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Herpes simplex viruses (HSVs) are experts in establishing persistent infection in immune-
competent humans, in part by successfully evading immune activation through diverse
strategies. Upon HSV infection, host deploys pattern recognition receptors (PRRs) to
recognize various HSV-associated molecular patterns and mount antiviral innate immune
responses. In this review, we describe recent advances in understanding the contributions
of cytosolic PRRs to detect HSV and the direct manipulations on these receptors by HSV-
encoded viral proteins as countermeasures. The continuous update and summarization of
these mechanisms will deepen our understanding on HSV-host interactions in innate
immunity for the development of novel antiviral therapies, vaccines and oncolytic viruses.
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INTRODUCTION

Herpesviridae is a family of large DNA viruses that establish persistent infection within their
immune-competent host. Members of the family are further grouped into three subfamilies, i.e.,
alpha-, beta-, and gamma-herpesviruses based on their genome organization, biological
characteristics, and cell tropism (1, 2). Herpes simplex virus type 1 (HSV-1 or human
herpesvirus 1, HHV-1) and type 2 (HSV-2 or human herpesvirus 2, HHV-2) belong to the
alpha-herpesvirus subfamily and the genera simplex virus. They are neurotropic viruses that
establish latent infection in the trigeminal ganglia (TG) and dorsal root ganglia (DRG) for the entire
life of the host (3). Seropositive for HSV are high, averaging nearly 70% in the general population
and approaching 100% in senior citizens of 65-year or older (4, 5). Clinical manifestations of HSV-1
infections include various mucocutaneous diseases, such as herpes labialis, genital herpes, herpetic
whitlow, and keratitis (6). It can cause encephalitis that is often life-threatening, in a small portion of
the infected individuals who are immune-compromised (6). HSV-2 infection frequently causes
genital sores (7).

HSV-1 and HSV-2 are structurally closely related. Herpes simplex virions are spherical particles
with a diameter of 186 nm, with glycoprotein protrusions on the surface, making the full diameter
approximately 225 nm (8). Both viruses contain a linear double-stranded DNA (dsDNA) genome
that is ~150 kilobase (kb) in size and encodes more than 70 open reading frames (ORFs). The viral
genomes are caged by a 125 nm icosahedral capsid, which is surrounded by an amorphous layer
called tegument (9). Packaged within the tegument compartment, a large number of viral structural
proteins are released into the infected cell to establish an environment that is conducive for viral
org January 2021 | Volume 11 | Article 6137991
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replication. The tegument is enveloped by a lipid bilayer within
which multiple viral glycoproteins are embedded. These surface
glycoproteins mediate the entry and fusion of the virus with the
target cell (10).

HSV-1 and HSV-2 share almost identical replication cycles.
Viral entry into host cells is mediated by the interactions between
cellular receptors and viral glycoproteins anchored within the
virion envelope. The initial binding occurs through the binding
of envelope glycoprotein C (gC) and/or gB to heparan sulfate
proteoglycan, which is immediately followed by gD association
with one of the three known receptors to initiate virus entry (11).
The receptors involved are cell-type dependent. While nectin-1 is
the main receptor of epithelial cells, neuronal cells and fibroblasts
(12), HVEM is the main receptor of T cells and cornea epithelial
cells, for HSV infection (13, 14). Upon fusion of the virion
envelope with the host cell membrane, tegument proteins are
released into the cytoplasm of the infected cells to facilitate
capsid trafficking and evade host antiviral immunity. The de-
enveloped nucleocapsid is transported along microtubules to the
nuclear pore, where the viral genome is injected into the nucleus.
At this point, HSVs adopt two modes of infection. In neuronal
cells located at the peripheral ganglia region and lab-isolated
primary neurons, the viral genome stays as a circularized
episome with no active gene transcription except for the latent-
associated transcripts (LATs) (15). LATs do not encode proteins,
but two major RNA species and several small non-coding RNAs
that regulate cell survival and viral lytic gene expression (16).
Therefore, this stage is termed as viral latency with no clear
clinical manifestation. However, the virus can be periodically
reactivated and enters the lytic cycle, largely due to stress
responses and other stimuli not fully understood. During the
lytic cycle, the viral genome serves as the template for
transcription, leading to the sequential production of viral
messenger RNAs and polypeptides of the immediate early (IE),
early (E), and late (L) phases (17). Tegument protein VP16 and
cellular factors promote transcription of IE genes [e.g., infected
cell polypeptide 0 (ICP0), ICP4, ICP22, ICP27 and ICP47]. IE
proteins then promote transcription and translation of E genes,
which produce the necessary components for viral DNA
replication. Replicated viral genomes collaborate with
transcription factors to promote the expression of L proteins
that are structural components of HSV virions (such as
glycoproteins and capsid proteins VP5, VP21, VP23, VP24 and
VP26), thereby maximizing viral protein production in
preparation for viral assembly and egress. Nucleocapsids
assemble in the nucleus, undergo envelopment and de-
envelopment at the nuclear membrane, and re-envelopment in
the TGN to acquire their tegument and glycoprotein-embedded
membrane, en route to the maturation and release of amplified
virion progeny (18). Importantly, viral latency, reactivation and
lytic replication collectively contribute to the life-long ‘persistent
infection’ of HSV in an immune-competent host, leading to the
recurrent pathogenesis associated with the virus.

