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Abstract

The short length and high degeneracy of sites recognized by DNA-binding transcription factors limit the amount of
information they can carry, and individual sites are rarely sufficient to mediate the regulation of specific targets.
Computational analysis of microbial genomes has suggested that many factors function optimally when in a particular
orientation and position with respect to their target promoters. To investigate this further, we developed and trained spatial
models of binding site positioning and applied them to the genome of the yeast Saccharomyces cerevisiae. We found
evidence of non-random organization of sites within promoters, differences in binding site density, or both for thirty-eight
transcription factors. We show that these signatures allow transcription factors with substantial differences in binding site
specificity to share similar promoter specificities. We illustrate how spatial information dictating the positioning and density
of binding sites can in principle increase the information available to the organism for differentiating a transcription factor’s
true targets, and we indicate how this information could potentially be leveraged for the same purpose in bioinformatic
analyses.

Citation: Lusk RW, Eisen MB (2013) Spatial Promoter Recognition Signatures May Enhance Transcription Factor Specificity in Yeast. PLoS ONE 8(1): e53778.
doi:10.1371/journal.pone.0053778

Editor: Stein Aerts, University of Leuven, Belgium

Received March 14, 2012; Accepted December 4, 2012; Published January 8, 2013

Copyright: � 2013 Lusk, Eisen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by an HHMI investigator award to M.B.E., an NIH grant HG002779 to M.B.E., and an NSF graduate research fellowship to R.W.L.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: M.B.E. is co-founder and member of the Board of Directors of PLOS. This does not alter the authors’ adherence to all the PLOS ONE
policies on sharing data and materials.

* E-mail: mbeisen@berkeley.edu

Introduction

A typical transcription factor in the yeast Saccharomyces cerevisiae

binds to short, six to ten base pair sequences in promoters [1], with

the strength of this binding depending on the specific sequence of

the site [2,3]. Both strongly- and weakly-bound sites can impact

the expression of adjacent genes [4,5]. While this flexibility to bind

different short sequences is part of what allows genes to be

precisely regulated [5], it also makes potential binding sites quite

common in the genome, raising the question of how, or whether,

these short sequences alone are sufficiently informative for

transcription factors to distinguish target from non-target promot-

ers.

Wunderlich and Mirny examined this question formally within

the framework of information theory [6]. Information theory is

concerned with quantifying the information carried by codes such

as DNA, and it has a rich history in the analysis of transcription

factor binding sites [2,7–9]. They found that binding sites in

eukaryotes carry far less information than would be required to

accurately differentiate them from the rest of the genome,

suggesting that transcription factors must bind promiscuously to

nonfunctional sites.

Nonfunctional binding appears to be pervasive in higher

eukaryotes [10], but even in S. cerevisiae, with its relatively small

genome, binding poorly predicts function. Hu et al. [11] found

that binding of a transcription factor to a locus as measured by

ChIP-chip typically does not predict that locus to exhibit a

significant expression change upon deletion of that factor. Some of

this discrepancy could be explained by noise in the ChIP dataset

or by compensating effects in cis or trans. But even after mitigating

these effects, Hu et al. found many examples of promoters that

appeared to be bound by a transcription factor but not regulated

by it. This suggests that functional targets carry additional

contextual information beyond the set of bases in their binding

sites that determine whether a given binding site affects regulation.

It is possible that, by treating positions within the binding site

independently, we underestimate the information they carry.

There is now considerable evidence that positions within binding

sites do not affect binding independently [12–14]. However, the

magnitude of this effect is small for most factors, and position-

independent weight matrices appear to describe the bulk of

variation in binding affinity [15–17].

Alternatively, the additional information required to explain

factor specificity could be found outside individual binding sites.

Several factors are known to interact with other factors and

components of the transcriptional machinery in ways that affect

how their location, orientation, and/or density impact their

binding and effect on expression. For example, Rap1 activity was

shown to be markedly different depending on which strand its sites

were placed and whether or not they appeared as a tandem pair

[18,19]. Reb1 and Abf1 play critical roles in the creation and

positioning of nucleosome free regions [20], which are precisely

positioned with respect to the transcription start site [21]. This role

suggests that, in turn, Reb1 and Abf1 binding sites must be
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precisely placed in order to function. Other proteins may be less

precisely spaced: the homologous factors Met31 and Met32 bind

DNA but have no intrinsic ability to activate transcription; their

role is to recruit the co-activator Met4 to this sequence [22], and

this indirect interaction may afford some flexibility in their

positioning.

Finally, beginning with experiments using artificial constructs

[23], cooperativity driven by binding site density has been thought

to play a role in promoter recognition: if the relationship between

site number and expression effect is nonlinear, then spurious single

sites can be made inconsequential. Many transcription factors,

such as Rap1 discussed above, have been shown to bind as dimers.

Other factors, such as Rtg1 and, in A. nidulans, AlcR, bind as

monomers but, notably, only affect expression in promoters with a

sufficiently high number of binding sites [24–26]. Cooperative

effects in these cases could be driven by less precise protein-protein

interactions or indirectly, through competition with nucleosomes

[27,28]. Taken together, these characteristic requirements of

positioning and/or density could create a promoter-recognition

‘signature’ for a factor that could render many non-target binding

sites irrelevant and increase the discriminatory information

available for recognizing true target promoters.

Relatively few transcription factors are understood to this level

of mechanistic detail, but several computational works have

suggested that these promoter recognition signatures could be a

common property. Elemento et al. [29] used a mutual information

approach to simultaneously discover expression-influencing con-

sensus sequences and their location and strand biases, showing

that, for a large fraction of the consensus sequences they

uncovered, location and often strand informed expression.

