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Abstract: The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans
and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions
appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested
that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations
in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related
to structural and functional changes observed in patients with cognitive dysfunctions, therefore
suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most
interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in
mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore
indicating that mitochondrial processes are strictly related to synapse formation and maintenance of
a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal
function and metabolism, but also needs the active contribution of astrocytes, we summarize in
this review recent studies showing the involvement of synaptic plasticity in the pathophysiology
of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible
involvement of astrocytes.

Keywords: 22q11 deletion syndrome; synaptic plasticity; synapses; mitochondria; astrocytes

1. Introduction

The 22q11 deletion syndrome (DS), also known as DiGeorge or velocardiofacial syn-
drome, which occurs in one out of 4000 live births is caused by a hemizygous microdeletion
in the long arm of chromosome 22, the most frequent of which are a three megabase (Mb)
deletion that affects ~60 genes and a 1.5 Mb deletion affecting 35 genes [1,2]. It is thought
that the deletion is caused by a non-allelic homologous recombination due to the presence
of a low copy number of repeats flanking the region that predispose to ectopic recombina-
tion during meiosis [3]. Most affected subjects (85%) have a 3 Mb deletion encompassing
approximately 30 contiguous genes, but ~15% have smaller atypical deletions of 1.5 Mb [4]
that seem to contain all the genes necessary for the development of the syndrome [5] and
an increased risk of psychosis [6,7].

The syndromic nature of the disorder gives rise to various phenotypes that can involve
different organs and tissues, but most patients (~76%) have congenital heart defects, palatal
and renal abnormalities, characteristic craniofacial dysmorphisms and hypocalcaemia, and
are affected by immune deficiency and learning difficulties that lead to major developmen-
tal delays (see [3] for the detailed pathophysiological mechanisms and a comprehensive
review). The 22q11DS is also associated with a strikingly high risk of developing neuropsy-
chiatric disorders: about 25–30% of patients develop affective psychosis or schizophrenia,
thus making the syndrome one of the greatest risk factors for psychotic disorders identified
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so far [8,9]. The 22q11.2 microdeletion accounts for up to 2% of all cases of schizophrenia
and is the only known recurrent copy number variation (CNV) responsible for new cases
of schizophrenia [4,7].

Furthermore, the prevalence of other neuropsychiatric disorders (Figure 1) such as
autism spectrum disorder (ASD), anxiety, and attention deficit hyperactivity disorder
(ADHD) [10,11] is considerably higher in 22q11DS patients than in the general popu-
lation [12–14]. ADHD and anxiety disorders are the most frequent diagnoses during
childhood, whereas the rates of psychosis and mood disorders increase dramatically during
adolescence and young adulthood. Although the average age of 22q11DS patients at the
time of the onset of overt psychotic disorders is 19–26 years [15], earlier manifestations
of psychotic-like symptoms characterise almost one-third of adolescents and ~17% of pre-
adolescent children [12,16], thus suggesting that the severity of the psychotic symptoms
progressively worsens.
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Figure 1. Phenotypic features of 22q11.2 Deletion Syndrome (22q11DS). The chromosomic location
of the deletion (left) and the most common manifestations of the disease (right) are shown. Starting
from childhood and early adolescence 22q11.2 subjects face a wide range of neuropsychiatric illnesses
which include attention deficit disorder (ADHD), schizophrenia spectrum disorder, anxiety, and
autism spectrum disorders. A baseline cellular brain pathology and the consequent cortical circuit
dysfunction are at the root of these alterations.

The 22q11.2DS is associated with a wide range of cognitive impairments [13,17].
Patients generally have poor non-verbal, numerical, and spatio-temporal skills [18] and
their impaired attention system [19] prevents them from distinguishing relevant from
irrelevant information and fails to inhibit the impulsive responses that interfere with the
brain’s ability to focus on goal-relevant thoughts. Furthermore, those with psychotic
symptoms are associated with cognitive deficits and a decline in academic performance.
It has been reported that measures of executive functions such as working memory and
sustained attention reveal greater deficits in 22q11.2DS patients with schizophrenia than in
those without [20–22], and longitudinal studies following adolescents with 22q11.2DS into
adulthood have shown that the IQ of patients with psychotic disorders is lower than in
those without [23].