Upon infection, host cells sense invading viruses via cellular
pattern-recognition receptors (PRRs) to initiate the antiviral
innate immune defense. Structurally, PRRs can be generally
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classified into several major families, including Toll‐like receptors
(TLRs), RIG‐I like receptor (RLRs), NOD‐like receptors (NLRs), C‐
type lectin receptors (CLRs), AIM2‐like receptors (ALRs), and cyclic
GMP‐AMP synthase (cGAS). These PRRs can recognize various
pathogen-associated molecular patterns (PAMPs) from bacteria,
viruses, fungi and protozoa. Microbial PAMPs can be lipoproteins,
carbohydrates, lipopolysaccharides and nucleic acids. PRRs also
recognize endogenous damage- or danger-associated molecular
patterns (DAMP) from the host, which are related to immune
homeostasis and autoimmune diseases. Among PAMPs, the nucleic
acid RNA and DNA have attracted much attention. PRRs
recognizing the nucleic acids include: DNA sensors such as
endosomal Toll-Like Receptor 9 (TLR9), cytosolic Absent In
Melanoma 2 (AIM2), Interferon Gamma Inducible Protein 16
(IFI16), DNA-dependent Activator of Interferon-regulatory
factors (DAI) and cyclic GMP-AMP synthase (cGAS); RNA
sensors TLR3, TLR7, TLR8, and cytosolic Retinoic acid-Inducible
Gene I (RIG‐I), Melanoma Differentiation-Associated protein 5
(MDA5), NLR Family Pyrin Domain Containing 3 (NLRP3), and
Nucleotide-binding Oligomerization Domain-containing protein 2
(NOD2) (19). TLRs are transmembrane receptors, while cytosolic
or nuclear receptors are soluble within their corresponding
compartments. After sensing PAMPs or DAMPs, PRRs activate
their adaptors and downstream Interferon Regulatory Factors
(IRFs) and Nuclear Factor kappa-light-chain-enhancer of
activated B cells (NF-kB), leading to the transcription and
translation of cytokines, chemokines, MHC, and co-stimulatory
molecules. In addition, PRRs can trigger signal transduction and
induce cellular processes that do not rely on transcription, such as
phagocytosis, autophagy, cell death, and inflammasome activation.
These processes work in concert with innate immune response to
mesh a network of antiviral host defense (19). In this review, we will
summarize the recent findings on the contribution of cytosolic
PRRs to sense HSV in host defense, and the counteractive measures
deployed by HSV to deflect these PRRs to establish
persistent infection.
THE RIG-I- AND MDA5-MAVS PATHWAY

RLRs, including RIG-I (20), MDA5 (21, 22), and probable ATP-
dependent RNA helicase DHX58 (LGP2), are cytoplasmic PRRs
that recognize virus-derived or viral infection-associated cellular
double-stranded RNA (dsRNA). RIG-I recognizes short, blunt-
ended dsRNA carrying terminal 5’-triphosphate or 5’-
diphosphate moieties (23), while MDA5 prefers longer dsRNA
independent of its terminal phosphate groups.

