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Human leukocyte antigen (HLA) genotyping gains intensive attention due

to its critical role in cancer immunotherapy. It is still a challenging issue to

generate reliable HLA genotyping results through in silico tools. In addi-

tion, the survival impact of HLA alleles in tumor prognosis and

immunotherapy remains controversial. In this study, the benchmarking of

HLA genotyping on TCGA is performed and a ‘Gun-Bullet’ model which

helps to clarify the survival impact of HLA allele is presented. The perfor-

mance of HLA class I genotyping is generally better than class II. POLY-

SOLVER, OptiType, and xHLA perform generally better at HLA class I

calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA-HD

obtained the highest accuracy of 0.904 on HLA class II alleles calling.

Each HLA genotyping tool displayed specific error patterns. The ensemble

HLA calling from the top-3 tools is superior to any individual one. HLA

alleles show distinct survival impact among cancers. Cytolytic activity

(CYT) was proposed as the underlying mechanism to interpret the survival

impact of HLA alleles in the ‘Gun-Bullet’ model for fighting cancer. A

strong HLA allele plus a high tumor mutation burden (TMB) could stimu-

late intensive immune CYT, leading to extended survival. We established

an up to now most reliable TCGA HLA benchmark dataset, composing of

concordance alleles generated from eight prevalently used HLA genotyping

tools. Our findings indicate that reliable HLA genotyping should be per-

formed based on concordance alleles integrating multiple tools and incor-

porating TMB background with HLA genotype, which helps to improve

the survival prediction compared to HLA genotyping alone.

1. Introduction

Human leukocyte antigen (HLA) plays a critical role

in antigen presentation during self or nonself immune

recognition process, that ultimately launch the initial

immune signaling response. It locates at the most poly-

morphic region in chromosome 6p21. 19 970 individ-

ual HLA proteins encoded by 28 786 alleles were
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reported in latest IMGT/HLA database [1] (Release

3.42.0). Typically, HLA system contains two copies of

HLA-A, B, C, DRB1, DQB1, DPB1, DQA1, etc. Such

combination of different HLA alleles makes the dra-

matically distinct immune response between individu-

als, even under the same internal/external stimulation.

Therefore, accurate HLA genotyping and stringent

matching of patient and donor are extremely impor-

tant in organ transplantation. Any slight mismatches

may lead to a serious graft-versus-host rejection. Cur-

rently, capillary electrophoresis-based dye-terminator

Sanger sequencing is served as the gold-standard

approach for high resolution HLA genotyping in clin-

ical laboratories. Since two copies of alleles are

sequenced together in one reaction, it is difficult to

determine whether the detected SNPs come from the

same chromosome (cis) or from opposite chromosome

(trans). Several rounds of additional sequencing are

needed to identify cis/trans polymorphism. In addi-

tion, the increasing quantity of new HLA alleles

would introduce more laborious efforts on primer

designing and sequencing. Due to such limitations,

the concordance rate of Sanger sequencing-based

HLA genotyping is about 84% among different labo-

ratories [2]. Obviously, the traditional labor-intensive

and accuracy-low methods are far behind clinical

requirement.

The development of next-generation sequencing

(NGS) technology has changed the landscape of HLA

genotyping. Since the DNA fragments are indepen-

dently amplified and sequenced, it could dramatically

reduce the ambiguities of cis/trans polymorphism

occurs in Sanger sequencing. Generally, three typical

processes are implemented in NGS-based HLA geno-

typing: (a) reads alignment toward known HLA refer-

ence sequences, such as IMGT/HLA sequence

database; (b) candidate HLA alleles identification

through assembling the aligned reads into contigs; and

(c) HLA allele pair inference by scoring the coverage

balance of any two identified candidate alleles. Up to

now, dozens of bioinformatics tools have been devel-

oped for NGS-based HLA genotyping. All the tools

were smartly designed to optimize the accuracy and

speed on the mentioned three processes. For example,

POLYSOLVER [3] adopted a two-step Bayesian clas-

sification model to infer HLA allele pair, with careful

consideration of sequence quality, insert sizes, and eth-

nicity-dependent allele prior probability. OptiType [4]

constructed a binary hit matrix indicating the alleles

that a specific reads sequence could be aligned with

minimum mismatches. Integer linear programming is

subsequently used to maximum the number of explain-

able reads by selecting one or two alleles. A recently

developed tool called Kourami [5] introduced a graph-

guided assembly strategy to infer the most likely HLA

allele pair. Since the gene level partial order graphs

were prebuilt from known HLA sequences and remod-

ified by reads alignment, it confers the ability of dis-

covering novel alleles that do not appear in the

database. Most of these HLA genotyping tools dis-

played the best performance in their releasing demo

dataset, an unbiased and comprehensive benchmarking

with large scale curated benchmark datasets on these

tools, however, is still lacking in this field.

In addition, due to the essential role in the molecu-

lar mechanism of immune recognition, HLA gains a

lot of scientific interests on immune oncology in recent

years. Rachel [6,7] found that HLA allele provide a

tumor evolutionary pressure through restricting the

oncogenic mutational landscape in TCGA cohort. The

frequent driver mutations are universally poorly pre-

sented by HLA, since the tumor clones carrying the

strongly presented mutations had already been killed

by immune system. HLA allele-specific loss of

heterozygous (LOH) was verified as an important

immune evasive mechanism of nonsmall-cell lung can-

cer (NSCLC), which could impair the ability of recog-

nizing tumor antigens in immune system [8].

Furthermore, HLA may serve as an independent bio-

marker for immune checkpoint blocker (ICB) therapy.

Positive correlation between diversity of HLA class I

alleles and clinical benefit was found by Chowell [9] in

ICB-treated melanoma cohort. Since a broader antigen

profile would be presented in heterozygous HLA allele

than homozygous, the likelihood of benefit would be

subsequently increased. What’s more, the presence of

HLA class I supertype B44 was correlated with a

longer overall survival (OS). However, it remains con-

troversial on the prognostic effect of HLA under ICB

therapy. In a recently released study, Negrao et al. [10]

found HLA supertype is not correlated with OS in

ICB-treated advanced NSCLC cohort collected in MD

Anderson Cancer Center. Therefore, it is worthy to

investigate why such conflict occurs in these studies.

Cytolytic activity (CYT) is the ultimate effect of

HLA-antigen stimulated immune response, which ini-

tially quantified by Rooney [11] as the geometric mean

expression of GZMA and PRF1. Theoretically,

neoantigen is likely to drive CYT. It has been partially

verified through the positive correlation between

neoantigen load and CYT across multiple tumor types

in TCGA. Moreover, a high CYT is associated with a

modest but significant pan-cancer survival benefit.

