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Abstract: (1) Background: The intestinal microbiota plays an essential role in maintaining the host’s
health. Dysbiosis of the equine hindgut microbiota can alter the fermentation patterns and cause
metabolic disorders. (2) Methods: This study compared the fecal microbiota composition of horses
with intestinal disease and their healthy counterparts living in Korea using 16S rRNA sequencing
from fecal samples. A total of 52 fecal samples were collected and divided into three groups: horses
with large intestinal disease (n = 20), horses with small intestinal disease (n = 8), and healthy horses
(n = 24). (3) Results: Horses with intestinal diseases had fewer species and a less diverse bacterial
population than healthy horses. Lactic acid bacteria, Lachnospiraceae, and Lactobacillaceae were
overgrown in horses with large intestinal colic. The Firmicutes to Bacteroidetes ratio (F/B), which
is a relevant marker of gut dysbiosis, was 1.94, 2.37, and 1.74 for horses with large intestinal colic,
small intestinal colic, and healthy horses, respectively. (4) Conclusions: The overgrowth of two lactic
acid bacteria families, Lachnospiraceae and Lactobacillaceae, led to a decrease in hindgut pH that
interfered with normal fermentation, which might cause large intestinal colic. The overgrowth of
Streptococcus also led to a decrease in pH in the hindgut, which suppressed the proliferation of the
methanogen and reduced methanogenesis in horses with small intestinal colic.

Keywords: fecal microbiota; colic; NGS; thoroughbred; methanogen

1. Introduction

Horses are nonruminant herbivores whose digestive system has evolved to utilize
the fibers in the roughages in their hindgut [1–4]. The large intestine of horses is an
anaerobic fermentation chamber filled with fibrolytic bacteria. Therefore, the large intestinal
microbiota of horses plays an essential role in the utilization of plant fibers by producing
volatile fatty acids (VFAs), such as acetate, propionate, and butyrate, which are absorbed
through the cecal and colonic epithelium and distributed for use throughout the body [5].
In addition to metabolic benefits, the intestinal microbiota provides the host with other
advantages, including protection against pathogen overgrowth, stimulation of the immune
response in the gut, and enhanced intestinal barrier function by regulating gene expression
in the host intestinal epithelial tissue [6–11].

The relationship between the gut microbiota and clinical conditions, such as inflam-
matory bowel disease, colorectal cancer, or diabetes, have been examined in large-scale
studies involving humans [12–16]. Studies performed on different animal species have
shown that the gut microbial dynamics can be influenced by various factors, including
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the environment, diet, gestational age, hospitalization, antibiotics, delivery mode, stress,
and feeding method [7–9,12,17,18]. Similarly, differences in the fecal bacterial communities
between horses with gastrointestinal diseases and their healthy counterparts have been
reported [6,19–22]. Furthermore, an acute change in the colonic microbiota was observed in
horses that underwent an exploratory laparotomy to treat equine colic [23]. A disturbance
in the equine hindgut microbiota can alter the fermentation patterns and ultimately lead to
metabolic disorders [24].

Carbohydrate fermentation is the main source of lactic acid production in the equine
hindgut. In healthy horses, the luminal lactate is converted to VFAs by commensal bacteria.
Therefore, very little lactate is present in their hindgut [25]. Rapid dietary changes, such
as grain overload, have long been recognized to disrupt normal fermentation in the horse
hindgut. Consequently, excessive carbohydrate fermentation leads to lactate accumulation
in the hindgut, which can induce subclinical acidosis. Low pH in the gut lumen alters the
hindgut microbiota, which causes the release of endotoxin from the death of acid-sensitive
Gram-negative bacteria and compromises the intestinal barrier function. Such changes
linked to development of potentially life-threatening complications include colitis [6,22,26],
laminitis [11,20,27,28], and systemic inflammatory response syndrome [29].

Alteration of the equine hindgut microbiota in clinical conditions has been reported in
many studies [2,6,11,19–21]. Similarly, discrepancies in the hindgut microbiota in horses
with intestinal disease and healthy horses have been reported [2,6,20–22]. On the other
hand, the associations of equine hindgut microbiota with health and disease have not been
entirely understood [6,20–22,26,30]. The present study was conducted to determine the
differences between the horse fecal microbiota of healthy and diseased horses. In this
study, we differentiated the diseased horses in large and small intestinal colic diseased
animals. Our results further contribute to our understanding of how horse fecal microbiota
is associated with different intestinal colic disorders.