Following up this work in a large number of factors, Westholm

et al. [30] found that the location and strand of many consensus

sequences are distributed non-randomly within promoters. Erb

and van Nimwegen incorporated weight matrices and evolution-

ary information into a similar analysis, allowing them to divide

transcription factors into different classes based upon the positional

biases of their binding sites that are suggestive of different

mechanisms of regulation [31,32].

Here we approach the problem from a different perspective,

focusing on the properties of whole promoters rather than

aggregate properties of individual binding sites. We develop a

statistical model of promoter signatures for a wide variety of

transcription factors in S. cerevisiae, integrating over strong and

weak sites and describing factor-specific biases in site location,

strand bias, and density. Using this model, we show that spatial

information, in particular site density, appears to play a role in the

function of the typical yeast transcription factor. Framing our

spatial model in the context of information, we show that this

spatial information can, in principle, allow transcription factors

that weakly specify their individual binding sites to share the same

promoter specificity as transcription factors with much more

strongly specified binding sites. We illustrate the discriminatory

utility of spatial information using expression changes in

transcription factor deletion strains, showing that its target

predictions are for most factors more strongly associated with

expression change than are predictions from spatially naı̈ve

models.

Results

Description of the Model
We use a hidden Markov model to describe the positions of

binding sites for a single factor within a set of promoters (fig. 1).

For each promoter, a single binary ‘regulation’ (R) state

determines whether or not the emitted sequence will carry the

factor’s promoter signature. A set of hidden ‘site’ (S) states generate

the observed nucleotide (N) states, one per position in the

promoter, according to either a background nucleotide distribu-

tion or the appropriate position-specific distribution found within

the factor’s binding site. A ‘consistency’ (C) state generated by the

last S state ensures that at least one binding site is emitted if a

promoter is classified by the R state as being regulated by the

factor (see Methods). We train five parameters: r, estimating the

fraction of sequences in the training set that carry the factor’s

signature, m and v, describing the center and width of a region

enriched for the factor’s binding sites, t, estimating these sites’

strand bias, and l, a rate parameter which describes the density of

sites in the enriched region. As this Poisson-like parameter cannot

easily describe the plausible case in which a transcription factor

relies on strictly one binding site for recognition, we also train a

similar model which generates a single binding site per promoter.

We also incorporate a free parameter g which determines the

slope of the transition to the enriched region (fig. 1C, see

Methods). We formally describe these models, as well as fitting and

selection, in the methods section.

These models have several useful properties. They can take

advantage of position weight matrices rather than consensus

sequences, and while remaining computationally tractable, they

are able to integrate over strong and weak binding sites. As the

true shape of the spatial distribution of any given factor’s binding

sites may differ between factors [32,33], we chose to use a

relatively flat distribution, creating a plateau-like region enriched

for binding sites (figure 1C). While it is possible to specify a

perfectly flat region with sharp sides, we found that a gentler

transition to the enriched region aided parameter optimization

considerably.

Promoter Recognition Signatures are Common and Differ
between Transcription Factors

We used the Harbison et al. [34] ChIP-chip binding data and

position weight matrices from the MacIsaac et al. [35] analysis as

the basis for our model training. We filtered the binding data in

four ways. First, as the position of transcription factor binding sites

is much more strongly related to the transcription start site than to

the translation start site [36], we removed 59 untranslated regions

from our data. Second, we only used intergenic regions containing

highly-conserved binding events [35] to help remove bound but

functionally unimportant sites. Third, although we placed a

conservative upper limit on the length of the promoter at 1,000

base pairs, ORFs and other annotated functional sequences were

replaced by randomly generated background sequence. Finally, we

removed divergently transcribed genes so that we could unam-

biguously describe the positioning of binding sites relative to a

single ORF.

We fitted our model to all ChIP-chip sets having at least twenty

promoters meeting our criteria (fig. 2). We confirm

[30,32,33,36,37] the presence of factor-characteristic spatial biases

of binding sites for a large number of transcription factors. For

each factor, we used likelihood ratio tests over a series of nested

models to determine the significance of parameters describing the

factor’s strand and spacing preferences. As describing binding site

density requires a slightly different model structure, we determined

the utility of this parameter using an information criterion.

Although most factors displayed a nonrandom spatial distribu-

tion of binding sites, and there appears to be a diversity of such

distributions, we wondered whether this diversity could arise as an

artifact of differences in intergenic sequence length. For instance,

the typical intergenic region bound by Rpn4 is substantially

Spatial Signatures Enhance Promoter Specificity
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shorter than the typical intergenic region across the genome; even

if Rpn4 sites were randomly scattered throughout this region, we

would expect our model to find Rpn4 sites to be more spatially

restricted than most other transcription factor binding sites. To

control for this effect, we also trained our model on data sets with

scrambled binding site positions but conserved promoter lengths

and binding site number and strength. Parameterizing null models

of site positioning with the location (m) and width (v) of the

binding-site-enriched region learned from these scrambled data,

we used likelihood ratio tests to show that values trained from the

unscrambled data fit significantly better for all but seven

transcription factors, suggesting that the spatial restrictions we

report here are driven by more than intergenic sequence length.