Upon engaging viral dsRNA, RIG-I and MDA-5 hydrolyze
ATP to induce their oligomerization on the dsRNA, thereby
exposing their N-terminal caspase activation and recruitment
domains (CARDs) to relay immune activation via seeding the
oligomerization of the adaptor protein MAVS (also known as
IPS-1, CARDIF, and VISA) (24–28). LGP2 lacks the CARD
domain and is reported to inhibit RIG-I-mediated antiviral
responses. Once activated, MAVS forms prion-like oligomers
on the outer membrane of mitochondria (29), which further
January 2021 | Volume 11 | Article 613799
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recruits the tank-binding kinase-1(TKB1) and IkB kinase
(IKK) complex to activate IRF and NF-kB transcription
factors, respectively. Therefore, RIG-I and MDA5 exhibit
antiviral activities to a broad spectrum of RNA viruses,
including influenza A virus, hepatitis C virus, dengue virus,
encephalomyocarditis virus, coronavirus, etc (30). Post-
translational modifications, such as phosphorylation and
ubiquitination, are discovered to tightly regulate the activation
of RIG-I (31–35).

Unlike RNA viruses, genomes of DNA viruses such as herpes
simplex viruses (HSV-1 and -2) do not carry the structural
features required for binding to RLRs. Remarkably, RLRs
demonstrate antiviral activities against HSVs. During HSV-1
latency, two small non-coding RNAs (sncRNAs) coded by the
LAT, sncRNA1 and sncRNA2, were shown to interact with and
activate RIG-I in neuronal cells, resulting in type I interferon
induction and NF-kB activation that promote viral latency and
neuronal survival (36). Upon viral entry, early studies have
shown that RIG-I and MDA5 non-redundantly activate type I
IFN genes upon cytosolic DNA stimulation (37). In support of
this, DNA-dependent RNA polymerase III (Pol III) is reported to
convert cytosolic DNA to 5’-ppp RNA that activates RIG-I (38).
Regarding the source of cytosolic DNA, in macrophages, HSV-1
capsid is found to be degraded by the ubiquitin-mediated
proteasome system, thereby releasing viral DNA into the
cytosol (39). As such, RIG-I and TLR9 is reported can
cooperate to enable the production of type I IFN in HSV-2–
infected mouse macrophages (40). However, MDA5 mediates a
Pol III-independent pathway to sense HSVs in primary human
macrophages (41). The identity of viral RNA or other ligands
activating MDA5 remains unknown. In nonimmune cells
infected with HSV, studies have detected dsRNA localized in
the cytosol, which activates the RIG-I-mediated IFN induction
(42). It is proposed that dsRNA molecules originated from
the complementary transcription of HSV activate RIG-I.
Interestingly, transcripts derived from a cellular 5S ribosomal
RNA pseudogene are found to be unmasked by HSV-1 to induce
RIG-I activation (43). These findings collectively support the role
of RIG-I and MDA5 to sense herpes simplex viruses and induce
IFN response.

To counteract RIG-I- and MDA-mediated type I IFN
responses, HSV has evolved strategies to directly target these
receptors. HSV-2 virion host shutoff (Vhs) protein selectively
suppresses the expression of TLR2, TLR3, RIG-I and MDA-5 in
human vaginal epithelial cells (44). Given that Vhs is not a
sequence-specific endonuclease, it remains unknown how Vhs
selectively targets these mRNAs of innate immune function for
destruction. It was shown that Vhs targets mRNA for
degradation, via associating with translation initiation factors
(45, 46). Thus, infection-induced translational activation of
mRNAs of immune function may be preferentially degraded
by Vhs. US11, a dsRNA-binding protein packaged in the virion,
binds to RIG-I and MDA5 in a manner independent of its RNA-
binding domain and inhibits their interactions with MAVS (47).
Released from the tegument upon infection, UL37 displays an
intrinsic enzyme activity to deamidate RIG-I during HSV-1
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infection (42). Deamidation of two asparagine residues in the
helicase domain of RIG-I abrogates its binding to dsRNA and
subsequent RNA-stimulated helicase activity. As such,
recombinant HSV-1 containing a point mutation that abolishes
UL37 deamidase activity triggers more robust RIG-I activation
and potent IFN responses than wild-type HSV-1. This
recombinant HSV-1 is highly attenuated in vitro and in mice.
THE CGAS-STING-IFN Pathway