Studies of 22q11DS patients and mouse models (see next paragraph) have indicated
that the cognitive deficits may be due to deficits in synaptic plasticity in the cortical [24,25]
and hippocampal circuits that are known to be involved in various aspects of planning,
working memory, rule-based learning, attention, and emotional regulation [26,27]. Plastic-
ity refers to the ability of neural activity to modify the neural circuit functions generated by
an experience (such as subsequent thoughts, feelings, and behaviour). “Synaptic plasticity”
specifically refers to activity-dependent modifications of the strength or efficacy of synaptic
transmission at pre-existing synapses. For more than a century, it has been suggested
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that this mechanism plays a central role in the capacity of the brain to incorporate tran-
sient experiences into persistent memory traces [28,29] and it is therefore also thought to
be critically involved in the early development of neural circuits [30]. Many forms and
mechanisms of short- and long-term synaptic plasticity have been described (including
paired-pulse facilitation and depression, facilitation and depression following trains of
stimuli, and the modulation of transmission by pre-synaptic receptors), and the temporal
domains of such changes range from milliseconds to hours, days, and presumably even
longer [30]. Over the last ten years, several studies have indicated that deficits in synaptic
plasticity may contribute to the cognitive deficits associated with many neurodevelopmen-
tal disorders, including 22q11DS [6,31–36], which suggests that elucidating the mechanisms
underlying synaptic plasticity may be a crucial step in improving our understanding of the
disorders themselves.

Furthermore, there is increasing evidence suggesting that astrocytes may be involved
in some forms of short-term and long-term plasticity [37–42] by changing their synaptic
coverage, controlling the clearance of neurotransmitters, or by releasing neuroactive sub-
stances (i.e., gliotransmitters, cytokines, and chemokines) that can directly affect synaptic
efficacy [37,39,42].

2. Synaptic Plasticity and the Pathophysiology of 22q11DS

After having exposed how behavioural and cognitive deficits are an integral part
of the pathogeny of the 22q11DS and highly evolve throughout a patients’ life, we now
focus on details regarding the extent to which synaptic plasticity alterations are crucially
involved in the occurrence of cognitive defects during the disease. With this aim, we first
emphasize how 22q11 deleted genes are likely to affect synaptic plasticity processes in
animal models of the disease, and then, describe how mitochondrial defects and altered
astrocytic development are closely entangled and may ultimately underlie cognitive deficits
associated with synaptic plasticity changes.

Over the last ten years, it has been suggested that behavioural and cognitive impair-
ments underlying most neuropsychiatric diseases are probably due to alterations in the
mechanisms regulating synaptic function and plasticity [43]. In the case of 22q11DS, many
of the transcribed genes in the human minimally critical 1.5 MB and the larger 3 MB deleted
region encode proteins involved in synaptic processes, and studies of animal models have
confirmed the role of many 22q11 genes in regulating synaptic transmission and plastic-
ity [4,35]. Furthermore, in comparison with controls, histological studies of cell-derived
neurons (hiPSC cells and human organoids) from 22q11DS patients have confirmed the
synaptic deficit by revealing a reduction in dendritic arborisation and spines [6,32,36] as
well as in synapse markers [32].

Neuronal cell dysmorphologies are common to many 22q11DS phenotypes (cardiovas-
cular, craniofacial and limb malformations, and thymic dysplasia), which suggests that the
heterozygous 1.5 or 3 MB deletion and the consequent reduction in 22q11 genes disrupt the
development of various systems, including the brain. Similarly, the significant susceptibility
of 22q11DS patients to the development of schizophrenia, ASD, ADHD, language delay,
and other behavioural alterations [15,44], all of which are features of neurodevelopmental
disorders [45–47], suggests that 22q11DS disrupts brain development as well as peripheral
and visceral morphogenesis.

It has also been suggested that 22q11 genes may differentially operate at distinct
times during development [48]: for example, a reduction in a subset of genes expressed
at sites of mesenchymal/epithelial interaction may compromise early brain, face, heart,
and limb morphogenesis; a reduction in the genes regulating the cell cycle may disrupt
neurogenesis in the cerebral cortex; and a reduction in a distinct subset of mitochondrial
genes may compromise post-natal astrocyte formation and maturation, dendrite and axon
formation, and synaptogenesis. Such combined and/or recurrent dysfunctions in 22q11DS
genes may disrupt the differentiation and maturation of brain cells from early embryonic
to late post-natal development, and this may explain the variable behavioural pathology
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and dysmorphologies associated with 22q11DS. Neuronal cell dysmorphologies are also
consistent with widespread reductions in the volume of, particularly, the hippocampus
and pre-frontal and temporal cortices [49–53] and this suggests alterations in the functional
connectivity of, particularly, fronto-limbic circuitry [54–56].