We used unbound sequences to assess the impact of weakly or

incorrectly specified matrices. If a transcription factor’s frequency

matrix is likely to appear anywhere, perhaps due to a flaw in our

representation of background sequence, then our model could

associate with that matrix as well-populated but ultimately

meaningless spatial signature. We compensated for this property

by fitting our model, for each factor, to regions not bound by that

factor in any tested condition. If we were able to discover any

putative signature populated to an appreciable level in these data,

we consider the original signature suspect and discard it (see

Methods). Although this test is conservative, as we expect a

substantial amount of condition-specific binding to have been

missed by these ChIP-chip data, only a handful of factors’ spatial

Figure 1. Description of the model. (A) One kilobase upstream of the transcription start site of YPL192C is depicted, with PWM-scores of putative
Ste12 binding sites plotted in gray. The transcription start site is represented by an arrow. (B) A sample state configuration for the model is shown.
Variables are represented as circles, with hatching added to variables considered to be ‘observed.’ As described in detail in Methods, the binary
‘regulation’ variable, in green, emits a series of ‘site’ variables (blue), each corresponding to and emitting a single nucleotide (red) in the promoter.
The middle segment highlights how a background b0 state transitions to a series of frequency matrix states, which in turns transitions to a
background b1 state. This b1 value is carried, as shown, to the end of the sequence, where it emits a final background nucleotide and the observed
value of 1 for the ‘consistency’ state, in orange. This consistency state takes value one if the final state variable takes a value of either b1 or bx,
ensuring that the original ‘regulation’ variable specifies whether or not a binding site is emitted. The frequency matrix states shown here correspond
to the position of one of the two highest-scoring matches to the Ste12 motif; here they emit the consensus TGAAACA sequence observed on the
forward strand of the YPL192C promoter. (C) The probability of transition from a background state to a frequency state depends on the position of
the nucleotide. Here we depict the final spatial model for Ste12, highlighting how the fitted parameters m and v specify the center and the width of
the spatial distribution of emitted binding sites. The maximum height of the plateau corresponds to the parameter l, which determines the rate at
which binding sites are emitted. Not shown are the parameters r, which determines the probability that any site at all will be emitted, t, which
determines the extent of the strand bias of emitted sites, and g, a free parameter that determines the slope of the curve up to the plateau. (D) The
model incorporates position weight matrix information (depicted in 1A) and spatial information (depicted in 1C) to arrive at a weight for each
putative binding site. Here we plot, for each position, the expected value that the state variable corresponds to the beginning of a binding site.
doi:10.1371/journal.pone.0053778.g001
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Figure 2. Description of promoter signatures. Promoter signatures for all transcription factors with more than twenty screened bound
intergenic regions, excluding those with trainable signatures in unbound regions. Sequence logos depict the frequency matrices described in the
main text. The blue region corresponds to the site-enriched plateau illustrated in figure 1C: it is centered at the location parameter m and shows the
range from m2v to m+v. If the region is gray, then either we were unable to find statistically significant support for training the parameters m and v
(bottom four cases) or these trained parameters failed our shuffling test (top seven cases), indicating for these factors that promoter lengths alone are
sufficient to explain their observed spatial restriction. The strand column depicts strand bias, from 100% reverse-strand bias (green) to 100% forward-
strand bias (red). Circles in the count column depict the expected number of binding sites per promoter. Gray circles correspond to those sequences
that better fit the monosite model, having strictly one site per promoter.
doi:10.1371/journal.pone.0053778.g002
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signatures failed this test (Dig1, Ndd1, Pho2, Yap5, Mot3, and

Swi5).

The tested set of factors exhibits a diversity of spatial patterns.

Several factors have sites tightly positioned in relation to the

transcription start site. Notably, we recover the hypothesized tight

spatial constraint of Reb1 and Abf1 (fig. 3A, B). Several other

factors, including Cbf1, Rpn4, and members of the Hap2/3/4/5

complex, also appeared to recognize their targets according to

tight special constraints, and we hypothesize that they may operate

under similar mechanistic pressure. Other factors, such as Gcn4,

do so more broadly (fig. 3C). Most factors’ binding sites were

found almost up to the start of transcription, but the site associated

with Fhl1 (fig. 3D) was a notable exception, although questions

have been raised about whether Fhl1 binds to the DNA directly

[38]. While relatively few factors’ sites exhibited a significant

strand bias, we recovered the characteristic bias of Rap1 sites.

Although analogous parameters describing site density can be

found in enhancer prediction algorithms designed for higher

eukaryotes (e.g. [39–43]), our model is to our knowledge the first

description of location bias to explicitly account for binding site

density in yeast promoters. While some factors, usually those that

appear to be strongly spatially constrained, appear to recognize a

single site within promoters, the typical factor appears to rely on

multiple sites. If multiple sites are a functional necessity for a

promoter’s recognition by a transcription factor, then we have,

immediately, an intuitive means for increasing a transcription

factor’s promoter specificity.

Spatial Information can Offset Weak Binding Information
Many eukaryotic transcription factors have binding sites that

are short enough, and nonspecific enough, that identical copies of

functional sites often appear in non-target promoters and

enhancers. Examining this formally using information theory,

Wunderlich and Mirny [6] demonstrated that, unlike those in

prokaryotes, virtually all transcription factors in yeast and other

eukaryotes do not contain enough information to differentiate

their targets from background sequence on the basis of their

individual binding sites. This suggests that these factors must take

advantage of other, additional information to prevent widespread

misregulation of nontarget promoters.

The information content of a transcription factor’s binding sites

can be quantified as the Kullback-Liebler (KL) divergence

between the distribution of bases found in these sites and the

distribution of those bases within the genome [2]. This information

content has been used as a metric to compare the specificity of

different transcription factors and forms the theoretical basis of

sequence logos and position weight matrices, the most common

representations of transcription factor binding sites.

