
Analysis of Functional Genomic Signals Using the XOR
Gate
Mahesh Yaragatti1*, Qi Wen2

1 Biotechnology Program, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Physics, University of Pennsylvania,

Philadelphia, Pennsylvania, United States of America

Abstract

Modeling gene regulatory networks requires recognition of active transcriptional sites in the genome. For this reason, we
present a novel approach for inferring active transcriptional regulatory modules in a genome using an established systems
model of bit encoded DNA sequences. Our analysis showed variations in several properties between random and functional
sequences. Cross correlation within random and functional groups uncovered a wave pattern associated with functional
sequences. Using the exclusive-OR (XOR) logic gate, we formulated a scheme to threshold signals that may correlate to
putative active transcriptional modules from a population of random genomic fragments. It is our intent to use this as a
basis for identifying novel regulatory sites in the genome.
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Introduction

A digital transformation of genomic sequences has facilitated

the biological discovery of regulatory regions in the genome

through computational methods. Since 2003, the ENCODE

Consortium has endeavored to identify all the regulatory sites in

the human genome; however, there are still 105 more regulatory

sites than genes in the mammalian genome. This requires the

development of creative approaches to identify novel transcrip-

tional regulatory sites in the genome.

There is opulent literature suggesting that one of the primary

difficulties in locating active transcriptional sites is due to the

majority of the mammalian genome being transcribed and most

regulatory sequences being multi-functional [1,2,3,4]. Although

we are not presenting results to challenge this idea, it is implicit in

our approach that our randomly selected fragments or mini-

modules (150–250 bp) from the genome are more likely non-

functional by comparison to the experimentally validated active

sequences.

It is arguable that our method may only be detecting

compositional differences between sequences which may not

correlate to functionality. However, regulatory sequences repre-

sent a broad array of components including enhancers, repressors,

silencers, and other boundary elements. Hence, the genomic data

presently available to define specific properties of these individual

components is very non-specific since most sites have not yet been

discovered in the mammalian genome [5].

Digital delineation of genomic sequences such as DNA sequence

barcoding [6] and implementation of boolean logic gates have been

widely employed to study transcription [7,8,9]. Unfortunately, there

has been limited advancement on the application of boolean logic

gates and regulatory module bit coding. In this paper, we used an

established systems model of bit encoded sequences from Yaragatti et

al. (2009) to identify potentially active modules in the genome through

a signal plot. The rationale for our approach was to evaluate the

interaction of discrete properties between sequences.

Methods

Genomic Sequence Database
The random and functional genomic sequences analyzed in this

paper were acquired from Yaragatti et al. (2009). As reported, the

functional sequences were experimentally validated as enhancers

in a mammalian F9 cell line to increase the level of GFP

expression when inserted upstream of a promoter site. The

average size of these fragments was 149 bp. The random

sequences had lengths .150 and ,250 and were selected from

the mouse genome (UCSC mm9, July 2007 Assembly). As

reported, these sequences were encoded as bit vectors based on

genomic features (from the UCSC Genome Browser) that were

either present (equals 1) or not present (equals 0) in the sequences.

These sequences were not modified in any way from their original

source and additional details can be found in their online

Bioinformatics Supplemental Table 2.

Cross Correlation and XOR Implementation
We implemented the following functions using Matlab scripts to

compare a genomic sequence (vector) to other sequences in our

dataset. The cross correlation (xcorr) function is a standard built in

function that computes raw correlations with no normalization.

The xcorr(x,y) function returns the cross-correlation sequence in a

length 2*N21 vector, where x and y are vectors of length N (N.1).
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Figure 1. Analysis of bit encoded genomic sequences. (a) Each sequence (point) is evaluated against every other sequence outputting a binary
vector which is summed and normalized. The correlation coefficient was performed on random and functional vectors (t = 6.19, f = 15.17, df = 201,
p,0.05). The correlation coefficient is a number between 0 and 1 and if there is no relationship between the compared sequences, then a value of 0
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The output vector c has elements given by c(m) = Rxy(m2N), m = 1,

…, 2N21.