However, although these cellular and morphological observations suggesting the
possible involvement of altered synaptic plasticity in 22q11DS do not explain the complex
symptoms associated with 22q11DS pathology, circuit-level explanations may be a means
of integrating the information coming from studies of patients and animal models. Animal
studies indicate that altered synaptic function in hippocampal and cortical brain structures
is crucially involved in behavioural and cognitive impairments observed in most neuropsy-
chiatric diseases [43]. In line with this, many laboratories have developed complementary
models that relate synaptic changes to the structural and functional changes observed in
patients with behavioural and cognitive dysfunctions [4,57].

The orthologous murine region of the human 22q11 locus lies on mouse chromo-
some 16, and all but one of the human genes in this region are represented, although they
are organised in a different order [4,58]. Several mouse models carrying chromosomal
deficiencies that are in synteny with the human 22q11.2 microdeletion have been gener-
ated [4,59,60], including Df1/+ and LgDel+/− mice carrying a hemizygous deletion of 18
and 24 genes respectively in the 22q11DS-related region of mouse chromosome 16 [60–62]
(Figure 2). Mouse models of 22q11DS are among the few animal models that replicate the
abnormalities associated with the syndrome in humans: for example, they reveal cognitive
deficits in the conditioned contextual fear paradigm, an assay that partially depends on
the hippocampus and pre-frontal cortex (PFC) [6,63,64], and have shown abnormalities
in corticogenesis and development of dendrites and dendritic spines in hippocampal and
PFC pyramidal neurons [4,6,27,57,65,66], highlighting the importance of correct neuronal
development. As previously said, cognitive deficits in 22q11 patients are mainly associated
with a diagnosis of schizophrenia [67,68] and are now considered better predictors of
disease progression than any other symptoms [23,69]. As in the case of schizophrenia, it is
thought that 22q11DS-related cognitive symptoms (particularly deficits in spatial working
memory) originate from the hippocampal and cortical regions involved in learning and
memory [70,71]. Of note, these alterations have been shown to occur both in 22q11DS pa-
tients [14,51] and 22q11DS mouse models [26,27]. Furthermore, mouse models of 22q11DS
reveal abnormal short- and long-term hippocampal synaptic plasticity [36,57,62,72,73],
which is consistent with the idea that synaptic plasticity is a cellular mechanism of learning
and memory [74,75].

Many studies have highlighted alterations in synaptic plasticity using animal models
in which the genes forming the genetic basis of the psychiatric and cognitive symptoms of
22q11DS [76] have been deleted or mutated. For example, it has been found that a genetic
variant of ZDHHC8 (a gene predisposing to schizophrenia) [76,77] is causally related to a
reduction in the strength of synaptic connections and alterations in the terminal arborisation
of both cortical and hippocampal neurons [65]. ZDHHC8 is a palmitoyltransferase that
belongs to a 23-member family of enzymes sharing a conserved cysteine-rich signature
catalytic domain (the DHHC domain) [78] and it has been shown that palmitoylation is
a key reversible post-translational protein modification involved in protein trafficking
and the regulation of various membrane and cytosolic proteins, especially in neurons [79].
The alterations in synaptic strength were accompanied by impaired mPFC-hippocampus
connectivity and spatial working memory, one of the main cognitive features of early-
stage schizophrenia [80]. Most of the synaptic dysfunctions observed in these ZDHHC8-
deficient mice are also present in the Df(16)A+/− mice model of 22q11DS carrying the
1.3 MB microdeletion in the mouse locus that is in synteny with the human 22q11.1 locus
encompassing 27 genes [62].
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short (p) arm and long (q) arm, along with the centromere. The 22q11.2 deletion occurs in the q arm,
as indicated by the box in the 22q11.2 band. The black dots represent the genes within the commonly
deleted region of Chr. 22 in Humans (light blue box) and of the corresponding Chr. 16 in Mice (blue
box). Dashed lines connecting groups of identical genes depict the important analogy between these
genomic regions in Humans and in Mouse Models. Asterisks indicate mitochondrial genes. This
characteristic allows the use of animal models to study molecular mechanisms that cannot be easily
inferred working solely with human subjects.

It has also been found that the effects of ZDHHC8 are at least partially mediated by the
Cdc42-dependent modulation of Akt/Gsk3b signalling, which is consistent with the increas-
ingly supported association between dysregulated Akt/Cdc42 signalling dysregulation
and schizophrenia in humans [81]. Furthermore, pre-clinical studies have demonstrated
that impaired AKT signalling affects neuronal connectivity and neuromodulation within
the PFC [82] and have identified AKT as a key signalling intermediary downstream of
dopamine (DA) receptor 2 (DRD2), the most established target of the antipsychotic drugs
used to treat schizophrenic patients. This strengthens the hypothesis of a relationship
between 22q11 genes, impaired synaptic plasticity, and the cognitive and behavioural
deficits observed in schizophrenia-expressing 22q11DS patients.