Stimulator of interferon genes (STING), also known as Met-Pro-
Tyr-Ser (MPYS), mediator of IRF3 activation (MITA) (48),
Endoplasmic Reticulum IFN stimulator (ERIS) (49),
transmembrane protein 173 (TMEM173), is an endoplasmic
reticulum adaptor that mediates innate immune activation in
response to cyclic dinucleotides (CDNs) (48, 50). These CDNs
include cyclic-di-AMP, cyclic-di-GMP, and cyclic-GMP-AMP.
Upon activation, STING oligomerizes and translocates to the
trans-Golgi network (TGN) where STING recruits TBK1 and
IKK kinase complex to activate IRF and NF-kB, leading to the
production of type I interferons and inflammatory cytokines.
Notably, K27- and K63-linked polyubiquitin chains of STING
are essential for the activation of the transcription activity of
IRF3 (51).

In response to HSV-1 infection, STING is required for IFN
production in multiple cell lines, including murine embryonic
fibroblasts, macrophages and dendritic cells (52). Moreover,
STING protects mice from HSV-1 lethal infection via
intravenous and intracerebral routes, while mucosal infection
of HSV-1 in STING−/− mice results in the increased corneal and
trigeminal ganglia viral titers, demonstrating the importance of
STING in host defense against HSV-1 in vivo (53). As one of the
countermeasures, HSV-1 deploys UL36 (also known as VP1–2)
to deubiquitinate STING, thus impeding the activation of TBK1
and IRF3. UL36 is the largest protein encoded within HSV and
likely provides a scaffold for tegument protein incorporation
(54). In fact, HSV-1 DDUB mutant induces more robust IFN
induction in microglia and shows reduced replication in the
brain compared with wild-type HSV-1 (55). Besides UL36, g134.5
(ICP34.5) interacts with STING and disrupts its translocation
from endoplasmic reticulum to Golgi apparatus, a step that is
essential for STING to transduce innate immune signals (56).
Lastly, ICP27, expressed during HSV-1 de novo infection in
macrophages, interacts with the activated TBK1-STING
signalosome to inhibit IRF3 activation (57), thereby evading
immune response downstream of STING.

Paradoxically, in several cell lines, including HEp-2 and HeLa,
STING is found to be stabilized by HSV-1 viral proteins, and
depletion of STING impedes HSV-1 productive infection (58).
The mechanism by which STING enhances HSV-1 replication in
these cell lines remains unclear. Nevertheless, these findings
suggest the opposing function of STING in host defense is cell
type-dependent. One possibility is that the STING-dependent
immune defense pathway is rewired by the tumor cell to promote
proliferation or growth, which is usurped by HSV-1.
January 2021 | Volume 11 | Article 613799
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Cyclic guanosine monophosphate (GMP)-adenosine
monophosphate (AMP) synthase (cGAS), is a sensor that
binds to virus or cell-associated DNA in a sequence-
independent manner (59). cGAS is previously demonstrated to
mainly reside in the cytoplasm to detect cytoplasmic DNA as it
represents a danger signal. Recent finding also suggests that
cGAS enters the nucleus to inhibit DNA double-stranded breaks
and promotes tumorigenesis (60). The binding of cGAS to DNA
induces its oligomerization and concomitant conformational
changes, enabling its enzymatic domain to catalyze the
synthesis of a second messenger, cyclic GMP-AMP (cGAMP),
from cellular GTP and ATP. cGAMP serves as a ligand to
activate STING and the downstream IRF and NF-kB branched
pathways (61). Therefore, the cGAS-STING pathway plays
pivotal roles in inducing type I IFNs and cytokines to mount
innate immune responses against bacterial, DNA viruses, cellular
genome instability and other related danger signals.