We desired to use this framework to compare the specificity of

our predicted sequence signatures of target recognition and

quantify the increase in specificity they could potentially provide

over binding sites alone. To this end, we developed a means to

calculate the KL divergence between each predicted sequence

signature and a background distribution of completely random

promoter sequences, providing us with a means to quantify the

information provided by our sequence signatures. For comparison,

we created and repeated this calculation for artificial density- and

spacing-agnostic signatures containing a single binding site in each

promoter: by comparing, for each factor, the information

contained in the full model with the spacing-agnostic model, we

learn how much information is provided by each spatial signature.

We note that while exactly calculating the true value of these

metrics is all but impossible, as it requires integrating over all

possible promoter sequences, a sampling approach enabled us to

calculate approximate values (see Methods).

As individual binding sites form the building blocks of any

spatial model, we expect that a signature’s specificity is driven in

large part by the specificity of its component sites. Indeed, we

observed a strong correlation between the information content of

our sequence signatures and the information contents of their

respective sequence motifs (r2 = .67, p = 6.51 * 10212, figure S1):

factors that have well-specified binding sites tend, on average, to

also have well-specified promoter signatures. Even so, there exists

considerable variation in matrix specificity given a certain

promoter recognition specificity. In figure 4, we illustrate five

factors that, while their signatures share approximately the same

discriminatory information, have substantially different abilities to

discriminate between promoters when spacing, strand, and site

density are disregarded. Restriction of these properties is thus in

principle able to compensate for a weakly specified frequency

matrix.

We also note that, for these factors and nearly all others, overall

specificity is greatly increased by the addition of promoter

recognition signatures. While factors that rely on one site, without

a strand bias, such as Rpn4, gain only a modest specificity increase

due to their spatial restriction, most appear to rely on several and

show an accordingly large increase in specificity. For instance,

Msn4’s binding site alone carries approximately one nat of

information, which, in theory, is only sufficient to differentiate

roughly one third of the genome as its targets–a far larger role than

Msn4, or any other sequence-specific transcription factor in yeast,

is expected to play. However, its promoter recognition signature

Figure 3. Transcription factors exhibit a diversity of spatial
preferences. Score density is plotted against position. Score density is
defined as the sum of positive log-two position weight matrix scores in
a twenty base window, divided by the total number of possible binding
site positions within that window of the training data. The black line is
the simulated background score density; the gray area is the 95%
confidence interval about that line. Confidence intervals are wide in
windows far from the transcription start site due to the low number of
intergenic regions in the training data reaching this distance. The green
area is weighted by the model to be part of the promoter-signature
distribution; the black area is weighted by the model to be part of the
background distribution. Depicted factors are (a) Reb1, (b) Abf1, (c)
Gcn4, and (d) Fhl1. No intergenic region used to train Fhl1’s spatial
signature is as long as 1,000 base pairs, creating a blank area.
doi:10.1371/journal.pone.0053778.g003
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carries more than three nats of information, thought to be

sufficient to differentiate roughly 250 targets, only slightly larger

than the approximately 200 true targets Msn4 is expected to have

[44–46]. For reasons we elaborate upon in the Discussion, we do

not expect most factors to share this match between calculated

specificity and true target size. Nevertheless, these promoter

signature driven increases in specificity illustrate a route by which

transcription factors can identify their targets and, as we show in

the next section, could be helpful for bioinformaticians interested

in doing the same.

Promoter Recognition Signatures Predict Expression
Change in Factor Deletion Mutants

To test whether the additional spatial information that we have

described here is in fact discriminatory, we investigated whether it

improved our ability to specify true targets. Here we make a

distinction between binding and regulation: binding does not

necessarily imply regulation [10,11], and indeed, possibly because

it is typically informed by only a fraction of the promoter, our

signature model is a relatively poor predictor of binding (figure

S2). In contrast, we sought to determine whether our model

improved the specificity of target prediction by identifying

information that is preferentially found in regulatory targets. To

this end, following the example of Westholm et al. [30], we

measured the extent to which promoters matching these signatures

exhibit expression changes when their target factor is deleted,

comparing this aggregate change with the expression changes at

promoters predicted as targets by spacing-agnostic models. We

take these data from Hu et al., who used microarrays to measure

genome wide expression changes in transcription factor deletion

mutants [11].

To quantify the degree to which any given promoter matched a

promoter signature, we calculated the expected value of the R

‘‘regulation’’ variable when the nucleotide variables are set equal

to the sequence of the promoter. This gave us a metric by which to

rank all promoters in the genome according to their match to the

signature. We note that, presumably due to both the relatively

small fraction of direct targets in the data and a considerable

number of indirect targets exhibiting expression changes, neither

ChIP nor computational methods predicted targets well as

measured by a straightforward rank correlation with expression

changes (table S1). However, by choosing an arbitrary cutoff point

in this rank list, designating promoters above this cutoff as targets

and those below as non-targets, we could compare the expression

changes of targets favored by our model to those favored by other

methods.

Using this framework we compared the specificity of our model

against two other means of predicting factor targets, using the

ChIP-chip data as a positive control. The first ranked promoters

by the score of the highest-scoring single binding site they

contained, and the second was a thermodynamic model which was

able to take advantage of the information found in all of the

possible sites to rank target promoters. Importantly, this model

does not take into account site location and, unlike our model,

handles site density only in an additive manner. For each

computational method and ChIP-chip we arbitrarily chose to

focus on its top fifty predictions (the results appeared robust to the

choice of this cutoff; figure S3). We repeatedly sampled at random

the same number of ORFs from the expression data to establish

confidence intervals describing the null expectation that these

predictions are not associated with expression. We disregarded

factors that showed no relationship between ChIP-chip signal and

expression; these factors might not be active in the condition tested

(YPD), might not have a consistent role as an activator or

repressor, or simply might not have sufficiently high quality

binding data.