Therefore, it is worthy to investigate that whether

CYT could bridge the HLA-antigen initialized immune

response and the OS.
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Taking together, an objective benchmark of avail-

able HLA genotyping tools as well as a systematic

investigation of the survival impact of HLA genotype

based on the well curated TCGA data and clinical

cohorts treated with ICBs are needed. We investigated

these two problems in one study since the accurate

HLA calling and the following analysis of their sur-

vival impact are fundamental for immunotherapy. In

this study, we performed a comprehensive HLA

benchmark in TCGA cohorts, composing of concor-

dance results generated from eight frequently used or

latest developed tools, including POLYSOLVER,

OptiType, xHLA, HLA-HD, hla-genotyper, SOAP-

HLA, HLA-VBSeq, and Kourami. In addition, the

influence of HLA allele on immune CYT and survival

is further investigated. Moreover, a ‘Gun-Bullet’ model

was proposed to interpret the survival impact of HLA

alleles through CYT. Specifically, the relationship of

HLA and tumor mutation burden (TMB) was similar

to ‘Gun’ and ‘Bullet’. The integrative effect of HLA

allele and TMB was likely to induce CYT and subse-

quently influence survival. We set out to address sev-

eral following questions, which is closely related to the

clarifying of the controversial issue of survival impact

of HLA allele in immunotherapy, including: (a) sys-

tematically investigation and comparison of the perfor-

mance of individual HLA genotyping tools and the

ensemble one; (b) what is the frequency error pattern

in each HLA genotyping tool? and (c) what is the

underlying explanation to address the controversial

issue on the prognostic effect of HLA allele in survival

and tumor immunotherapy?

2. Materials and methods

2.1. Study design

As shown in Fig. 1, the benchmark dataset was com-

posed of the most concordance HLA alleles generated

by eight prevalently used HLA genotyping tools based

on peripheral blood mononuclear cells (PBMCs) WES

data in TCGA. In addition, HLA allele-specific LOH

were called from tumor WES data in TCGA and the

benchmark dataset. Then, the HLA genotyping perfor-

mance of each tools was evaluated, including recall,

accuracy, and error patterns. What’s more, the sur-

vival impact of HLA alleles was also investigated on

TCGA cohorts. Specifically, univariate and multivari-

ate CoxPH regression were used to detect the HLA

alleles that significantly influencing the OS of patient.

Since the survival benefit of CYT had been proved in

TCGA pan-cancer cohorts in Rooney’s study [11], we

further investigated the survival impact of CYT on

independent cohorts under ICB treatment. Finally, a

‘Gun-Bullet’ model was proposed to interpret the sur-

vival impact of HLA based on CYT. The study

methodologies conformed to the standards set by the

Declaration of Helsinki. Detailed clinical information

regarding the cohorts collected in the study can be

found at Table S1.

2.2. WES data processing

A total of 10 479 tumor-normal paired whole exome

sequencing (WES) data (PBMCs: sample code ‘10’;

tumor: sample code ‘01’) were retrieved from TCGA

website. We exclusively downloaded the reads aligned

on HLA region, following the GDC API guidance to

perform BAM slicing at hg38 genome loci:

chr6:28032222-34032223. Then, the WES-derived

germline HLA sequence data were imported for HLA

genotyping with eight prevalently used tools. Specially,

HLA class I calling is exclusively available for POLY-

SOLVER [3] and OptiType [4]. HLA-HD [12], hla-

genotyper (https://pypi.org/project/hla-genotyper/),

SOAP-HLA (http://soap.genomics.org.cn/SOAP-HLA.

html.), xHLA [13], HLA-VBSeq [14], and Kourami

[15] were used for both HLA Class I and HLA Class

II genotyping. All the HLA alleles generated by the

eight tools were normalized into 4-digit resolution. For

example, A01:01:03 was transformed to A01:01.

2.3. TCGA benchmark dataset of HLA class I and

class II

As no golden standard dataset is available for HLA

genotyping, it is critical to create an HLA benchmark

dataset representing the benchmark in silico. Herein,

we take advantages of the basic idea of ensemble

learning by equally treat each HLA genotyping tool as

an expert. Then, each copy of HLA gene including A,

B, C, DRB1, DPB1, DQA1, and DQB1 was, respec-

tively, voted by these ‘experts’ with an ensemble way.

The most concordance allele would obtain the highest

votes, and they are selected as the ‘ground truth’ in

the benchmark analysis. In order to avoid the ambigu-

ous calling, only the most concordance allele with at

least two votes would be curated into the benchmark

dataset. Then, each sample was assigned a group of

HLA genes that composed of the most concordance

alleles with highest votes. Twelve HLA supertypes

were also conferred to TCGA samples, strictly follow-

ing the HLA class I allele classification approach men-

tioned in Chowell’s study [9] and Sidney’ study [16]. It

should be noted that the benchmark dataset derived
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from such highest concordance HLA alleles are not

exactly equal to the ground truth; however, the

ambiguous calling alleles against such benchmark

dataset would nevertheless indicate the risk of geno-

typing the specific allele in that tool. The HLA alleles

with high error rate genotyped by single tool would be

taken with caution.

2.4. HLA-LOH status assessment

The HLA allele-specific LOH calling was implemented

by LOHHLA [8] (https://bitbucket.org/mcgranaha

nlab/lohhla/src/master/). Since only allele sequence at

genome level is supported by LOHHLA program, the

consensus 4-digit protein level HLA allele generated

above was transformed to higher resolution allele with

longest genome sequence. For example, A01:09:01:02

with 3359bp in genome length was used for LOH

assessment on 4-digit allele A01:09. Allele-specific

LOH event was detected, according to the allelic cov-

erage imbalance status (P value ≤ 0.05).

2.5. Evaluation metrics for HLA genotyping

benchmark

HLA class I and class II genotyping performance were

separately evaluated, since not all tools could detect

two HLA classes. Recall and accuracy defined by

Thorne’s study [2] were used for performance evalua-

tion. These two metrics were calculated as the follow-

ing formula:

Recall¼ number of right alleles

number of right allelesþnumber of wrong allele

(1)

Taking HLA class I alleles as an example, two copy

of HLA-A, B, and C alleles predicted by eight tools

were compared with the corresponding benchmark

dataset for each patient, respectively. Then, the pre-

dicted alleles could be classified into three types. Right

allele indicates the allele is covered by the benchmark

TCGA PMBC 
WES

Voting for each allele for each sam
ple

The most concordance 
alleles in each sample 

A Recall & Accuracy

Polysolver

Survival impact 
of alleles

OpiType

xHLA

SOAP-HLA

HLA-HD

HLA-VBseq

hla-
genotyper

Kourami

Benchmark 
dataset

Performance 
assessment

TCGA tumor 
WES

HLA-LOH 
status

B Error pattern:
Including general error, 
specific error

C Forest plot for 
univariate/multivariate 
CoxPH regression

D The survival impact of 
CYT in TCGA cohorts and 
ICB-treated cohorts 

E “Gun-Bullet” model for 
illustrating the survival 
impact of HLA through CYT

6 votes
A*01:02

2 votes
A*03:02VS

A*01:02winner

example

HLA genotyping tools

Fig. 1. The workflow of study design.

Accuracy¼ number of right alleles

number of right allelesþnumber of wrong allelesþnumber of uncalled alleles
(2)
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dataset, while the wrong allele means the allele is

absent in the benchmark dataset. The alleles that failed

for genotyping by the tool were defined as uncalled

alleles.