Soon after its discovery, the contribution of cGAS to antagonize
HSV-1 was demonstrated by that cGAS−/− mice were more
susceptible to HSV-1 challenge than wild-type mice (62). cGAS
deficiency also led to impaired IFN expression in microglia, thus
resulting in the susceptibility of the mice to herpes simplex
encephalitis (HSE) upon ocular infection (63). As cGAS senses
HSV-1 DNA to trigger innate immune responses, it is not
surprising that HSV-1 evolved diverse strategies to antagonize
this pattern recognition receptor and its downstream signaling.
HSV-1 tegument protein UL41, an mRNA-specific endonuclease,
downregulates the mRNA and protein level of cGAS to abrogate
cGAS- and STING-mediated signaling (64). In addition, another
tegument proteinVP22 is found to interact with cGAS and directly
inhibit its enzymatic activity (65).b-catenin is found to be required
for the optimal inductionof IFN inducedby cGAS.As such,HSV-1
US3 phosphorylates b-catenin at Thr556 and blocks its nuclear
translocation to dampen cGAS-dependent host antiviral responses
(66). We identify that HSV-1 tegument deamidase UL37 targets
cGAS, in addition to RIG-I, for deamidation (67). Deamidation of
N210, which is in close proximity to the catalytic triad of cGAS,
abolishes its catalytic activity to synthesize cGAMP, thereby
shutting down cGAMP production and downstream signaling.
Interestingly, deamidation does not impair DNA-binding and
oligomerization of cGAS, implying the dominant negative effect
of deamidated cGASon the cGAS-IFNpathway. Importantly, non-
human primates are resistant to HSV-1 infection and their cGAS
proteins contain histine or arginine at the equivalent location of
residue 210, which makes cGAS resistant to HSV-1–induced
deamidation (67). These findings suggest that cGAS deamidation
contributes to the host susceptibility of HSV-1. Altogether, our
studies highlight the utmost immune evasion functions ofUL37 by
targeting multiple sensors for deamidation.
IFI16

IFI16 belongs to the IFN-inducible PYHIN-200 gene family.
Members in this family carry the signature HIN domain (IFI16
has two) that binds to dsDNA or ssDNA in a sequence-
Frontiers in Immunology | www.frontiersin.org 4
independent manner. In addition to a DNA-binding domain,
IFI16 contains a PYRIN domain (PYD) that mediates protein-
protein interactions. Binding to DNA can trigger two distinct
signaling pathways, i.e., IFN signaling and inflammasome
signaling, depending on the nature of the stimulating signal
(68). During viral infection, IFI16 is proposed to bind viral DNA
and trigger the activation of STING and induction of IFN,
although the detailed mechanism remains unknown (68).

Depletion of IFI16 in the cornea by in vivo siRNA transfection
results in the decrease of IRF3 phosphorylation and
correspondingly increase of HSV-1 viral replication, while
MyD88−/− and Trif−/− double knockout mice demonstrate
similar IFN production compared to WT controls. This result
suggests that IFI16, rather than TLRs,mediates the innate immune
response in corneal epithelium against HSV-1 (69). Unlike the
cornea, IFI16 is largely dispensable for host defense against HSV-2
in the urogenital system, while TLR2, TLR9, and DAI are essential
for IFN and cytokine production (70). In primary human foreskin
fibroblasts (HFFs), nuclear resident IFI16 senses the HSV-1 DNA
to induce IFN production in a STING-dependent manner, while
cGAS promotes IFI16-mediated IFN induction via stabilizing
IFI16 protein (71). However, how nuclear IFI16 triggers STING
activation remains to be addressed. Another study reports a
different mechanism of IFI16 to restrict HSV-1 replication in
multiple cell lines, where IFI16 selectively binds to HSV-1
transcription start sties to block viral gene transcription via
inducing repressive histone modifications (72). These studies
demonstrate multiple functions of IFI16 to restrict HSV-1
replication. The controversy on IFI16 and cGAS as the HSV-1
sensor could be explained by the differential compartmentalization
of the two sensors. For example, cGAS playsmajor roles in sensing
HSV-1 DNA in macrophages, where viral DNA is exposed in the
cytosol due to capsid degradation (39). In contrast, IFI16 may
detect and mount innate immune response in cells where DNA is
delivered into the nucleus. However, a number of recent studies
reported that part of the cGAS resides in the nucleus (60, 73),
adding to the complexity of the nuclear DNA-sensing mechanism
against HSV-1. Following the sensing of nuclear DNA, an
immediate question is how nuclear signal of activated IFI16 is
relayed to the cytoplasmic STING and downstream signaling
events. These questions call for further investigation.