We found that the scores generated by our model were more

likely to be significantly associated with expression than those

generated by the other two computational methods, and that the

ORFs ranked highly according to our model typically exhibited a

larger expression change upon transcription factor deletion

(fig. 5A): comparing the spatial signature model with the

spatially-agnostic thermodynamic model, the signature model

shows a greater magnitude of expression difference in twelve of the

fifteen cases in which either model was significantly associated with

expression (binomial p = .0176). Although our power to detect

differences at the level of individual transcription factors is limited,

the signature model showed a significantly greater association with

expression than did the thermodynamic model in two cases (Rap1,

p = .0012, and Sum1, p = .0027, see Methods). In an appreciable

fraction of cases, the expression changes in the ORFs ranked

highly by our model and sometimes other computational methods

were larger than those found in ORFs appearing bound in ChIP-

chip data, although this was not typical. As expected, the

thermodynamic model consistently outperformed the model based

only upon single sites (p = .0005). As a precaution against

overfitting, we repeated this analysis with all ORFs used in

Figure 4. Promoter signatures compensate for and increase the
information available to weakly specified binding sites. The
specificity of a transcription factor is measured by the Kullback-Leibler
divergence between the distribution of possible binding sites and a
distribution of background sequences. Here we have calculated an
analogous measure to quantify the specificity of our of different spatial
signature models: each model emits a distribution of possible promoter
sequences, allowing us to approximate the Kullback-Leibler divergence,
and hence the specificity, separating this promoter sequence distribu-
tion from a distribution of background sequences. This measure of
information is plotted in orange here for each of five factors. For
comparison, in blue, we plot the information carried by a simpler
model. This model emits sequences with only a single site without
strand bias or spatial restriction, and as such the information of the
promoter distribution is solely the product of the information carried by
the binding site. In every case, spacing, strand, and/or density
substantially increases the information carried by the model. For these
five factors, these restrictions allow them to share essentially the same
promoter-level information content despite their diversity of binding
site specificities.
doi:10.1371/journal.pone.0053778.g004

Spatial Signatures Enhance Promoter Specificity

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e53778



training removed; these data supported the same conclusions

(figure S4).

The performances of the computational models are clearly

correlated (fig. 5B), and our model performed best relative to the

ChIP data for transcription factors such as Rap1, Rpn4, and

Ume6 where even single sites could predict targets well. We

speculate that these more informative and presumably accurately

described binding sites allow our model to more precisely describe

their spatial distribution their spatial distribution in promoters.

Conversely, and as we expect, the computational methods perform

worst when the binding sites are not well described. Rtg3 and

Gcr2 are the only two factors for which ChIP-chip but not any

computational method, at any number of high-scoring ORFs

tested, recovered a significant association with expression.

Experiments conducted with protein-binding microarrays

[38,47] have cast doubt on the accuracy of the Rtg3 PWM we

have used here, and while Gcr2 has not been investigated with

these experiments, the PWM we use here is short and has been

disputed by other computational work [48].

Discussion

Spatial Specificity Compensating for Poor Site Quality
Our principal finding is that well-specified promoter recognition

signatures, often including restricted spacing, orientation bias, and,

most importantly, multiple binding sites, are common and appear

able to compensate for poor site specificity. As has already been

discussed [6], the binding affinities of transcription factors in yeast,

and in all eukaryotes, do not specify enough information to

differentiate their targets from background DNA. It has been

hypothesized [6,23] that this handicap could be overcome through

the use of multiple binding sites as a recognition signature.

By focusing on the characteristics of whole promoters, and not

on the characteristics of individual binding sites, we are able to

recover this property of binding site density, show it to be

common, and demonstrate formally that it can indeed compensate

for poor specificity of individual binding sites.

We did show for one factor, Msn4, that its spatial recognition

signature as we have described it specifies almost exactly as much

information as would be required to differentiate its true targets.

This is an appealing result, and it echoes results for single binding

sites in prokaryotes [7], but there are a number of reasons why we

do not expect this to be a general property. First, there is no fast

and accurate method for determining what a factor’s true target

size is. The number of regions determined to be bound using

ChIP-chip varies over more than an order of magnitude

depending on the statistical and conservation criteria employed,

and disrupting the target factor and searching for affected genes

will inevitably recover a mixture of cis- and indirect trans-acting

effects. Second, our model does not include properties of

transcription factors already known in some cases to increase

their specificity, such as association with different bound factors or

tight spacing requirements between co-binding dimers. In an ideal

model, we would have taken into account dependencies between

Figure 5. Spatial signature scores are correlated with expres-
sion change in transcription factor deletion mutants. (A)
Considering the top 50 target promoters predicted by each of four
methods, ChIP-chip, our sequence signatures model, a simple
thermodynamic model, and a single site model, we plot the number
of cases in which that method’s predicted targets for a transcription
factor exhibited a significantly different average expression upon
deletion of the transcription factor. We shaded each bar by the number
of times that, for a given method and transcription factor, the
magnitude of this average expression difference ranked 1st (black),
2nd (dark gray), 3rd (light gray), or 4th (white) among the methods
significantly associated with expression for that transcription factor. The
targets predicted by the spatial signature model typically showed a
greater magnitude of expression change upon factor deletion than did
the targets predicted by the thermodynamic model (p = .0176, see
Methods), which in turn typically exhibited a greater magnitude of
expression change than those targets predicted by the single site
model (p = .0005). (B) For each transcription factor where the top 50

predictions of ChIP-chip were associated with expression, we plot for
each method the average expression change of its top 50 predicted
targets upon that factor’s deletion. We derived 95% confidence
intervals by resampling 5,000 sets of 50 putative targets chosen at
random from the expression dataset and calculating the average
expression change in each of these. Note that if the measured changes
in expression are widespread, as is the case for the Nrg1 deletion, it is
possible for the confidence interval derived from this null distribution to
not contain zero.
doi:10.1371/journal.pone.0053778.g005
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positions of binding sites, although the relatively small magnitude

of these dependencies [15–17], combined with the considerable

computational complexity they would add to the model, led us to

leave them out. Finally, proteins may dictate more specificity than

they need to simply differentiate their targets. There is a

relationship between information and affinity in individual binding

sites [2]; it seems reasonable that this relationship might hold

across promoters, with highly-specified promoters being bound a

greater fraction of the time than weakly-specified ones.