One of the genes deleted in most patients with 22q11DS is the DiGeorge critical region
gene 8 (DGCR8), which encodes a crucial component of the micro-processing complex that
contributes to the biogenesis of microRNA (miRNA). Approximately 22 nucleotides long,
miRNAs regulate gene expression primarily by means of post-transcriptional gene silencing
after binding to their target RNAs, and are involved in many biological processes includ-
ing development, cell death, and cell metabolism [83,84]. Given the crucial role of 22q11
gene-mediated alterations in synaptic plasticity as the neural substrate underlying cogni-
tive dysfunctions and increased risk of developing schizophrenia associated with 22q11
microdeletions, Fénelon et al. investigated the effect of DGCR8 deficiency on the structure
and function of cortical circuits by assessing their laminar organisation and the neuronal
morphology and synaptic properties of layer 5 pyramidal neurons in the pre-frontal cortex
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of DGCR8+/− mutant. They found that they had fewer cortical layer 2/4 neurons, and
smaller spines in the basal dendrites of their layer 5 pyramidal neurons. In addition to these
structural changes, field potential and whole-cell electrophysiological recordings of layer 5
of the PFC showed greater short-term synaptic depression in response to the stimulation of
superficial cortical layers. As a key component of the micro-processing complex essential
for miRNA production [85], it is likely that DGCR8 significantly contributes to the miRNA
dysregulation observed in the brain of Df(16)A+/− mice [72].

It has been shown that a number of miRNAs regulate neuronal synaptic plasticity
by means of the local synthesis of proteins at synaptic level [86]. In line with this, it has
also been recently shown that the miRNA dysregulation due to DGCR8 deficiency leads
to deficits in various forms of prefrontal cortical synaptic plasticity, and is also likely to
induce schizophrenia-related symptoms in Df(16)A+/− mice [87]. Moreover, a reduction
in the levels of Mirta22 (an inhibitor of neuronal maturation whose expression is up-
regulated in the brain of Df(16)A+/− mice as a result of the hemizygosity of DGCR8) [88]
rescued not only key schizophrenia-related cognitive and behavioural dysfunctions, but
also abnormalities in PFC synaptic and structural plasticity.

Interestingly, Sivagnanasundram et al. found that the expression of 15 genes other
than those involved in the initial deletion was significantly modified in the hippocampus of
Df1/+ mice, [89]. Five of these genes (Calm1, Pcdh8, Ube2d2, Uble1b, and Ywhaz) are known
to be involved in learning and memory processes and/or schizophrenia-like phenotypes fre-
quently observed in 22q11DS patients. Calmodulin 1, which is encoded by Calm1 and plays
a key role in synaptic plasticity by regulating a large number of enzymes and proteins [90],
a process that shapes long-term neuronal function (particularly long-term hippocampal
potentiation and spatial learning) by modifying the phosphorylation/dephosphorylation
balance of downstream target proteins [91,92], was downregulated by 27%. Furthermore, a
reduction in the expression of Pcdh8 and Ywhaz may also contribute to impairing synaptic
plasticity in Df1/+ mice as the first encodes protocadherin 8, which modulate the synaptic
plasticity that is essential to the process of learning and memory [93]. The second belongs
to the 14-3-3 family and is thought to play a key role in neuronal differentiation, synaptic
plasticity, and olfactory learning and memory [94]. Interestingly, it has been reported that
disturbances in Pcdh8 are closely associated with autistic-like symptoms [95], a clinical
feature that is frequently observed in 22q11DS patients [96] and alterations in the expres-
sion of Ywhaz and other members of the 14-3-3 family have been identified in the PFC
and cerebellum of schizophrenic patients [97]. These findings highlight the importance of
impaired synaptic plasticity in the etiology of 22q11DS, particularly when it occurs within
the PFC [98] or hippocampus [99] or along the PFC-hippocampus pathway [100].