2.6. HLA genotyping error pattern in each tool

In order to investigate the error calling bias in each

tool, general error rate and specific error rate were cal-

culated through formula (3) and (4). The high general

error rate of the allele indicates a high probability of

making mistakes by the tool. Specific error rate could

quantify the preference of ambiguous calling on allele

pairs. For example, 435 A25:01 allelic counts were

detected in TCGA HLA benchmark dataset. Three

hundred and seventy-one of them were miscalled as

other alleles by POLYSOLVER. Specifically, 343 cases

were incorrectly called as A26:01. Then, the general

error rate on A25:01 calling in POLYSOLVER is

85.29% (371/435), and the specific error rate on the

allele pair A25:01-A26:01 is 92.45% (343/371). Herein,

allelic counts were utilized in general error rate and

specific error rate calculation. It is different from pop-

ulation counts. If a patient carried heterozygous HLA-

A alleles A25:01/A26:01, both the allelic counts and

population counts of A25:01 are equal to 1. If A25:01

is present as homozygous in that patient, the allele

counts of A25:01 are equal to 2, while the population

counts of A25:01 are still equal to 1.

general error rate¼ counts of incorrect genotyping on allele i

counts of allele i in benchmark data
(3)

specific error rate¼ counts of allele i that miscalled as allele j

counts of incorrect genotyping on allele i

(4)

2.7. Clinical data processing

With browsing the 33 TCGA projects on https://porta

l.gdc.cancer.gov/projects/, the clinical information

table for each project was downloaded by clicking the

‘Clinical’ at top right corner of the webpage. OS of

patients was generated by the column ‘days_to_death’,

‘days_to_last_follow_up’, and ‘vital_status’ in the tsv

file. Specifically, if ‘vital_status’ is filled with alive, the

OS of such patient is defined as the number of days in

column ‘days_to_last_follow_up’. While if dead is

found in column ‘vital_status’, OS is indicated by the

value in column ‘days_to_death’. Tumor stages are

classified into early and advanced based on the column

‘tumor_stage’. In detail, early stage contains stage 0, i,

ii, while stage iii, iv, and x were included in advanced

stage.

2.8. CYT calculation

Releasing perforin and granzymes into target cell is

the major molecular mechanism underlying the destroy

ability of immune effector cells [17,18]. Since perforin

and granzymes were exclusively secreted by immune

effector cytotoxic T lymphocytes and natural killer

(NK) cells, the expression of GZMA and PRF1 gene

detected in bulk tumor tissue could be quantified as an

indicator of the intratumoral immune CYT [19,20]. In

this study, we retrieved the mRNA expression GZMA

and PRF1 among TCGA tumor samples from UCSC

Xena website (https://xenabrowser.net/datapages/).

Then, the CYT of each sample was defined as the geo-

metric mean of GZMA and PRF1 (as expressed in

TPM, 0.01 offset), following Rooney’s study [11].

Regarding to each specific cancer condition, the

patients were equally separated into two groups (high

CYT and low CYT) by the median CYT value under

the specific cancer condition.

2.9. TMB calculation

The raw somatic mutations results generated by mutect

in maf format were downloaded from TCGA website

(https://portal.gdc.cancer.gov/). Then, the nonsynony-

mous variants located in coding region were processing

for TMB calculation [21,22]. In detail, the column

‘One_Consequence’ contains one of the key words listed

below would be identified as nonsynonymous somatic

mutations. Such key words pool contains ‘missense_-

variant’, ‘frameshift_variant’, ‘stop_gained’, ‘in-

frame_insertion’, ‘splice_region_variant’, ‘splice_donor_

variant’, ‘inframe_deletion’, ‘splice_acceptor_variant’,

‘protein_altering_variant’, ‘stop_lost’, ‘start_lost’,

‘stop_retained_variant’, and ‘coding_sequence_variant’.

TMB are calculated as the number of nonsynonymous

somatic mutations divided by the length of coding

region. Regarding to each specific cancer condition,

high- and low-TMB groups were equally identified

through the comparison with the median TMB value

under the specific cancer condition.

2.10. Clinical cohort treated with immune

checkpoint blockers

Analyses were conducted on five cohorts (including

three melanoma cohorts and two NSCLC cohorts)

treated with ICBs. The Van Allen cohort [23] consisted
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of 41 melanoma patients treated with ipilimumab

(anti-CTLA4 therapy) (Table S1A). The Tuba cohort

[24] consisted of 73 melanoma patients treated with

Nivolumab/Pembrolizumab (anti-PD-1 monotherapy)

or combined anti-PD-1 and anti-CTLA-4 immunother-

apy. Patient outcomes were classified as responding to

therapy (CR or PR, n = 39) or not responding to ther-

apy (SD or PD, n = 34) (Table S1B). Both RNA-seq

and WES data were available in Van Allen’s mela-

noma cohort [23]. The processing results (including

HLA, TMB, CYT) of the two melanoma cohorts were

retrieved from our previous studies [25–27]. Chowell’s
melanoma cohort [9] contains 164 patients under anti-

CTLA4 treatment. The HLA and TMB information

were collected from the supplementary of the original

paper. (Table S1C). Jae-Won Cho’s NSCLC cohort

[28] contained five patients with durable clinical benefit

(DCB) and 11 patients in no durable benefit (NDB)

group under anti-PD1 therapy. Jeong Yeon Kim’s

NSCLC cohort [29] consisted of eight patients with

DCB and 19 patients with NDB under anti-PD1 treat-

ment. The gene expression profiling results were gener-

ated through STAR [30] alignment and subsequent

expression quantification in RSEM [31]. (Table S1D,

E). OS data utilized in the survival analyses and TMB

information were also retrieved from original study.

The HLA alleles and LOH of HLA were generated as

described in Materials and methods.

2.11. Statistical analysis

Survival analysis was implemented by python package

lifelines (https://github.com/CamDavidsonPilon/lifeline

s). In detail, hazard ratio was calculated by Cox pro-

portional hazards regression model with the function

CoxPHFitter. Subsequently, R package forestplot was

utilized for results visualization. Kaplan–Meier sur-

vival plot was generated by function KaplanMeierFitter

in python package lifelines.

3. Results

3.1. The performance of HLA class I genotyping

is generally better than class II

Since no golden standard HLA genotyping results are

available in TCGA, we try to computationally curate a

comprehensive benchmark data taken as the ground

truth with ensemble strategy. In detail, the 4-digit HLA

class I and II benchmark dataset were generated by the

concordance analysis on HLA genotyping results of

eight tools. Such HLA benchmark dataset contains

10 479 samples with HLA class I results and 10 440

samples with class II results, respectively. Each allele in

the benchmark dataset derives from the most concor-

dance alleles that successfully reported by the eight

tools. The population frequency of the top 20 HLA class

I alleles, class II alleles, and 12 supertypes in TCGA

cohort was displayed in Fig. 2A (see the full population

frequency list in Table S2). The population frequency

across the alleles is quite imbalance. A02:01 is the domi-

nant HLA class I allele in TCGA cohort with the popu-

lation frequency at 41.99% (allelic frequency is 8.03%),

which was detected in 4400 individual patients. Six

thousand and forty-nine patients carrying DPB1:04:01

that occupied 57.94% in TCGA cohort (the correspond-

ing allelic frequency in TCGA is 9.00%). B07, A03,

A02, B44, and A01 are top five HLA supertypes with

population frequency more than 40%.