Consistency with Measurements of Synthetic Promoter
Activity

Sharon et al. [49] recently published measurements of activity

of thousands of short synthetic promoters that were designed to

test the impact of some of the parameters we describe here (e.g.

site orientation and density) on reporter gene expression as driven

by a wide panel of transcription factors. Although they investigated

some factors to greater depth than others, and many of those they

investigated to the greatest depth were not described by our study,

their work otherwise provides an ideal set of benchmarks for our

model predictions.

Consistent with our results, they found a relationship between

binding site number and expression that varies in magnitude from

factor to factor: some transcription factors required relatively few

binding sites before their cumulative effects reached a plateau,

whereas other factors appeared to require many more. Cbf1,

Gcn4, and Rap1, which we predicted to require few sites, fell into

the former category, whereas Swi4, which we predicted to require

more sites, fell into the latter. The remaining factor that was both

described in our work and investigated in this manner in theirs was

Fhl1, which had an unusual non-monotonic relationship between

site number and expression change.

The authors also tested the impact of site orientation. As we do,

they recovered a significant orientation effect for only a small

fraction of their tested factors. Of that fraction, we also predicted

the strand bias of Rap1 and Fhl1, although we did not predict the

strand bias of Aft2, and their results were not consistent with our

predictions of strand biases for Tec1 and Cin5.

The Use of Binding vs. Coexpression Data
We used binding data as our source of training sets because it is

most convenient, allowing us to train models for a large number of

factors. It has a number of shortcomings. By focusing on the most

strongly bound sequences in the genome, as we must when using

these data, we may introduce a bias towards recovering strong sites

or large numbers of sites. Perhaps more important, by choosing

promoters for our training sets based only upon whether or not a

factor is bound, we ignore the arguably significant role that spatial

signatures may play in the determination of different expression

patterns.

The context-specific properties of Rap1 are an illustrative

example [18]. Rap1 binding sites are essential for the activation of

many genes, including ribosomal protein genes and genes in the

glycolytic pathway. It also is involved in gene silencing near

telomeres and at the silent mating loci. Upstream of ribosomal

genes, a particular pattern of binding, with sites arrayed in tandem

on the coding strand, appears to be necessary for maximum

expression. Upstream of glycolytic pathway genes, Rap1 usually

has one binding site, without an orientation bias, located near one

or more Gcr1 binding sites and is apparently essential for the

binding of Gcr1. In telomeres, Rap1 appears to bind to a slightly

different frequency matrix, perhaps brought about by changes in

protein conformation. Several other proteins, such as Cbf1, share

Rap1’s diversity of function and could potentially share its

diversity of spatial signatures.

By focusing on binding instead of expression, we sum over all of

these spatial signatures and likely reduce our ability to detect any

of them. While we recover Rap1’s orientation bias upstream of

ribosomal proteins, we mistakenly predict this feature to be

general. Westholm et al. found a greater prevalence of orientation

biases of transcription factor binding sites when they used

coexpression rather than binding data [30], suggesting that

promoter signatures may be more coherent in coexpression data

sets. Although they are more limited, due to our inability to assign

many factors to sets of coexpressed genes, the application and

analysis of our model’s behavior on these sets is a natural next step.

Use of Promoter Recognition Signatures as a Tool
We show that our model has generally higher specificity than a

simple thermodynamic model in predicting transcription factor

targets computationally and that, under certain conditions, it can

refine the predictions of ChIP-chip. We would like to emphasize

that our model as constructed is not an attempt to create a tool for

transcription factor target prediction. As our goal was only to

discover whether there exists spatial information that could help

specify transcription factor binding sites, even if that spatial

information is present in only a subset of targets, we paid no

attention to sensitivity. Our model also currently requires a

reference ChIP-based data set for training. While in principle the

model could be trained on whole genomes without a reference

ChIP training set, relying on the enrichment of the functional

signature above the background, the background model used here

is far too simple to represent the genome. However, the

abundance of spatial information that we describe here shows

that we can, in principle, increase the specificity of transcription

factor target prediction by taking into account site context.

Methods

Preparation of Promoter Regions
We downloaded intergenic regions pre-screened for annotated

features (‘NotFeature.fasta’) from the Saccharomyces Genome

Database and used the results of [50] to remove the 59 UTRs. In

the small number of cases where data was unavailable, we

removed the median 59 UTR length from the beginning of the

sequence. We trimmed these sequences to a maximum length of

1,003 base pairs, and we added masking 38% GC content

sequence to the 59 ends of sequences shorter than 1,003 base pairs.

Finally, we discarded upstream regions that were noted in

MacIsaac et al. [35] to be part of divergent promoters.