3. Role of Mitochondrial Genes in the Dysfunctions of Synaptic Plasticity Associated
with 22q11 DS

Intriguingly, nine of the many genes deleted in 22q11DS can induce mitochondrial
homeostasis disorders (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2,
T10, and ZDHHC8), but the first three may have no more than an indirect effect on mi-
tochondrial function, and only the last six encode mitochondrial proteins [101]. These
six genes are maximally expressed in mouse brain shortly after birth at a time of active
synaptogenesis, which suggests that well-functioning mitochondrial processes may be
intimately related to correct synapse formation. If this is so, alterations in mitochondrial
metabolism during the early phases of brain development may pave the way for impaired
neuronal metabolism or synaptic signalling, and thus partially explain the higher incidence
of developmental and behavioural deficits in 22q11 patients. This review does not intend
to cover precisely mitochondrial functions through brain development but, rather, to point
out how deletion of the above-mentioned genes is causally related to cognitive deficits
induced by synaptic plasticity disruption. In line with this, a recent study demonstrated
a close correlation between the age-dependent decline in the working memory of mon-
keys and an increased prevalence of doughnut-shaped mitochondria in PFC presynaptic
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boutons [102] due to oxidative stress [103]. It is also worth noting that, of the six genes
mentioned above, TXNRD2 encodes the mitochondrial enzyme thioredoxin-reductase 2,
which is of paramount importance for the mitochondrial scavenging of reactive oxygen
species (ROS) [104]. Another recent study found that specific ROS accumulation in PFC
layer 2-3 projecting neurons due to TXNRD2 haploinsufficiency is not only causally related
to alterations in local dendritic branching, but also to cognitive deficits measured during
a touchscreen-mediated visual discrimination/reversal task [57]. It was also found that
treating LgDel mouse models from birth to weaning with maternal drinking water con-
taining the antioxidant N-acetylcysteine completely restored working memory in young
adult mice, thus highlighting the central role of mitochondrial ROS-mediated stress in the
occurrence of cognitive deficits in this 22q11DS mice model.

In the same year, Gokhale et al. published a study showing an association between
proteome changes in the SLC25A1-SLC25A4 mitochondrial interactome and synapse func-
tion in the Df(16)A+/− mice model of 22q11DS [105]. SLC25A1 encodes a mitochondrial
citrate transport protein that allows exchanges of small metabolites between the mito-
chondrial matrix and the cytosol [106] and it was shown that its knockdown in zebrafish
induced mitochondria depletion and proliferation defects, two phenotypes frequently
described in 22q11DS patients [106]. More recently, another study demonstrated that the
deletion of human SLC25A1 compromises the integrity of the mitochondrial ribosome and
down-regulates the expression of multiple ribosome subunits, including MRPL40 [107],
which disrupts short-term synaptic plasticity and working memory by dysregulating mi-
tochondrial calcium [73]. MRPL40 encodes the mitochondrial ribosomal protein L40, a
protein of the large subunit of the mitochondrial ribosome whose function is necessary for
mitochondrial protein synthesis in eukaryotes [108]. As previously mentioned, ZDHHC8
encodes a mitochondrial palmitoyl transferase enzyme that is involved in regulating the cell
localisation of target proteins [109] and a reduction in its expression reduces the strength of
synaptic connections and impairs terminal arborisation in the hippocampus-PFC circuit of
a mice model of 22q11DS [65].

Lastly, it has been found that dysregulation of the PRODH gene, which encodes
the mitochondrial enzyme proline dehydrogenase, is associated with the occurrence of
schizophrenia-like phenotypes in humans [110] and animal models, probably because
of alterations in glutamatergic and dopaminergic transmission, especially in the PFC
and hippocampus [66]. Interestingly, PRODH and ZDHHC8 both have single nucleotide
polymorphisms (SNPs) that are closely associated with 22q11DS-related schizophrenia-like
symptoms [111]. It has also been reported that the T10 gene (also known as TANGO2),
which encodes a member of the transport and Golgi organisation family that plays a role in
endoplasmic reticulum (ER) secretory protein loading [112], has associated SNPs but at a
less robust level [111].

Taken together, these findings not only underline the crucial role of mitochondrial
alterations in the etiology of cognitive impairments observed in 22q11DS patients, but also
indicate that these alterations are likely to be due to dysfunctions in synaptic processes,
which is in line with the fact that two major mitochondrial functions (energy supply and
calcium buffering) are proven regulators of synaptic plasticity [113]. In connection with this,
Earls et al. showed that the dysregulation of calcium dynamics in the presynaptic terminals
of CA3 neurons in Df1/+ mice alters long-term potentiation at excitatory synapses [36].
They also showed that these changes are due to the up regulation of sarcoendoplasmic
reticulum calcium (Ca2+) ATPase (SERCA2), which is responsible for loading Ca2+ into the
ER, and that the resulting increase in ER calcium load triggers enhanced neurotransmitter
release and increases long term potentiation (LTP) levels [114]; furthermore, the depletion of
calcium stores induced by a SERCA2 inhibitor fully rescues synaptic phenotypes observed
in Df1/+ mice [36]. Interestingly, it has been found that SERCA2 levels are increased in
brains of patients with idiopathic schizophrenia, thus providing a direct link between the
processes described above and 22q11Ds-related psychiatric deficits.
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4. Astrocytes Can Modulate Synaptic Plasticity: Do They Play a Role in the
Pathophysiology of 22q11DS?

