thickness of 200 nm and with
wind velocity = 10 m/s, the Biot ≈ 2.6 × 10−5, which is much less than 0.1. Therefore, the lumped
capacitance method is effectively validated for a PSC. This implies that the temperature of the PSCs is
spatially uniform at any instant, and the temperature gradient within the solar cell is negligible.

4. Conclusions

In this paper, the temperature in the active layer of a PSC before and after the interface passivation
is simulated. It is found that by passivating the interfaces, which means by reducing the density of tail
state recombination centres, the operating temperature of a PSC can be significantly lowered at higher
applied voltages. Thus, the degradation of the active layer in PSCs can be reduced. It is shown that
the operating temperature of a PSC can be lowered by 21 K by reducing the density of tail states at
the interfaces by three orders of magnitude at the open circuit voltage condition. Such a reduction
in the tail state densities at the interfaces may prevent phase change at the ambient temperature of
300 K, which may occur otherwise without the passivation. Also, it is shown that the decomposition of
the active layer of a perovskite solar cell may be prevented at an ambient temperature of 320 K with
the passivation.
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Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Materials 2019, 12, 2727 11 of 13

References

1. Schmager, R.; Gomard, G.; Richards, B.S.; Paetzold, U.W. Nanophotonic perovskite layers for enhanced
current generation and mitigation of lead in perovskite solar cells. Sol. Energy Mater. Sol. Cells 2019, 192,
65–71. [CrossRef]

2. Prochowicz, D.; Runjhun, R.; Tavakoli, M.M.; Yadav, P.; Saski, M.; Alanazi, A.Q.; Kubicki, D.J.; Kaszkur, Z.;
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