Description of Model and Algorithm Implementation
The model is constructed as a directed graph closely related to a

standard first-order Hidden Markov Model. There are four classes

of variables. ‘R’ (‘regulation’) variables occur at the beginning of

the HMM, take values 0 or 1, and determine whether at least one

binding site will be emitted. These variables are included to

account for the possibility of false positives in the training set. The

‘S’ (‘site’) variables form the backbone of the chain, each emitting

one nucleotide ‘N’ variable. There are three values for the S

variables that emit background sequence: b0 and b1 can transition

to a frequency matrix state, whereas bx can only transition to

another bx state. If the R variable is 0, the first S variable in the

chain must take value bx, thereby preventing a binding site from

being emitted. If the R variable is 1, then the first S variable can

take a value of b0 or a frequency matrix state. The frequency

matrix states (f0…fw, frc0…frcw) correspond to every possible
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position and reverse complement position in the frequency matrix.

At the end of a set of S variables taking frequency matrix states, the

next S variable must transition to either a b1 state or another

frequency matrix state. b1 states do not transition back to b0 states,

allowing the last S variable in the chain to specify whether or not

at least one binding site was emitted. To ensure that promoters

thought to be regulated by a factor, that is, taking a value of 1 for

the R state, emit at least one binding site, we have incorporated a

binary ‘C’ (‘consistency’) variable that takes value 1 if (a) if the final

S variable takes the value b1 or corresponds to the end of a

frequency matrix or (b) the final S variable takes value bx. We

consider the C variable to have an observed value of 1, thus

ensuring that the R state determines whether or not at least one

site is emitted.

We also created a related ‘monosite’ model (as opposed to the

‘multisite’ model above) which emits precisely one binding site if

the R state is 1. This is ensured by only permitting b0 states to

transition to a series of frequency matrix states.

The nucleotides are emitted according to the frequencies in the

given frequency matrix or from a background model weighted by

GC content. In all above analysis, GC context was set at.38.

The value of the R state is given by:

P Rð Þ~rd R~1ð Þ 1{rð Þd R~0ð Þ

Frequency matrices can be emitted in either the forward or

reverse orientation according to a parameter t. The probability of

emitting a frequency matrix from either b0, b1, or a finished series

of frequency matrix states is:

P siteð Þ~ l

1zeg Dp{mD{vð Þ

The value p corresponds to the position in the promoter, that is,

the distance from the transcription start site. This value is

multiplied by t or 1-t depending on the orientation of the matrix.

This creates an approximately plateau-shaped distribution of

binding sites, with m and v specifying the center and spread,

respectively. The free parameter g either smooths or sharpens the

boundaries of the plateau and was set to.1 for all described

experiments.

We use the EM algorithm to fit the parameters, starting

iterations from fifteen different sets of spatial parameters. The

expectation is performed using message passing, and maximum

likelihood estimates for r and t are calculated analytically. We use

simulated annealing to optimize l, m, and v simultaneously. We

implemented the algorithm in C using the GNU Scientific Library

[51] and, for information and likelihood calculations, the GNU

Multiple Precision Arithmetic Library [52]. The implementation is

parallelized with MPICH [53] but can be run as a single process.

Spacing Controls
Towards scrambling the spacing of binding sites as much as

possible while leaving the strength and number of sites intact, we

spatially scrambled the original training sets in an iterative fashion.

First, we duplicated each set to a minimum size of 600 sequences.

In each iteration, we picked a random subsequence from one of

these sequences. The length of each such subsequence was

randomly chosen to fall between arbitrary limits of 5 and 75. To

ensure that moving this subsequence would not disrupt the binding

signal, we checked if it had any binding sites of score zero or

greater at its borders. If it did, we continued to pick random

sequences until we found one having borders free of potential

binding sites. We then chose another sequence at random of the

same length using the same procedure. Once a matching sequence

was found, we traded the two sequences. We repeated this process

100 million times. We fitted the same number of parameters to

these models as were fitted to the originals, and we then repeated

the optimization process on the original data while constraining

the values of m and v to the shuffling-derived values. We

determined significance using a likelihood ratio test with two

degrees of freedom, determining for each factor whether the

shuffling-derived values sufficiently described the distribution of

binding sites present in the original data sets.

As described in the results section, we wished to exclude from

our analysis factors that, perhaps due to a flaw in our background

model, have a promoter signature appear enriched even in regions

that are not bound. Unbound regions were defined as those which

had a ChIP-chip binding p-value greater than.5 in every tested

condition. For each factor, we assembled 20 sets at random from

intergenic regions meeting this criteria, fitting each set starting

from 20 different starting points. We used the value of r from each

of these fittings to assess to what extent our model could detect a

presumably false signal in each of these sets of presumably

nonfunctional sequences. A factor’s signature was discarded if

either: (a) finding the maximum trained r in each set, if the

median of these maximums exceeded.15, or (b) any trained r value

across these 400 fittings exceeded the r value found in the factor’s

signature.

Information Calculation
We used sampling to approximate the KL divergence between

our promoter signatures and a simple background model specified

only by GC content. The exact formulation of this divergence is

specified as:

KL~
X

Nf g
P Nf gDsignatureð Þlog

P Nf gDsignatureð Þ
P Nf gDbackgroundð Þ

� �

{N} here refers to the set of all nucleotide (‘N’) states in each

promoter. Of course, integrating over all possibilities of {N} is

impossible even for relatively short promoters. However, we can

approximate this true value by sampling from the model, replacing

P(mod) by 1/N (‘N’ here referring to the number of sampled

promoters), below. {S} refers to a sampled promoter.

KL&
1

N

X
Sf g

log
P Sf gDsignatureð Þ

P Sf gDbackgroundð Þ

� �

We verified the accuracy of this approximation by exactly

calculating the information content of a short (ten base pair) model

containing a single binding site for Ste12 and comparing it with

values derived from sampling (data not shown).