As reviewed so far, altered synaptic plasticity through mitochondrial deficits seems to
be strongly involved in cognitive symptoms reported in 22q11DS patients. Even though it
has long been considered that synapses have the inherent property of plasticity, a property
based on mechanistic changes occurring within neurons [115], neurons do not function in
isolation but belong to elaborate glial networks in which they are intimately associated with
astrocytes [116]. A growing body of evidence suggests that correct synaptic functioning
may involve the active participation of astrocytes [116–118]. It is possible that astrocytes
may also be at least partially responsible for the regulation of synaptic plasticity [119–121].
Therefore, in the next sections of this review, we focus on how developing astrocytes may
be involved in 22q11DS related synaptic plasticity and cognitive deficits through changes
in dopamine and mitochondrial homeostasis.

Astrocytes have functional and structural domains that are estimated to be in contact
with 200–600 dendrites and about 105 synapses [122,123] and their extensive contacts with
synaptic sites ensure strict control of local ions [124], pH homeostasis [125], the delivery of
metabolic substrates to neurons [126–129], control of the microvasculature [130], and mod-
ulation of synaptic activity and plasticity by releasing neuroactive substances [42,131–138].
Perisynaptic astrocytes also express many transporters of amino acid neurotransmitters,
including glutamate and GABA, and remove neurotransmitters to maintain transmitter
homeostasis [139], thus assuring the rapid and efficient control of the speed and extent of
neurotransmitter clearance, a mechanism involved in synaptic plasticity [140,141].

Recent studies showed that astrocytes also remove monoamine neurotransmitters, and
various research groups demonstrated that cultured astrocytes and astrocytoma transport
monoamines such as serotonin, dopamine, norepinephrine, and histamine [142–145]. Tran-
scriptome and immunohistochemistry analyses confirmed the presence of monoamine trans-
porters in in vivo astroglial cells, including organic cation transporter 3 (OCT3) [145–150]
and plasma membrane monoamine transporter (PMAT) [150]. OCT3 and PMAT form part
of the uptake system of low-affinity (higher Km values) and high-capacity transporters
(higher Vmax values) of monoamines such as serotonin and dopamine regardless of extra-
cellular Na+/Cl−, and recent studies indicated the critical role of low-affinity transporters
in in vivo serotonin and dopamine clearance [151,152], although the relative importance of
the two uptake systems is still unknown.

It was recently suggested that the taking up of dopamine by the astroglial OCT3
and PMAT transporters in the developing PFC indicates their involvement in control-
ling dopamine homeostasis [150]. The PFC is different from other dopaminergic brain
areas such as the striatum insofar as it expresses much lower levels of the high-affinity
dopamine transporter (DAT) and dopamine uptake by DAT plays a marginal role in clear-
ing extra-cellular dopamine levels [153]. Studies of the mechanisms regulating dopamine
homeostasis in the PFC showed that dopamine clearance in the presence of low DAT levels
depends on secondary mechanisms such as the metabolic activity of monoamine oxidase
B (MAOB) and cathecol-o-methyltransferase (COMT), and uptake of the norepinephrine
transporter [154–157].