2. Materials and Methods
2.1. Horse Descriptions and Fecal Sampling

All animal protocols were approved by the Institutional Animal Care and Use Com-
mittee of Korea Racing Authority (KRA IACUC-2009-AEC-2007). A total of 28 adult
horses admitted to the Jeju Stud Farm Equine Clinic of Korea Racing Authority to evaluate
gastrointestinal diseases were included in this study.

The 28 horses showing signs of colic were divided further into two study groups:
horses with large intestinal colic (LC, n = 20) and horses with small intestinal colic (SC,
n = 8). A total of 24 clinically healthy adult horses (HH, n = 24) from seven independent
farms in Jeju island, Korea, were also included in the study (6.2 ± 3.1 years, 8 male,
14 female, 2 gelded). The horses in the control group did not receive any antimicrobials
or anti-inflammatory drugs. They had no history of gastrointestinal diseases for the
two months prior to the study. All horses included in this study were thoroughbreds.

The fecal samples were collected from horses with gastrointestinal diseases within
two hours after admission to the clinic. The fecal samples were collected directly from
the rectum to minimize environmental contamination using clean rectal gloves and sterile
lubrication (Kruuse, Langeskov, Denmark) as described previously [31]. Each sample was
placed in a sealed collection bag and stored at −80 ◦C until DNA extraction. Fresh fecal
samples were obtained from the healthy control horses in a similar manner.

2.2. Microbial Community Analysis

The fecal DNA was extracted using a PowerFecal DNA extraction kit (Qiagen, Hilden,
Germany). The V3 and V4 regions of the partial 16S rRNA gene were amplified by a
polymerase chain reaction (PCR) using the 341F (5′-TCGTCGGCAGCGTCAGATGTGT
ATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and 806R (5′-GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) primer sets. Two-step
PCR was performed to construct the MiSeq library. Sequencing was performed at Macrogen
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Inc. (Seoul, Korea) according to the manufacturer’s instruction. The sequence data were
processed using MOTHUR according to the standard operational protocol as previously
described online (https://mothur.org/wiki/miseq_sop/) (accessed on 14 April 2021) with
a minor modification of singleton removal after the pre.cluster subroutine. Silva.nr_v132
was used for alignment, and RDP version 11.5 was used for the taxonomic classification.
The operational taxonomic units (OTUs) were assigned using the opti.clust algorithm with
a sequence distance at 0.03. PICRUSt2 was used to predict the metabolic activities based on
16S rRNA gene sequences. The MetaCyc database [32] was used to define the differentially
abundant metabolic pathways indicated by PICRUSt2.

2.3. Statistics

MOTHUR was used to calculate the ecological indices (Chao I and Shannon) for
species richness and evenness. Nonmetric multidimensional scaling (NMDS) was per-
formed and plotted with ellipses at the 95% confidence level using the vegan R package.
MOTHUR was used to analyze the molecular variances (AMOVA) to determine the sig-
nificant differences in fecal microbiota in the study. Differential abundance analysis was
performed using the liner discriminant analysis effect size (LEfSe) and ALDEx2 for the
OTUs and predicted metabolic activities, respectively. A Wilcoxon rank-sum test was
applied to compare the ecological indices. The differences were considered significant
at p < 0.05.

3. Results
3.1. α-Diversity Analysis

The differences in the alpha-diversities between horses with intestinal disease and
healthy horses were analyzed using the Chao I and Shannon indices for species richness
and evenness estimation, respectively. All samples showed a Good’s coverage greater
than 98%, suggesting that sequence depth was sufficient to cover most of the species in
the samples (Figure S1). The species richness of the horses with large intestinal colic was
lower than that of healthy horses (p < 0.0001). In contrast, there was no difference between
healthy horses and horses with small intestinal colic (Figure 1A). On the other hand, the
species evenness was lower in both colic groups compared to the healthy horses (Figure 1B)
(p < 0.05). These results suggest that the intestinal disease status affects the alpha-diversity
of the fecal microbiota.
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3.2. β-Diversity and Taxonomic Composition Analysis

The fecal microbiota of horses with small intestinal colic was more distant from
healthy horses or horses with large intestinal colic (Figure 2). AMOVA revealed significant
differences in the intestinal microbiota (p < 0.01). A comparison of the fecal microbial
communities at the phylum level in previous studies showed that healthy horses possessed
a consistent portion of Firmicutes and Bacteroidetes [33–37], whereas a high abundance of
Firmicutes was observed among horses with small intestinal colic.
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Horses with large intestinal colic appeared to have a higher abundance of Bacteroidetes
and a lower abundance of Verrucomicrobia than healthy horses (Figure 3A). At the fam-
ily level (Figure 3B), a higher abundance of Lachnospiraceae and Streptococcaceae was
observed in horses with large intestinal colic, and horses with small intestinal colic had
a significantly lower Subdivision5_unclassified family belonging to the phylum Verru-
comicrobia compared to healthy horses (p < 0.05). Lactobacillaceae and Coriobacteriaceae
were significantly more abundant in horses with large intestinal colic than healthy horses
(p < 0.05). On the other hand, Methanobacteriaceae was significantly lower in horses with
small intestinal colic than healthy horses (p < 0.05).
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3.3. Differentially Abundant Genera