We compared the prediction results of each tool

against the benchmark dataset. The recall and accuracy

of eight tools on HLA class I genotyping were displayed

in Fig. 2B. The best performance of HLA class I geno-

typing was found in POLYSOLVER. Both recall and

accuracy are detected above 0.954. 3/10 479 samples

were failed for HLA class I genotyping on POLYSOL-

VER. However, OpiType, xHLA, HLA-HD, and

SOAP-HLA were successful to generate HLA class I

results on all the samples. Specially, OpiType displayed

a very good performance with accuracy at 0.949, which

is slightly close to POLYSOLVER.

Since the top two HLA class I predictors (POLYSOL-

VER and OpiType) do not support HLA class II geno-

typing, the performance of the other six tools was

evaluated. Specifically, HLA-HD, SOAP-HLA, and

HLA-VBSeq are able to call four major class II genes,

including DRB1, DPB1, DQA1, and DQB1. DRB1,

DQB1, and DPB1 were supported by xHLA. Kourami,

hla-genotyper, and HLA-VBSeq were designed for call-

ing DRB1, DQA1, and DQB1. As shown in Fig. 2C,

HLA-HD obtained the highest accuracy at 0.904 on call-

ing DRB1, DPB1, DQA1, and DQB1. The highest recall

was achieved by xHLA at 0.948. However, the accuracy

of xHLA was dramatically dropped to 0.708, due to its

disability on DQA1 calling. If it is specifically focused on

the three genes (DRB1, DQB1, and DPB1) supported by

xHLA, the corresponding accuracy could increase to

0.944, which indicates that xHLA shows a high perfor-

mance on calling the supported class II genes.

3.2. Frequently miscalled HLA class I alleles in

the tested eight tools

In order to investigate the error bias in each tool, we

calculated the general error rate of HLA alleles
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A

B C

Fig. 2. The summary of HLA alleles and genotyping performance in TCGA benchmark dataset. (A) The Top-20 HLA class I alleles with high

population frequency, the Top-20 HLA class II alleles with high population frequency and the population frequency of 12 HLA supertypes in

TCGA benchmark dataset. The population frequency was defined as the percentage of samples carrying a specific allele among TCGA

benchmark samples. (B) The recall and accuracy on HLA class I alleles calling. (C) The recall and accuracy on HLA class II alleles calling.
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through comparing the HLA calling results with the

benchmark dataset. Thirty-nine frequently miscalled

class I alleles with high general error rates were picked

out according to two criterions: (a). the allelic fre-

quency in benchmark dataset ≥ 200 and (b) the gen-

eral error rate is no less than 0.05 in at least one tool.

As shown in Fig. 3A and Table S3A (see the full HLA

class I error information in Table S4), each tool

revealed distinct error patterns. 85.29% (371/435) of

A25:01 in benchmark dataset were miscalled in POLY-

SOLVER. hla-genotyper usually makes mistake on

C03:03 calling with a general error rate at 68.67%

(651/948). C07:01 is the top miscalled allele in HLA-

HD with a general error rate at 23.21% (671/2891).

xHLA tend to make mistakes on C06:02 calling with a

general rate at 26.01%. The top miscalled alleles in

Kourami, SOAP-HLA, and HLA-VBSeq are A11:01,

B35:01, and C12:03, respectively. However, it seems

that no strong error bias was found in OptiType, since

the only two alleles (A02:01 and C08:02) were detected

with general error rates higher than 10%.

3.3. Frequently miscalled HLA class II alleles in

the tested six tools

Using the same processing approach mentioned

above, 57 HLA class II alleles with high general error

rates were displayed in Fig. 3B and Table S3B (see

the full HLA class II error information in Table S5).

Comparing with HLA Class I calling, the general

error rate is high on calling class II alleles in each

tool. Specifically, some class II alleles were called

with general error rates higher than 90% in several

tools. For example, 98.56% DRB1:13:03 in TCGA

HLA benchmark dataset were miscalled by SOAP-

HLA. It is challenging for Kourami to identify

DQA1:05:05, DQA1:01:04, and DRB1:14:54 with the

error rate more than 85%. HLA-HD tends to make

mistake on calling DRB1:16:01 with a general error

rate at 65.83%. However, no dominant error

alleles in DRB1, DQB1, and DPB1 were observed in

xHLA. HLA-VBSeq incorrectly called a lot of class

II alleles with a general error rate higher than 90%,

A CB

D

Fig. 3. Overview of errors in each tool. (A) Heat map of HLA Class I alleles’ error rate across eight tools. (B) Heat map of HLA Class II

alleles’ error rate across six tools. The alleles were picked out according to two criterions: 1) The frequency of the alleles in benchmark

dataset ≥200. 2) The general error rate is no less than 0.05 in at least one of the tools. (C) The specific error rate of HLA Class I alleles in

eight tools. Each row means a specific error rate pattern made by a tool. The blue bar indicates the percentage of highest specific error

alleles. The orange bar means the percentage of top 2 high error alleles. The green bar represents the percentage of the other alleles. For

example, in the first row started with “Kourami_B44:02”, the allelic counts of B44:02 mis-assigned as other alleles by Kourami is 278.

Specifically, 64 of them were reported as B83:01 in blue bar (specific error rate 23.02%). 38 of them were identified as B47:04 in orange

bar (specific error rate: 13.67%). 176 of them were incorrectly assigned as other alleles in green bar. (D) The specific error rate of HLA

Class II alleles in six tools.
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including DRB1:04:02, DRB1:04:04, DRB1:04:07, and

DRB1:07:01.

3.4. The preference of miscalled HLA allele pairs

With the aim of gaining insights on the ambiguous

calling HLA pairs in each tool, we further investigated

the error components of top two miscalled alleles in

each tool. As shown in Fig. 3C, serval specific error

HLA class I allele pairs were indeed existing among

the calling results by each individual tool. For exam-

ple, 92.45% (343/371) errors on A25:01 calling is

derived from A26:01 in POLYSOLVER. 436 C06:02

cases miscalling to C06:103 were found in xHLA,

which occupied 92.57% errors that occurs in C06:02.

hla-genotyper tends to make mistakes on calling

C03:03 as C03:04 and C12:02 as C12:03. Such specific

errors occupied more than 93% error cases in the two

alleles. Among the 203 miscalled B58:01 alleles,

63.55% (129) of them were assigned as B58 by SOAP-

HLA. 190 A11:01 cases were identified as A11:50,

which composed of 56.72% A11:01 miscalling cases

made by Kourami. Reporting A02:01 as A02:13 is the

highest error observed in OpiType, which occupied

44.82% A02:01 miscalling cases.