To counteract IFI16, HSV-1 encodes ICP0, a E3 ligase, to
induce IFI16 degradation in a proteasome-dependent manner
(74). Interesting, ICP0 reduces IFI16 protein in HFFs and oral
keratinocytes (NOKs), whereas HSV-1–induced loss in IFI16
protein is dependent on Vhs-mediated mRNA decay (75). These
findings highlight distinct mechanisms by which HSV-1
antagonizes the expression of IFI16 in a cell type-specific fashion.
AIM2

Transfection of bacterial, viral and cellular DNA into
macrophages leads to the formation of inflammasomes (76,
77). The inflammasome is a protein complex formed in
response to the activation of several sensors, including the
January 2021 | Volume 11 | Article 613799
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NLR (NOD-like receptor) or PYHIN (containing pyran and HIN
domains) proteins upon recognizing varieties of viral PAMPs
(78). Genetic manipulation via RNA interference in cultured
cells and knockout in mice demonstrates that AIM2 is a cytosolic
DNA sensor (79–84). AIM2 consists of a C-terminal HIN-200
domain and an N-terminal pyrin domain, which form an
intramolecular loop to establish a self-repressing state (85).
Upon stimulation, the HIN-200 domain binds directly to the
sugar-phosphate backbone of dsDNA, releasing the pyrin
domain which forms homotypic interaction with the pyrin
domain of apoptosis-associated speck-like protein containing a
carboxy-terminal CARD (ASC) (86). The CARD of ASC then
interacts with the CARD of pro-caspase-1 to activate caspase-1
and form the AIM2 inflammasome. Finally, the activated
caspase-1 cleaves the pro-IL-1b and pro-IL-18 and induces the
release of the mature IL-1b and IL-18 from the cell (85, 87).
Importantly, the expression of the sensors and the cytokine
precursors requires a priming step that is stimulated by pro-
inflammatory signals such as LPS. Besides cytokine releasing,
activated AIM2 inflammasome also induces an inflammatory cell
death to protect infected host from invading pathogens,
including intracellular bacteria (88, 89), vaccinia virus (79, 89),
and murine cytomegalovirus (a beta-herpesvirus) (89). In the
absence of microbial infection, AIM2 also plays an important
role in sensing damage-associated molecular patterns (DAMPs)
released by distressed or damaged cells (90). The cellular DNA,
as one of the DAMPs produced by nuclear DNA damage or
immunogenic cell death, activates AIM2 and initiates
inflammasome assembly to promote the secretion of IL-1b and
IL-18 (91–93). It was reported that inhibition of potassium efflux
inhibited the secretion of IL-1b mediated by AIM2 (94),
suggesting that like NLRP3, AIM2 inflammasome activation
may depend on distinct ion fluxes and concentrations (95).