A very similar function to xcorr is the exlusive-OR (xor)

operation. We used xor(x, y) to perform an operation on the

corresponding elements of vectors x and y. The resulting element

C(i,j,…) is logically true (i.e., equal to1) if x(i,j,…) or y(i,j,…)–but

not both–is nonzero. In both applications, we summed the

resultant vector and plotted the normalized scores for each vector.

Averaging the XOR scores for the functional sequences

provides a threshold value for isolating putative functional

sequences from the random genomic sequence population. All

Matlab scripts used in our analysis are available in Figure S2.

Statistical Analysis
Chi square analysis was performed through a built-in function

(with default settings) using Stata v.9E software. All data reported

has signficance at the 95% confidence level (i.e., p,0.05). The

reported t-values were acquired from the online Bioinformatics

Supplemental Table 1 and were included in our table for

comparison purposes.

Results and Discussion

This paper introduces a novel scheme to isolate candidate

functional mini-modules from a random population of genomic

fragments based on sequence properties. In an earlier study, it was

successfully shown that our genomic fragments can be classified

into active and inactive groups by calculating a composite score for

each sequence and analyzing it through a support vector machine

[10]. We are expanding on this analysis by creating a model that

evaluates the interaction of these genomic vectors using the same

set of sequence features. In our initial analysis, we presented a t-

test that compared the means between vectors to show variation

between the groups. To support our current model, a chi square

(x2) test was performed on the features, by comparing frequency,

to justify differences between elements of the vectors. We observed

a wider range of x2 values, but the results from the chi square

analysis are essentially similar to the t-test (Figure S1).

We computed the correlation coefficient to show variation

between random and functional sequences with the assumption

that the absolute score of a sequence does not directly relate to its

functionality. As shown in Figure 1A, the random sequences

generated a large range of scores whereas the functional sequences

were limited to approximately three values suggesting there was

limited variation within the functional group. The rationale for the

XOR logic gate (Figure 1B) was to emulate the binary output

function of the correlation coefficient with the major exception

that similar sequences (i.e., vectors having similar elements) would

score equivalently. We implemented a scheme in Figure 1C

whereby random sequences with higher scores are more likely to

be functional transcriptional modules, which can be selected by

calculating thresholds. Although reported in our earlier study, it is

important to bear in mind that the random sequences may have

contained genic, intergenic, and non-coding regions of the

genome.

An important aspect of the support vector machine approach

used in Yaragatti et al. (2009) was that each sequence was

evaluated by the integration of its discrete features. This paper

proposes an analogous model that relates a sequence to other

sequences (i.e., the interaction of features) for predicting

functionality. This approach may uncover modules active in a

specific regulatory network (i.e., transcriptional regulation of a

gene) that may otherwise go undetected using current computa-

tional methods.

Using the mathematical XOR function, we have introduced a

novel approach to approximate loci-specific transcriptional active

sites in the genome. This is a simple, but effective, approach that

interprets functional DNA as a dynamic bit code of features rather

than a static sequence of nucleotide based motifs. Ultimately, we

intend to advance this paradigm of analyzing regulatory sequences

using bit vectors in more complicated systems with the hope of

elucidating the functional landscape of eukaryotic genomes.

Supporting Information

Figure S1 Chi square analysis was performed on features that

were used in our cross correlation and XOR logic gate.

Found at: doi:10.1371/journal.pone.0005608.s001 (0.85 MB TIF)

Figure S2 Matlab Scripts for Implementation of Cross Corre-

lation and XOR Logic Gate.

Found at: doi:10.1371/journal.pone.0005608.s002 (0.04 MB

DOC)
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is predicted. (b) Schematic of XOR model used for bit encoded genomic sequences. (c) By using the XOR function, we can select sequences from the
random population based on a threshold value from the functional modules (t = 5.52, f = 4.91, df = 201, p,0.05).
doi:10.1371/journal.pone.0005608.g001

Functional Genomic Signals

PLoS ONE | www.plosone.org 3 May 2009 | Volume 4 | Issue 5 | e5608