The differentially abundant genera in each group were identified by LEfSe (Figure 4).
In horses with intestinal disease groups, the density of Enterococcus and Acinetobacter were
increased significantly, whereas the presence of Methanobrevibacter was reduced significantly
(p < 0.05). Interestingly, the well-known probiotics Lactobacillus and Bifidobacterium, which
are commonly known probiotics in horses, were increased in horses with large intestinal
colic and small intestinal colic, respectively. Some Blautia, Enterococcus, and Streptococcus
species were more abundant in horses with intestinal disease, even though these are
known as probiotics for humans [38–40]. In horses with small intestinal colic, genera
Kurthia, Weissella, and Rummeliibacillus were abundant, but their roles in the gut are yet
to be discovered. Most of the fecal microbiota genera that were reduced in horses with
intestinal disease were unclassified genera except for Methanobrevibacter in both horses with
large intestinal colic and small intestinal colic and Coprococcus, Faecalitalea, Treponema, and
Akkermansia in horses with small intestinal colic. Treponema is a known human pathogen,
whereas Akkermansia and Coprococcus are beneficial to humans. Faecalitalea is not a well-
known bacteria.
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3.4. Comparison of the Metabolic Activities between Horses with Intestinal Disease and
Healthy Horses

Tables 1 and 2 list the significantly enriched and depleted metabolic activities in horses
with small intestinal colic compared to healthy horses, respectively. The enriched pathways
were involved in two functions, enterobactin biosynthesis and the TCA cycle. On the
other hand, the depleted pathways were also involved in two functions, methanogen
lipid membrane biosynthesis and methanogenesis. Because both functions are related
to methanogenic bacteria, likely Methanobrevibacter, a loss of Methanobrevibacter may be
associated with small intestinal colic. Nevertheless, the intestinal metabolic activities were
similar in healthy horses and those with large intestinal colic.

Table 1. Enriched metabolic pathways in the SC compared to the HH.

Pathways (MetaCyc) Enriched Pathways in SC ALDEx Diff. Metabolism

ALL-CHORISMATE-PWY Superpathway of chorismate metabolism 8.16 Enterobactin
biosynthesisENTBACSYN-PWY Enterobactin biosynthesis 8.02

PWY0-321 Phenylacetate degradation I (aerobic) 5.05

TCA cycle

PWY-5178 Toluene degradation IV (aerobic) (via catechol) 5.01
PWY-6185 4-methylcatechol degradation (ortho cleavage) 4.77

PWY0-1277 3-phenylpropanoate and 3-(3-hydroxyphenyl)
propanoate degradation 4.60

PWY-5417 Catechol degradation III (ortho-cleavage pathway) 4.53
PWY-6182 Superpathway of salicylate degradation 4.38

PWY-5431 Aromatic compounds degradation via &
beta;-ketoadipate 4.21

TCA-GLYOX-BYPASS Superpathway of glyoxylate bypass and TCA 4.11

HH, healthy horses; SC, horses with small intestinal colic.
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Table 2. Depleted metabolic pathways in the SC compared to the HH.

Pathways (MetaCyc) Depleted Pathways in SC ALDEx Diff. Metabolism

PWY-6141 Archaetidylserine and archaetidylethanolamine
biosynthesis −2.52

Methanogen
lipid membrane

biosynthesis

PWY-7286 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis −2.39
PWY-6167 Flavin biosynthesis II (archaea) −2.35
PWY-6350 Archaetidylinositol biosynthesis −2.32
PWY-6349 CDP-archaeol biosynthesis −2.31

P261-PWY Coenzyme M biosynthesis I −2.49

Methanogenesis
METHANOGENESIS-PWY Methanogenesis from H2 and CO2 −2.40

PWY-6148 Tetrahydromethanopterin biosynthesis −2.29
PWY-5198 Factor 420 biosynthesis −2.27

TCA-GLYOX-BYPASS Coenzyme B biosynthesis −2.21

HH, healthy horses; SC, horses with small intestinal colic.