Because viral DNA can be released into the cytoplasm during
HSV-1 infection in macrophages, it should engage cytoplasmic
DNA sensors such as AIM2 (39, 96). However, HSV-1 infection
of macrophages induces inflammasome activation independent
of AIM2, in stark contrast to murine cytomegalovirus that
efficiently induces AIM2-dependent inflammasome activation
(89). Based on this observation, it is hypothesized that HSV-1
may have evolved a mechanism(s) to evade AIM2-dependent
inflammasome activation. Indeed, HSV-1 tegument protein
VP22 was reported to inhibit AIM2-dependent inflammasome
activation and IL-1b secretion in infected macrophages (97).
VP22 interacts with AIM2 and prevents its oligomerization, an
essential step in AIM2 inflammasome activation. Consequently,
recombinant VP22-deficient HSV-1 (HSV-1DVP22) potently
induces AIM2 inflammasome activation and subsequent
secretion of IL-1b and IL-18. Similarly, HSV-2 and PRV VP22
homologues also demonstrate inhibitory effect on AIM2-
dependent inflammasome activation (97). Interestingly, KSHV
tegument protein ORF63 interacts with an inflammasome sensor
NLRP1 and prevents its oligomerization to block inflammasome
activation in ways similar to VP22 (98). Collectively, these
findings reveal a mechanism that the inhibition of AIM2-
dependent inflammasome activation appears to be shared by
diverse herpesviruses.
Frontiers in Immunology | www.frontiersin.org 5
DAI

DNA-dependent activator of IRFs (DAI, also known as ZBP-1) is
the first putative cytosolic DNA receptor identified (99). DAI
recruits TBK1 and IRF3, and induces type I IFN production after
binding to dsDNA. HSV-1 induces DAI activation in the
murine fibroblast cell line L929 (99). Structurally, DAI
contains tandem amino-terminal Z-DNA-binding domains,
Za1 and Za2 (also called Zb), which binds double-stranded Z-
form DNA (99, 100). In addition to Z-DNA-binding domains,
DAI also contains RIP homotypic interaction motifs (RHIMs)
that trigger necroptosis and activate NF-kB pathway by
interacting with the receptor-interacting kinase-3 (RIPK3)
(101, 102). RIPK3 and its downstream substrate Mixed Lineage
Kinase domain-Like protein (MLKL) contributes to the
programmed necrotic cell death, which curtails viral
replication and restricts dissemination of virions (103, 104). In
this pathway, DAI acts as a nucleic acid sensor to detect viral
RNA transcripts rather than the cytoplasmic viral DNA during
the infection of influenza (105–108), vaccinia (109), MCMV
(110, 111), and HSV1 (112, 113), and triggers necroptosis. On
the other hand, these viruses manage to inhibit necroptosis by
encoding gene products to target DAI-mediated signaling (109,
114, 115). MCMV M45 inhibits virus-induced necroptosis by
blocking DAI-dependent oligomerization and activation of
RIPK3 (115), while HSV-1 deploys ICP6 (UL39) to prevent the
formation of DAI-RIPK3-MLKL complex induced by virus
infection (116). Therefore, MCMV and HSV1 deploy similar
strategies to block DAI-mediated necroptosis and maintain the
viability of the infected cells.
PKR

DsRNA-dependent protein kinase R (PKR), an interferon-
stimulated serine/threonine kinase, is a potent antiviral
protein whose activity depends on dsRNA binding (117, 118).
PKR consists of two dsRNA-binding domains (dsRBDs)
and a kinase domain (119). Encountering dsRNA, DsRBDs
bind to the backbone of a RNA in a sequence-independent
manner, thus triggering a conformational change and
subsequent oligomerization of PKR (120). PKR undergoes cis-
phosphorylation within the activation loop by its kinase domain
(121). Once activated, PKR phosphorylates the translation
initiation factor eIF2a, leading to the suppression of eIF2 in
cap-dependent translation and a global shutdown of translation
(122). As such, PKR exerts its antiviral activity on a broad
spectrum of DNA and RNA viruses by blocking the translation
of cellular and viral mRNAs. Besides inhibiting protein synthesis,
PKR was reported to promote the RLR-mediated type I
interferon signaling via phosphorylation of IkB (123) and
stabilization of mRNAs of type I interferon genes (124).
Nevertheless, the molecular mechanism underpinning the
PKR-dependent amplification of interferon signaling is not
fully understood.