Astrocytes in the developing PFC are equipped to control dopamine homeostasis as
those expressing OCT3/PMAT and MAOB/COMT contain vesicular monoamine trans-
porter 2 (VMAT2), which acts in concert with OCT3 and MAOB to provide effective control
of the metabolic capacity of dopamine [150]. The dopamine entering via OCT3/PMAT
transporters accumulates in VMAT2-positive intra-cellular organelles (i.e., endosomes or
lysosomes), which are highly dynamic in terms of fusions and fissions and passively leak
dopamine into the cytoplasm, where it is degraded by metabolic enzymes. This leakage
seems to be a crucial step in the metabolism of catecholamines (including dopamine) in
various cells including neurons [158]. In the absence of the VMAT2-dependent control of
dopamine storage in astrocytes, the dopamine taken up by plasma membrane transporters
is immediately metabolised, which triggers the aberrant uptake of the transporters and a
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consequently significant decrease in the extra-cellular dopamine levels [150] whereas, by ex-
pressing the determinants of dopamine control, astrocytes maintain the correct equilibrium
of extra-cellular dopamine levels. In line with the particular nature of the PFC, this mecha-
nism seems to be quite PFC-specific as VMAT2 is highly expressed by astrocytes located in
the frontal and pre-frontal cortical areas, but absent from those in other cortical areas such
as the visual cortex [150]. Interestingly, when this astroglial mechanism is perturbed (for
example, in the absence of VMAT2), the concomitant decrease in extra-cellular dopamine
levels may have significant effects on synaptic plasticity [150] as it triggers the accelerated
spine maturation of pyramidal neurons in layer 5 of the PFC, increases the frequency of
miniature excitatory postsynaptic currents (mEPSCs), and compromises LTP. Furthermore,
the effect on synaptic strength is consistent with accelerated synaptic development, and
this suggests that appropriate dopamine levels act as a developmental repressor via the
activation of pre-synaptic D2 receptors [150]. In the absence of VMAT2, the alteration in
synaptic plasticity is also accompanied by defects in executive cognitive functions, one
of the hallmarks of schizophrenia and 22q11DS. The fact that the deletion of VMAT2 and
subsequent decrease in dopamine causes excessive neuronal excitation, strongly suggests a
neural network that is resistant to experience-dependent refinement and therefore prone to
cognitive and behavioural deficits.

Is it possible that these mechanisms are also involved in the pathophysiology of the
cognitive deficits associated with 22q11? The COMT gene encoding the cytoplasmic COMT
enzyme, which (in addition to mitochondrially located MAOB) acts as a key degrader of
dopamine, is contained within the critical 1.5 Mb 22q11 DS microdeletion. The dopamine
hypothesis of schizophrenia, which has greatly influenced research into the mechanisms
underlying the onset of psychosis, suggests that COMT is an attractive candidate gene
underlying susceptibility to schizophrenia [159–162], and studies of Comt−/− mice have
demonstrated the ability of the COMT enzyme to control the extra-cellular clearance of PFC
dopamine and influence cognitive functions such as working memory [6,163,164]. It can
therefore be argued that reduced COMT activity may slow extra-cellular clearance and lead
to the aberrant tonic stimulation of dopamine receptors in the PFC, a situation that has been
associated with perseverative behaviour and inflexible cognitive performances [165,166]
which is a hallmark of the cognitive deficits associated with schizophrenia [166].

When considering the role of COMT in the pathophysiology of 22q11DS-related cogni-
tive dysfunctions, it is necessary to see COMT in the context of an epitastic interaction with
the PRODH gene, which is also within the 22q11 microdeletion and encodes mitochondri-
ally expressed proline dehydrogenase (PRODH). As previously mentioned, the PRODH
enzyme is the rate-limiting enzyme in proline degradation [167] and the homozygous dele-
tion of PRODH is associated with hyperprolinemia, which significantly increases proline
levels in the brain and leads to significant neuropsychiatric dysfunctions [6,167]. Studies of
mouse models and 22q11DS patients have provided evidence supporting the idea of an
epistatic interaction between COMT and PRODH as they both functionally converge on
the dopaminergic system [66,168] and give rise to a hyper-dopaminergic state that may
predispose to psychosis and schizophrenia [66]. Initial evidence of such an interaction
came from a transcriptome analysis of a study of PRODH-deficient mice [66,169] showing
the up-regulation of COMT and thus suggesting the possible up-regulation of the enzyme
in order to compensate for the PRODH deficiency.

The mechanism by which PRODH deficiency leads to an over-activated dopamin-
ergic system is still an important unknown, but one intriguing hypothesis is that it is
due to dysregulated astroglial control of dopamine homeostasis. According to a recent
transcriptome analysis of isolated astrocytes [146,148,170] contain all the genes deleted
in 22q11DS to some extent or another, and PRODH seems to be one among the 30 genes
that are highly expressed by astrocytes [146,148,170], thus suggesting that the PRODH
enzyme plays an important role in regulating some astroglial functions. Although this role
has not yet been investigated in detail, several studies have shown that it is involved in
many cell functions other than proline catabolism, including providing energy, shuttling
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redox potentials between cell compartments, and producing reactive oxygen species [171].
Proline oxidation is an excellent source of energy and the oxidation of one molecule of
proline can yield 30 ATP equivalents [171], thus suggesting that PRODH deficiency may
cause an equivalent deficit in cell energy.