Recovery of Expression Change
We compared four methods in their ability to recover the

expression changes found in transcription factor deletion mutants

as described in Hu et al. [11]. Briefly, the authors used

microarrays to survey 263 strains of yeast, each with a deletion

of a single transcription factor, for expression changes relative to a
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strain with the transcription factor intact. For each method, we

ranked all promoters according to the metrics described below.

For the matrix method, we ranked intergenic regions by their

highest-scoring motif, for the ChIP-chip method, we ranked

intergenic regions by the smallest p-value observed across

conditions, and for our promoter signature method, we ranked

intergenic regions by the expected value of the R state given by the

model. While the r parameter does not affect rank, we calculated

the expectations using r= .5.

The thermodynamic method relied on the framework described

by Stormo [2]. Briefly, if we assume that each position in a binding

site contributes independently to affinity, then we can describe the

binding energy of a transcription factor and a binding site using

the factor’s position weight matrix: the probability that the

sequence is bound is proportional to the exponentiation of the

score (below). We assumed for each factor that the cell contains a

single protein competed for by all of the different intergenic

regions. We ranked these regions by their probability of being

bound by that factor. The probability of any given binding site

being bound was set as:

P Saboundð Þ~ e
H bij

� �
:Sa

Z

where Z is the sum of all the affinities found in the set and H in the

weight matrix. Thus, the ranking metric, the probability that at

least one binding site is bound, is given by:

P promoterboundð Þ~1{ P
Sa

1{P Saboundð Þ

We used two different methods to compare the performance of

the models. To compare the overall performance of two methods

across all factors, we used a binomial test: we took as the sample

size the number of factors for which either method recovered a

significant association with expression, and we counted the

number of times that one method’s predicted targets exhibited a

larger average magnitude of expression difference.

We used bootstrapping to test whether the spatial signature

method performed better than the thermodynamic method in

predicting targets for each individual factor. We resampled the

entire data set 10,000 times and retrieved the top 50 predictions of

each method. To create a p-value, we counted the number of

times in which the average magnitude of the expression change

exhibited by these targets predicted by the thermodynamic model

was greater than the magnitude of the change exhibited by targets

predicted by the spatial signature model. Two factors showed a

significant difference between the two methods (a= .05).

Supporting Information

Figure S1 The information of each spatial signature
correlates with the information content of its component
motifs. For each transcription factor, we calculated the

information content of its frequency matrix and the information

content of its trained spatial signature model as depicted in figure 2.

We calculated the information content of the frequency matrix

according to Stormo [2], and we approximated the information

content contained by the spatial signature model using a sampling

procedure described in Methods. Note that the values are not

comparable: the full model information describes a reduction of

uncertainty across a whole 1 kb promoter region, while the motif

information describes that reduction in a single binding site.

(TIF)

Figure S2 Spatial signature models are relatively poor
predictors of binding. For each factor, we defined a ‘bound

region’ as one having a binding p-value smaller than .05 in

Harbison [34]. Then, ranking all promoters according to either

their estimated binding probability in the thermodynamic model

(red) or their expected value for the R variable in our spatial

signature model (blue), we plotted a ROC curve. In most cases, the

ROC AUC is substantially greater for the thermodynamic model’s

predictions, although in some cases the signature model showed

perceptibly higher sensitivity at the highest specificities (e.g. Skn7

and Sok2).

(TIF)

Figure S3 Relative predictive ability of models robust to
choice of rank list cutoff. In figure 5, we showed the average

expression change of the top 50 promoter targets as ranked by

ChIP p-values (green), the expected value of the promoter’s R

variable in the spatial signature model (blue), the binding

probability as determined by a thermodynamic model (red), and

the score of the top-scoring site in the promoter (cyan). Here we

show results from the same analysis if the number of top-ranking

promoters is designated as 10, 25, 50 (as shown in figure 5), 100,

200, or 400. The 95% confidence interval is shown in gray and

calculated in the same manner as described in figure 5. The

relative predictive ability of each method is in general robust to the

choice of the rank cutoff.

(TIF)

Figure S4 Exclusion of the training set does not affect
perceived relative predictive ability of models. We

repeated the analysis of figure 5 in the main text, leaving out

the promoters that had been used to train the spatial signature

model. As they did in the original figure, the targets of the spatial

signature model typically showed a greater magnitude of

expression change upon factor deletion than did the targets

predicted by the thermodynamic model (p = .0112, see Methods),

which in turn typically exhibited a greater magnitude of expression

change than those targets predicted by the single site model

(p = .0352).

(TIF)

Table S1 Rank correlation of ChIP and computational model

predictions with expression phenotypes. For each transcription

factor in fig. 5, we computed the Spearman’s rank correlation

between the scores assigned to each locus by an estimator of

function (either ChIP, the spatial signation model (‘Sign’), or a

thermodynamic model (‘Thmo’)) and the fold expression change

measured at that locus upon that transcription factor’s deletion.

These scores are the same as those discussed for figure 5 in the

main text. For each test, we used all loci for which both a score

and a measured expression phenotype were available. An asterisk

marks values of the correlation coefficient significantly different

from zero (p,.05, t test). All methods show a smaller number of

significant associations with expression change as compared to the

method outlined in the main text (11 vs. 20 for ChIP, 10 vs. 14 for

the signature model, and 10 vs. 11 for the thermodynamic model),

and these associations are less coherent: in two cases the sign of the

significant correlation disagreed between the ChIP and a

computational method (there were no such inconsistencies in the

main text).

(DOCX)
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