In HSV-1–infected cells, PKR is shown to be activated, which
is required for the activation of NF-kB (125). It remains unclear
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whether dsRNAs activating PKR originate from HSV-1–encoded
symmetrical transcripts or the HSV-1–infected host genome.
Interestingly, HSV-1 may activate PKR via a cellular protein
activator known as PACT (126). To escape PKR-mediated
antiviral responses, HSV-1 deploys g134.5 (ICP34.5) to recruit
cellular protein phosphatase 1a (PP1) that counteracts PKR-
mediated eIF2a phosphorylation and restores translation (127–
129). Moreover, ICP34.5 antagonizes Beclin 1-mediated
autophagy, an antiviral process that is dependent on PKR
(130). US11, a tegument protein, directly binds PKR to inhibit
its conformational change and activation by PACT (126). It
was later demonstrated that virion-associated US11, rather
than its expression during replication, mediates the inhibition
of PKR autophosphorylation (131). Additionally, Vhs degrades
RNAs to block PKR activation during early stages of HSV-1
infection (132). These diverse viral strategies to antagonize PKR
further emphasize the importance of PKR as a potent anti-
HSV molecule.
DISCUSSION

In the current review, we summarized the recent findings on the
contribution of cytosolic PRRs in sensing HSVs and the direct
countermeasures evolved by these viruses (Figure 1). During
HSV-1 infection, diverse molecular patterns throughout the
virus life cycle, including viral DNA genome, transcription-
Frontiers in Immunology | www.frontiersin.org 6
derived RNA species, unmasked cellular RNA, etc., are
dynamically sensed by the PRRs to trigger innate immune
signaling. On the other side of the coin, HSV develops various
countermeasures, ranging from transcription shutoff, protein
degradation, interaction competition to enzymatic activity
disruption, to escape PRR detection. These lessons learnt from
our characterization of HSV-PRR interactions deepen the
understanding of the nature and regulations of PRR-mediated
innate immune signaling, and may lead to the discovery of novel
antiviral modalities. Importantly, strategies interfering with these
manipulations can be potentially developed into novel antiviral
therapies, while immune modulatory-deficient HSV mutants are
good candidates for vaccine and oncolytic virus strains, further
highlighting the translational value of the basic research.

One of the knowledge gaps to fill is on the functional
redundancy of the PRRs in sensing HSV, as controversy
remains on defining the ‘true’ sensor for HSV. While a simple
explanation is that such redundancy may have been evolved by
the host as backup protections during the arms races with the
virus, emerging studies have implicated these PRRs have unique
roles in mounting immune responses and antagonizing HSV-1
infection in a temporal and cell/tissue-specific manner. Notably,
part of the previous studies relies heavily on a single model cell
line, sometimes cancer cell lines, to characterize HSV-PRR
interactions, which limits the scope of the findings as some
PRRs or signaling pathways may be missing. Thus, more
investigations are needed to systematically address the
FIGURE 1 | HSV manipulations on the cytosolic pattern recognition receptors. Viral infection derives molecular patterns (DNAs and RNAs) which activate pattern
recognition receptors (light blue) to transduce innate immune signaling through distinct adaptor proteins (blue) and ultimately trigger antiviral responses, including but
not limited to cytokine production, inflammasome activation, translational inhibition and necroptosis. To escape innate immune surveillance, HSV encode viral proteins
(red) to manipulate multiple steps of each signaling pathway via diverse mechanisms, resulting in a complex HSV-host interaction network on innate immunity.
January 2021 | Volume 11 | Article 613799

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. HSV-PRRs: An Arms Race
contributions of PRRs, including more in vivo studies of HSV
infection using tissue-specific knockout mouse models.

Interestingly, ‘functional redundancy’ applies to the virus too,
because HSVs deploy multiple proteins to target the same sensor,
e.g. RIG-I and cGAS, though via distinct molecular mechanism.
One possibility is that these viral proteins sequentially work on the
sensor throughout theHSV life cycle tomaintain constant immune
evasion. Alternatively, these viral proteins are cooperating to
synergistically antagonize PRR functions or operate in a tissue-
specific manner. It will require more work to define the ‘major
players’ in these viral proteins that potently antagonize innate
immune responses, as efforts inmanipulating such proteins confer
the greatest susceptibility of the virus to immune response and thus
could serve as the best antiviral strategy.
Frontiers in Immunology | www.frontiersin.org 7
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