The error components of top two HLA class II alle-

les in each tool were displayed in Fig. 3D. Similar to

that in HLA class I allele, several dominant error allele

pairs were detected in each tool. For example,

DPB1:04:02 is the dominant error allele in

DPB1:105:01 calling through xHLA with the specific

error rate at 82.42%. 442 DRB1:14:54 cases were

called as DBR1:14:01 by hla-genotyper, which occu-

pied 98.00% DRB1:14:54 miscalling cases.

3.5. Integration of HLA calling from the top-3

tools is superior to individual one

Generally, none of the tested tools achieved the high

accuracy that claimed in their respective papers. Prob-

ably such situation is caused by the relatively small

benchmark data size. For example, only three trio

samples were used in HLA-VBSeq performance assess-

ment [14]. Kourami was tested on 12 trios samples

[15]. However, the large TCGA HLA benchmark data-

set covering ~ 10 479 samples curated in our study

would ensure a robust and unbiased performance

assessment. POLYSOLVER, OpiType, and xHLA

ranked as top three HLA class I genotyping tools with

the high accuracy ranging from 0.937 to 0.954. How-

ever, HLA-HD, SOAP-HLA, and xHLA obtain the

relatively high performance (accuracy 0.708–0.904) on

HLA class II alleles DRB1, DPB1, DQA1, and DQB1

calling. In addition, distinct error patterns were found

among the HLA genotyping tools. POLYSOLVER

tends to make mistakes on A25:01 calling, but such

error is unlikely to happen on OpiType. Therefore, it

is unwise to make decision on HLA genotyping based

on individual tool. Such distinct error pattern may

suggest that the incorrectly called alleles would be effi-

ciently avoided through concordance analysis from

multiple HLA genotyping tools. To this end, we try to

create an ensemble result from the top three tools fol-

lowing the approach that quite similar to benchmark

dataset curation. If the allele is reported by no less

than two tools, it will be considered as the true allele.

Otherwise, if no overlapping allele is found in the three

tools, the allele reported by the tool with a highest

accuracy will be assigned as the true allele. Regarding

to HLA class I, the combining A, B, and C allele

results were generated from POLYSOLVER, OpiType,

and xHLA. HLA-HD, SOAP-HLA, and xHLA were

utilized for creating ensemble results on DRB1,

DQB1, DPB1, and DQA1. As shown in Fig. 4A,B, the

accuracy of ensemble results on HLA class I genes (A,

B, C) and HLA class II genes (DRB1, DQB1, DPB1

and DQA1) would reach 0.981 and 0.907, respectively.

Taking together, the ensemble results of the top 3

tools are superior to individual ones. It is highly rec-

ommended to generate reliable HLA results based on

the concordance alleles integrated from multiple tools.

3.6. The impact of HLA on survival

The univariate CoxPH regression model was firstly uti-

lized to analyze the impact of specific HLA supertypes

on OS in TCGA cohort. In this study, HLA super-

types are defined as the groups of HLA alleles sharing

specific amino residues at anchor positions of the B

and F pockets in the peptide-binding region. The HLA

alleles within same supertypes were expected to have

similar presentation ability. In detail, regarding to each

specific HLA supertype, two subgroups could be

defined based on allele present or absent on the

patients. Subsequently, risk comparison was imple-

mented among the two subgroups. As shown in Fig. 5

A, eight HLA supertypes were observed with a signifi-

cant impact on survival (Wald test P < 0.05, see full

list in Table S6). Each record with hazard ratio (HR)

< 1 means the specific HLA supertype could serve as a

beneficial factor under that condition. However,

records with HR > 1 probably indicate that such

specific HLA supertype increase the death risk on the

cancer condition. It seems that the impact of HLA on

OS may be disease-specific. The same HLA supertype

may generate distinct influence among cancer
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conditions. For example, different survival impact of

B44 was found in early-stage skin cutaneous mela-

noma (SKCM), advanced stage rectum adenocarci-

noma (READ), advanced stage ovarian serous

cystadenocarcinoma (OV), and early-stage breast inva-

sive carcinoma (BRCA). Specifically, better survival

was observed in the B44-present rather than B44-ab-

sent on the previous two cancer conditions (early-stage

SKCM: HR = 0.66, Wald test P = 0.039; advanced

stage READ: HR = 0.35, Wald test P = 0.049). On

the contrary, B44-present patients showed worse sur-

vival in advanced stage OV and early-stage BRCA

(advanced stage OV: HR = 1.32, Wald test P = 0.03;

early-stage BRCA: HR = 1.66, Wald test P = 0.03).

Since many cofounding factors may interact with

HLA allele on OS, a more precise multivariate CoxPH

model analysis was further performed on the HLA

supertype and tumors as presented in Fig. 5A. The age

at initial diagnosis of tumor may played a dominant

harmful role in advanced stage OV and early-stage

BRCA (advanced stage OV: HR = 1.59, Wald test

P = 0.001; early-stage BRCA: HR = 3.50, Wald test

P = 7.18E-06), comparing with HLA supertype B44

(advanced stage OV: HR = 1.26, Wald test P = 0.112;

early-stage BRCA: HR = 1.55, Wald test P = 0.104),

while the beneficial effect of B44 on survival was still

observed in early-stage SKCM and advanced stage

READ. Specially, no significant survival impact of

TMB or age was detected in advanced stage READ

(Table 1). It is interesting that the beneficial effect of

B44 on SKCM survival is exactly consistent with B44

on ICBs treated melanoma survival [9]. Since ICBs is

not the dominant treatment in TCGA SKCM cohort,

it seems that the beneficial effect of B44 on the SKCM

survival is independent of ICBs treatment. In addition,

B62 was reported to show negative correlation with

survival of ICBs treated melanoma in Chowell’s study

[9]. Such harmful effect of B62 on survival was also

observed in TCGA advanced liver hepatocellular carci-

noma (LIHC) cohort.

The antigen presentation role of HLA might influ-

ence survival through increasing immune response.

Based on such assumption, we further investigate the

corresponding CYT among the HLA supertypes-pre-

sent/absent cohorts in different cancer conditions as

displayed in Fig. 5A. The average CYT of B44-present

patients in early-stage SKCM, advanced stage READ

were slightly higher than that of B44-absent patients

(Fig. 5B, Table S7). Specifically, such difference trend

reached P value at 0.057 in early-stage SCKM, which

is very close to the statistic confidence cutoff. How-

ever, no difference of mean CYT was detected among

the patients in early-stage BRCA and advanced stage

OV regardless of B44 status. In addition, since the age

was detected as a dominant risk factor in the multi-

variate CoxPH regression, such observed harmful

impact of B44 on the two cancer conditions was prob-

ably not caused by immune response. It should be

noted that nearly 88.22% OV patients in TCGA

received carboplatin treatment. Since chemotherapy is

most likely to weaken the immune system, such sur-

vival risk observed in TCGA OV cohorts is probably

not caused by HLA alleles. We further checked the

survival impact of CYT on the four cancer conditions

in TCGA cohorts (see full list in Fig. S1). High-CYT

patients displayed extended survival in early-stage

SKCM with HR = 0.33 (CI: 0.1–1.1, P = 0.067). No

distinct impact of CYT on survival was found in other

three cancer conditions. (advanced stage READ:

HR = 1.75, CI = 0.49–6.27, P = 0.393; early-stage
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Fig. 4. The recall and accuracy of

ensemble results in HLA class I

and II genotyping. (A) The recall

and accuracy on HLA class I calling

in POLYSOLVER, OpiType, xHLA

and their ensemble results. (B) The

recall and accuracy on HLA class II

calling in HLA-HD, SOAP-HLA,

xHLA and their ensemble results.
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A

B

Supertype

A03

B44

A24

B27

B44

B44

A02

B44

B58

B62

B08

B08

Condition

early ESCA

advanced READ

early STAD

advanced BRCA

early SKCM

advanced OV

early SKCM

early BRCA

early PAAD

advanced LIHC

early UCEC

early HNSC

Pres.Pts(death)

58 (13)

40 (5)

57 (8)

69 (10)

109 (42)

188 (119)

117 (61)

335 (43)

20 (15)

33 (18)

58 (11)

26 (15)

Abs.Pts(death)

43 (19)

34 (12)

127 (39)

204 (55)

124 (66)

212 (127)

116 (47)

425 (33)

152 (79)

57 (29)

331 (30)

85 (20)

HR

0.3

0.35

0.45

0.5

0.66

1.32

1.55

1.65

1.78

2.01

2.16

3.16

95% CI

0.14−0.64

0.12−0.99

0.21−0.96

0.25−0.98

0.45−0.98

1.03−1.7

1.06−2.28

1.05−2.61

1.02−3.11

1.08−3.72

1.08−4.32

1.58−6.31

P value

0.002

0.049

0.039

0.044

0.039

0.03

0.025

0.03

0.042

0.027

0.029

0.001

0 1 2 3 4 5 6
<−−−−Better overall survival−−−−HR−−−−Worse overall survival−−−−>

P = 0.057

Fig. 5. The survival impact of HLA alleles in TCGA cancer conditions. (A) Forest plot of univariate CoxPH analyses on OS. According to the

supertypes status, either ‘present’ or ‘absent’ were assigned to each patient. Only the supertypes with significant influence on OS were

displayed. (B) Immune cytolytic activity analysis on HLA supertypes under specific cancer conditions mentioned in Fig. 4A. The patients with

specific HLA supertype were marked in blue. While, orange bar represents the supertype-absent patients. Violin plot and one-tailed t test

were generated by python package seaborn and statsmodels, respectively. “*” indicate significant with t test P value ≤ 0.05.
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Table 1. The multivariate CoxPH analysis of HLA supertypes and tumors in Fig. 5A.

Multivariate analysis

Num. Pts in condition 1

(death)

Num. Pts in condition 2

(death) HR CI_95% P value

Early-stage ESCA Condition 1 vs

condition 2

A03 Present vs absent 47 (11) 33 (14) 0.27 0.11–0.67 0.005

TMB High vs low 41 (15) 39 (10) 1.89 0.82–4.34 0.135

Age ≥ 60 vs < 60 39 (13) 41 (12) 0.79 0.34–1.83 0.577

Advanced stage READ Condition 1 vs

condition 2

B44 Present vs absent 23 (2) 25 (10) 0.15 0.03–0.71 0.017

TMB High vs low 26 (8) 22 (4) 0.84 0.23–3.08 0.795

Age ≥ 60 vs < 60 30 (11) 18 (1) 4 0.50–31.73 0.19

Early-stage stomach

adenocarcinoma

Condition 1 vs

condition 2

A24 Present vs absent 40 (5) 102 (32) 0.39 0.15–1.01 0.052

TMB High vs low 67 (16) 75 (21) 0.78 0.39–1.54 0.469

Age ≥ 60 vs < 60 103 (29) 39 (8) 1.54 0.68–3.50 0.299

Advanced stage BRCA Condition 1 vs

condition 2

B27 Present vs absent 53 (6) 143 (36) 0.3 0.13–0.73 0.008

TMB High vs low 102 (27) 94 (15) 2.58 1.35–4.93 0.004

Age ≥ 60 vs < 60 87 (21) 109 (21) 1.65 0.89–3.06 0.114

Early-stage SKCM Condition 1 vs

condition 2

B44 Present vs absent 90 (34) 97 (53) 0.58 0.37–0.90 0.015

A02 Present vs absent 94 (51) 93 (36) 1.67 1.09–2.58 0.02

TMB High vs low 98 (42) 89 (45) 0.62 0.40–0.97 0.035

Age ≥ 60 vs < 60 98 (45) 89 (42) 2.53 1.55–4.12 1.99E-04

Advanced stage OV Condition 1 vs

condition 2

B44 Present vs absent 142 (91) 172 (103) 1.26 0.95–1.67 0.112

TMB High vs low 161 (91) 153 (103) 0.74 0.55–0.98 0.034

Age ≥ 60 vs < 60 145 (103) 169 (91) 1.59 1.20–2.11 0.001

Early-stage BRCA Condition 1 vs

condition 2

B44 Present vs absent 257 (32) 321 (26) 1.55 0.91–2.62 0.104

TMB High vs low 298 (26) 280 (32) 0.67 0.40–1.14 0.142

Age ≥ 60 vs < 60 263 (38) 315 (20) 3.5 2.03–6.06 7.19E-06

Early-stage PAAD Condition 1 vs

condition 2

B58 Present vs absent 18 (13) 123 (61) 1.63 0.89–3.00 0.113

TMB High vs low 79 (48) 62 (26) 1.56 0.96–2.53 0.072

Age ≥ 60 vs < 60 100 (57) 41 (17) 1.52 0.88–2.65 0.135

Advanced stage LIHC Condition 1 vs

condition 2

B62 Present vs absent 28 (16) 44 (24) 1.95 0.94–4.01 0.071

TMB High vs low 40 (22) 32 (18) 0.92 0.47–1.81 0.815

Age ≥ 60 vs < 60 37 (20) 35 (20) 0.92 0.47–1.82 0.817

Early-stage HNSC Condition 1 vs

condition 2

A24 Present vs absent 18 (10) 59 (14) 2.42 0.99–5.92 0.053

TMB High vs low 39 (15) 38 (9) 1.23 0.52–2.87 0.639

Age ≥ 60 vs < 60 46 (18) 31 (6) 1.88 0.72–4.91 0.197

Early-stage UCEC Condition 1 vs

condition 2

B08 Present vs absent 42 (7) 247 (25) 2.03 0.86–4.78 0.105

TMB High vs low 147 (10) 142 (22) 0.47 0.22–0.99 0.046

Age ≥ 60 vs < 60 190 (27) 99 (5) 2.76 1.06–7.19 0.038
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BRCA: HR = 0.80, CI = 0.51–1.27, P = 0.349;

advanced stage OV: HR = 0.95, CI = 0.71–1.26,
P = 0.705). It may indicate that immune signaling

does not serve a dominant role on survival in such

three cancer conditions. Regarding to B62, the CYT

of B62-present patients in advanced stage LIHC is sig-

nificantly lower than that of B62-absent patients (Fold

change = 0.49, P value = 0.033).