4. Discussion

As demonstrated in other studies [19,21,29], this study confirms that the bacterial
community compositions of horses with intestinal diseases are considerably different from
that of their clinically healthy counterparts. In particular, horses with large intestinal colic
had lower species evenness and richness than the healthy horses, with some bacterial
species no longer detectable and the generation of greater evenness.

In this study, a clear difference in the bacterial compositions was observed between
horses with intestinal disease and healthy horses at the phylum level. The Firmicutes to
Bacteroidetes (F/B) ratio, which has been reported to indicate gut dysbiosis in humans [41],
was increased in horses with an intestinal condition compared to healthy controls, which
is consistent with previous reports [21,42]. In addition, the average F/B ratios were 1.94,
2.37, and 1.74 for horses with large intestinal disease, small intestinal disease, and healthy
controls, respectively. In contrast to previous reports, increased Bacteroidetes in horses
admitted for colic was not observed in the current research [19,42]. This suggests that the
F/B ratio alone is not enough to evaluate the intestinal disease status of horses.

At the family level, horses with large intestinal illnesses had larger numbers of two
lactic acid bacteria, Lachnospiraceae and Lactobacillaceae. This observation may support
previous findings that excessive lactate production and decreases in the hindgut luminal
pH are associated with an increased relative abundance of Streptococcus and lactic acid
bacteria in horses with colic. Furthermore, a decrease in luminal pH negatively affects
fiber digestion and volatile fatty acid production [11,43,44], which might have decreased
Methanobacteriaceae. This is likely because methanogens are quite sensitive to the acidic
environment, as reported previously [45].

At the genus level, overgrowth of Lactobacillus or Streptococcus was observed in horses
with colic with large or small intestinal origin, respectively. Similar to the current findings,
an increased abundance of lactic acid bacteria was reported to be a major cause of intestinal
dysbiosis and colic [11,43,46]. Moreover, a decrease in pH may decrease the abundance
of methanogens in intestinal disease horses [47]. In the current study, both Escherichia
and Streptococcus were increased in horses with intestinal diseases, similar to previously
reported findings [11,26,44]. In detail, Escherichia was increased markedly in horses with
large intestinal colic, while an increased number of Streptococcus was noted in horses with
small intestinal disease [11,44].

Although the beneficial effects of Lactobacillus and Bifidobacterium are well documented
in humans [48], both genera were more abundant in horses with colic in the current study.
Such a discrepancy may suggest that the role of specific microbes can vary in different
animal species. Further investigation on equine fecal microbiota and their functional role
in health and disease will be needed to understand the benefits and dynamics of probiotics
of horses.
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Moreover, the abundance of Methanobrevibacter could be used to monitor the health
status of horses because the results showed that Methanobrevibacter decreased significantly
in horses with large and small intestinal colic compared to healthy horses. Methanogenic
archaea are often abundant in healthy equine colon [49], which metabolizes H2 and CO2 to
produce methane and likely supports the degradation of cellulolytic bacteria in the lower
gut [50,51]. These results indicate that the abundance of Methanobrevibacter is associated
with a healthy horse status. Steinberg and Regan reported that the quantification of methyl
coenzyme M reductase α-subunit (mcrA) genes by real-time PCR successfully quantified
different phylogeny of methanogens [52]. Further investigations with such qPCR-based
quantification of methanogenic bacteria and diagnostics of horse physiological conditions,
such as colic, enteritis, and other metabolic diseases, could verify if the abundance of
methanogens can be used to indicate horse intestinal health.

While several genera were differentially abundant between horses with large intestinal
colic and healthy horses, no significant difference was observed in intestinal metabolic
activities predicted by PICRUSt2. This might be because nonhuman samples are less
accurate in predicting metabolic activities through PICRUSt algorithms. On the other
hand, metabolic activity prediction also indicate that decreased methanogenic activities
and increased activities of enterobactin biosynthesis are associated with the disease status
of horses.

The limitations of this study include the small number of horses recruited in colic
groups. A follow-up study using a larger number of horses with different types of intestinal
disease will be needed to better understand the differential distribution of microbiota
richness in different pathogenesis of colic.

5. Conclusions

The bacterial community composition in horses with intestinal disease was substan-
tially different from that of healthy horses. Horses with intestinal disease had fewer
species and a less diverse bacterial population than healthy horses. The overgrowth of
lactic acid-producing bacteria, such as Lachnospiraceae, Lactobacillaceae, and even pro-
biotics for humans, can decrease the hindgut pH, which subsequently interferes with
fermentation and produces excessive gas in the hindgut, eventually causing large intestinal
colic. The abundance of methanogen, however, might be negatively associated with horse
intestinal health.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/vetsci8060113/s1, Figure S1: Good’s coverage obtained for each horse fecal sample in
this study.
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