Since HLA allele-specific LOH event also indicates a

type of allele-absent conditions, it could precisely

describe the allele status in the patient. We further

evaluated the survival impact between the B44-present

patients without any B44-LOH events and patients

with either B44-absent or B44-LOH using both uni-

variate and multivariate CoxPH analyses, the HR

value was achieved at 0.64 (Wald test P = 0.025) and

0.63 (Wald test P = 0.025) in early-stage SKCM,

respectively (Fig. S2A, Table S8). In addition, the

mean CYT of B44-present group is significantly

greater than B44-LOH/B44-absent group (Fold

change = 1.83, P = 0.033) (Fig. S2B, Table S9). It

indicates that CYT may partially clarify the survival

impact of HLA alleles.

3.7. The ‘Gun-Bullet’ model for interpreting the

impact of HLA on survival

In canonical immune process, the immune signaling is

stimulated by the recognition of TMB-derived antigen

and HLA allele [32,33]. TMB and HLA allele were

both essential contributing for immune signaling that

finally lead to CYT of effector T cells. It is quite con-

troversial on the impact of the HLA in survival, since

opposite conclusions were generated in two previous

studies. In Chowell’s study [9], HLA supertype B44

was associated with extended survival in patients with

melanoma receiving ICBs from two independent

cohorts. However, no HLA supertypes were observed

with significant impact on survival, regarding to an

ICB-treated NSCLC cohort in M. D. Anderson Can-

cer Center [10]. How can we interpret such disease-

specific impact of HLA supertype on survival? The dis-

tinct mutational signatures of amino acids across can-

cer types may provide clues on such issue [34]. In the

molecular level, HLA-B44 share a preference for glu-

tamic acid (E) at anchor position 2, which is exactly

match the most enriched amino acid mutations (G>E)
in melanoma. It may indicate that HLA-B44 prefers to

presenting such ‘E’ enriched mutant peptides in mela-

noma. The subsequently stimulated immune signaling

is the ultimate effector that response for the survival

extension of patients receiving ICBs. CYT, deriving

from the expression of GZMA and PRF1 that

specifically released by effector T cells, could well

mimic the intratumoral cytolytic T-cell activity in

microenvironment. According to Rooney’s study [11],

high CYT was proofed as a beneficial factor for mod-

est but significant pan-cancer survival in previous

TCGA pan-cancer study. Moreover, in the two inde-

pendent ICB-treated melanoma cohorts [35,23], the

significant extended OS were observed in the high-

CYT group (median OS in Van Allen’s cohort 27 vs

7 m, P = 0.0011; median OS in Tuba’s cohort 732 vs

506 d, P = 0.0006, see details in Fig. S3). Further-

more, we also found that significant higher CYT was

detected in DCB group than NDB group from two

independent NSCLC cohorts under anti-PD1 therapy.

Especially, in Jae-Won Cho’s cohort [28], the median

OS in high-CYT group is significant longer than low-

CYT group (median OS: 14.1 vs 3.1 m, P = 0.0048)

(Fig. S4). Therefore, CYT may provide us novel

insights on the survival impact of HLA alleles.

Herein, we proposed a ‘Gun-Bullet’ model for inter-

preting the impact of HLA on survival. As shown in

Fig. 6A, the impact of HLA and TMB on CYT is

quite similar to the relationship between gun and bul-

lets on force. A powerful gun plus high quantity bul-

lets could maximize the force. Similarly, a strong HLA

allele plus a high TMB could stimulate intensive

immune response (CYT), leading to longer survival.

‘Stronger’ HLA alleles are more able to present anti-

gens (TMB) and subsequently induce higher CYT. As

shown in Fig. 6B, regarding to a typical ‘strong’ HLA

supertype B44 in early-stage SKCM, the maximum

distinct CYT and OS were found between B44-present

and high-TMB group and B44-absent & Low-TMB

group, while no difference on both CYT and OS was

observed in B44-present and low-TMB group and

B44-absent and high-TMB group. Since much less

antigens are available in low-TMB group, it is unex-

pected to achieve high CYT in such B44-present

patients. On the contrary, the ‘weak’ allele A02-present

and low-TMB patients displayed the minimum CYT

and short OS. No obvious difference on CYT and OS

was found between A02-present and high-TMB group

and A02-absent and low-TMB group (Fig. 6C).

Although much more antigens were available for A02-

presenting in high-TMB group, no dramatically

increase of CYT could occur due to the weak antigen

presentation ability of A02. That means TMB is a crit-

ical factor for the immune response that regulated by

HLA allele. The patients with a ‘strong’ HLA allele as

well as a high TMB were likely to induce a strong

CYT and a better survival. However, since insufficient

antigens could be generated for HLA presentation in

cancers with low-TMB background, HLA may be not
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“Strong”

The “Gun-Bullet” model for fighting cancer
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qualified as an independent prognostic biomarker for

survival. At least, the signal of HLA impact on sur-

vival is much weaker in cancers with a low-TMB back-

ground than that of a high-TMB background.

Melanoma had always been reported as a typical high-

TMB cancer with median TMB larger than 14 in sev-

eral large pan-cancer cohorts, including Foundation

cohort [36], TCGA cohort [37], MSK-IMPACT cohort

[38], and Yarchoan’s cohort [39]. NSCLC displayed

much lower TMB in the studies mentioned above. This

may partially explain the debates of HLA as a prog-

nostic biomarker occurred in Chowell’s [9] melanoma

cohort and Negrao’s [10] NSCLC cohort.

The ‘Gun-Bullet’ model can be used to clarify the

survival impact of HLA in ICB-treated cohort as well.

As we mentioned above, a higher CYT generally indi-

cates a longer survival in two melanoma cohorts

[35,23] and two NSCLC cohorts [28,29] under ICB

treatment. In addition, B44 and TMB were detected

with positive correlation with survival in Chowell’s

cohort [9]. Furthermore, the effect of B44 on extended

survival was greater when TMB was also considered.

(P = 0.00003, median OS: 23.7 vs 8.2 m) (Fig. S5).

Since the ensemble effect of B44 and TMB on survival

was greater than any individual one, it may indicate

that complementary roles of B44 and TMB on sur-

vival.

However, B44-present patients did not display any

survival advantage, comparing with the B44-absent

patients in Van Allen’s cohort [23] (Fig. S6A). The

same situation was also detected for TMB as an indi-

vidual prognostic biomarker (Fig. S6B), although the

trend of clinical benefit was observed in survival curve

between B44-present and high-TMB group and B44-

absent and low-TMB group (Fig. S6C). However, it

did not achieve statistical significance. Regarding to

the ‘Gun-Bullet’ model, such situation may be caused

by the similar CYT among these comparison

conditions. As expected, no significant higher CYT

was found in B44-present group (Fig. S6D), high-

TMB group (Fig. S6E), or B44-present and high-TMB

group (Fig. S6F). Since CYT may serve as an underly-

ing mechanism in ‘Gun-Bullet’ model for interpreting

the survival impact of HLA and TMB, such phenom-

ena are explainable. No survival advantage could be

observed among the patients with statistically equiva-

lent CYT, regardless of the TMB or B44 status.

4. Discussion

In this study, we have evaluated eight frequently used

and publicly available NGS-based HLA genotyping

tools on TCGA WES data. Since no golden standard

HLA dataset is available, constructing a HLA bench-

mark dataset is the critical point ahead of performance

evaluation. With the assumption that the ‘True’ HLA

alleles are likely to be frequently reported by different

HLA genotyping tools, a TCGA HLA benchmark

dataset covering seven major HLA genes: HLA-A, B,

C, DRB1, DPB1, DQA1, and DQB1, was generated

based on the concordance allele processing. Actually,

we tried to implement a comprehensive performance

evaluation on WES-based HLA genotyping tools as

more as possible. More than 11 tools were included in

the original study design, and some of them had been

discarded in pilot test due to different issues. For

example, HLAscan [40] is not supported for NGS data

with reads length < 76 bp. That means more than

41% TCGA WES data (reads length < 76 bp) were

unable to generate the HLA genotyping results. How-

ever, the source code of PHLAT [41] is not convenient

to access. HLA-PRG-LA [42] utilizes the precise graph

alignment during HLA genotyping which requires

extremely high computational resource. In our pilot

test, it costs nearly 4 h to process a WES data (see the

running time in Table S11). That makes it unsuitable

Fig. 6. The “Gun-Bullet” model for illustrating the survival impact of HLA. (A) The brief chart illustrates how TMB and HLA exert the impact

of survival through CYT. The impact of HLA alleles on OS may partially due to CYT. A strong HLA plus a high TMB could stimulate intensive

immune response (CYT), leading to a better survival. Stronger HLA alleles are more able to present antigens (TMB) and subsequently

induce higher CYT. The relationship between TMB and HLA allele is quite similar to the bullet and gun. A powerful gun plus high quantity

bullets could maximize the force. The clipart in the figure were downloaded from http://clipart-library.com with the licence of copyright free

for non-commercial use. (B) The typical ‘strong’ HLA B44 in early stage SKCM survival. Kaplan-Meier survival analysis and corresponding

CYT comparison were implemented for the following three cohort pairs: B44-present vs B44-absent; B44-present&HighTMB vs B44-

absent&LowTMB; B44-present&LowTMB vs B44-absent&HighTMB. (C) The typical ‘weak’ HLA A02 in early stage SKCM survival. Survival

analysis and corresponding CYT comparison were implemented for the following three cohort pairs: A02-present vs A02-absent; A02-

present&HighTMB vs A02-absent&LowTMB; A02-present&LowTMB vs A02-absent&HighTMB. Survival curves and violin plot were

generated by python package lifelines and seaborn, respectively. One-tailed t test was implemented by R. High and Low TMB groups were

determined by whether the TMB values higher or lower than the median TMB of the specific cancer condition. For example, the sample

size of patients in early stage SKCM TCGA cohort is 237. The median TMB in early stage SKCM is 9.521. (see the full median TMB

information in Table S10).
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for performance assessment on the whole TCGA data-

set. Since such limitations exist on tools selection, the

tested eight tools may not represent the highest accu-

racy achieved by existing NGS-based HLA genotyping

tools. However, they can be treated as the robust and

efficient methods to generate the HLA genotyping

results.

Distinct error patterns were detected in each HLA

genotyping tools. Such error may not derive from the

allele inference models utilized in the tools. The out-

dated HLA allele database used in the initiate reads

alignment would be one of the issues. For example,

SOAP-HLA was failed on calling DRB1:08, DRB1:11

alleles at the 4-digit resolution, since the background

allele database in SOAP-HLA was updated 5 years

ago. Although the background allele database is

important for accurate genotyping, the documents on

updating the database are always lacking in most of

the tools. It would be a typical issue in current NGS-

based HLA genotyping tools.

CYT was proposed as the underlying mechanism to

interpret the survival impact of HLA alleles in the

‘Gun-Bullet’ model for fighting cancer. Since CD8+ T

cell and NK cell were preferred immune cells for kill-

ing cancer in the microenvironment, it is important to

investigate whether CYT detected in bulk tumor tissue

could reflect the cell fractions of CD8+ T cell and NK

cell in TILs. Referring to the deconvolution-based

approach in CIBERSORT [43] with absolute mode,

we retrieved the cell fraction of 22 immune cell types

of each TCGA sample (downloaded at http://timer.c

istrome.org/). As shown in Fig. S7, CYT was highly

correlated with the cell fractions of CD8+ T cell and

activated NK cell evaluated in the corresponding bulk

tumor tissues (Pearson correlation coefficient = 0.73,

P < 1E-20), while extremely low correlation was

detected between the cell fraction of resting NK cell

and CYT (Pearson correlation coefficient = 0.07). It

indicates that CYT detected in the bulk tumor tissue

could probably severed as an indicator of CD8+ T cell

and activated NK cell in TILs. It is biologically rea-

sonable to use CYT to interpret the survival impact of

HLA alleles.

The clinical benefit effect of CYT was verified in 4

independent NSCLC and melanoma cohorts under

ICB treatment as well as TCGA pan-cancer cohorts.

In addition, the relationship among B44, TMB, and

CYT on survival has been proved in TCGA early-

stage SKCM cohort. It still lacks of a positive case

from ICB-treated cohorts. In Allen’s [23] melanoma

cohort under anti-CTLA4 therapy, no significant

higher CYT was detected in B44-present group, high-

TMB group, and B44-present and High-TMB group.

Therefore, no significant extended survival could be

observed in any of these groups. It could be treated as

a negative case that explained by ‘Gun-Bullet’ model.

In Chowell’s cohort [9], the extended survival was

greater in B44-present and high-TMB group than each

isolated situation. However, the CYT information is

not available in such cohort. More ICB-treated

cohorts with both RNA-seq (for CYT calculation) and

WES (for HLA genotyping and TMB) data were

needed to verified the ‘Gun-Bullet’ model.

5. Conclusions

In summary, we established an up to now most reli-

able TCGA HLA benchmark dataset, composing of

concordance alleles generated from eight prevalently

used HLA genotyping tools. Each HLA genotyping

tool displayed specific error pattern, and it is better to

generate reliable results with multiple tools. Regarding

to the survival analysis, HLA alleles show distinct sur-

vival impact among cancers. CYT, as the readout of

immune signaling, could partially bridge the HLA

allele and survival. According to the ‘Gun-Bullet’

model, a strong HLA allele plus a high TMB could

stimulate intensive immune CYT, leading to an

extended survival. Although TMB is a critical factor in

the stimulating immune response, HLA allele could

amplify or attenuate the effect of TMB. In most of

cancers with the low-TMB baseline, HLA allele is unli-

kely to serve as a prognostic biomarker on survival,

since minimum antigens were provided for HLA pre-

senting. Similar to the relationship between gun and

bullet, the integrative effect of TMB and HLA allele

was likely to stimulate immune response and influence

survival. It indicated that incorporating TMB with

HLA genotype helps to improve the survival predic-

tion compared to HLA genotyping alone.
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