In line with the hypothesis that PRODH contributes to cell energy demand, it is highly
expressed during post-natal development [172], when the brain grows to approximately
70% of its adult size and brain tissues undergo extensive remodelling. Interestingly, this
post-natal growth is due to a rapid increase in the number of neuropil and glial cells,
particularly astrocytes. During their post-natal maturation, astrocytes undergo extensive
morphological and functional changes [132,159], begin to express the determinants of
dopamine uptake, storage, and metabolism, while becoming competent in regulating
dopamine homeostasis [150]. Over the last ten years, many studies have shown that de-
fective astrocytic maturation has profound effects on developmental synaptogenesis and
circuit formation and function [173,174] and any disruption in astrocyte maturation can
be expected to confound the construction and functional architecture of neural networks
significantly [175]. The mechanisms regulating post-natal astrocyte maturation have been
extensively investigated [176], and the findings of a very recent study suggest that mitochon-
dria biogenesis may play a role in the cellular processes regulating morphogenesis [177].
Developing astrocytes contain a highly interconnected network of mitochondria, but the
conditional deletion of the metabolic regulator PPARγ co-activator 1α (PGC-1α) and the
consequent interference with mitochondrial biogenesis impairs their morphological matu-
ration and decreases the formation and function of excitatory synapses in the PFC [177],
thus underlining the importance of mitochondria to post-natal astrocyte development. The
PGC-1α in developing astrocytes can be modulated by the expression of metabotropic
glutamate receptor 5 (mGluR5), one of the well characterized signalling ways in astrocytes
that has been shown to be highly expressed in developing astrocytes [178,179]. There-
fore, the temporal relationship between post-natal maturation of astrocytes and synapses
suggests the existence of bidirectional interactions based on the release of glutamate that
orchestrate the maturation of functional circuits [132,180]. The mechanism by which altered
mitochondrial biogenesis in developing astrocytes affects the formation and maturation
of synapses is not known but, as it has been suggested that mitochondrial impairments
are also involved in 22q11DS, these findings offer an astrocyte-based mechanism of neural
pathology. It is possible that the PRODH and/or mitochondrial deficiency caused by the
microdeletion impairs the post-natal maturation of astrocytes and consequently causes the
decrease in synaptogenesis and the neuronal cell dysmorphogenesis associated with the
syndrome. It is also tempting to speculate that the lack of post-natal maturation somehow
affects the way in which astrocytes acquire their dopaminergic competence and therefore
gives rise to the hyperdopaminergic state and dysregulated synaptic plasticity associated
with 22q11DS.

5. Conclusions and Future Directions

Studies in 22q11DS mouse models have revealed neural circuit dysfunctions and a
variety of synaptic plasticity alterations that may be responsible for the cognitive impair-
ments observed in the syndrome. Given the critical role of synaptic plasticity in sculpting
and in passaging information within neural circuits, network alterations arise because
neuronal structure and synapse formation are affected. To investigate these features of the
22q11DS, different studies have focused on hippocampal and cortical neurons, both in vivo
and in vitro.

Changes in synaptic transmission, strength, and number of synapses and spines, as
well as changes in neuronal excitability have been observed extensively in 22q11DS mouse
models. Taken together, all recent findings confirm that synaptic plasticity is involved in
the pathophysiological mechanisms of 22q11DS.

Because active synaptogenesis occurs straight after birth and coincides with the in-
creased expression of specific mitochondrial proteins, which are deleted in the syndrome,
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the possibility of a direct link between mitochondrial metabolism and neuronal function
and synapse formation is almost certain. The relationship between mitochondria and
neuronal maturation is incredibly tight; indeed, not only the behaviour of these organelles
is shaped by development, but they themselves appear to regulate different stages of
neurogenesis. Indeed, their importance has been pointed out in different neuronal studies
and also recently in glial cells. In fact, we propose a possible role of astrocytes in the
pathophysiology of 22q11DS, because of their active participation in synapse formation
and function. Mitochondrial impairment in astrocytes lead to important dysfunctions in
neurons, therefore their importance is further supported.

Indeed, as a result of the complexity of the syndrome and because of the need for new
therapeutical strategies and targets, mitochondria seem to be a good potential target.

Individuals suffering from 22q11DS present an important decrease in their quality of
life, mostly because of their psychiatric manifestations. From a therapeutic point of view,
not much has been explored, not only because of the complexity of the developing brain and
the hard task of reaching specific brain structures solely with a pharmacological product,
but also mainly because of the phenotypic variability of the syndrome. Considerable
research is still needed in order to learn about the molecular aspects of this condition and
find a potential molecular mechanism to target the treatment of the disease.

6. Strengths and limitations and Search Strategy

The main asset of the present review is to provide new insights on how synaptic
plasticity disturbances described in 22q11DS may be related to abnormal maturation of
astrocytes because of mitochondrial defects, making such disturbances a new potential
target for treating psychiatric and cognitive problems associated with this syndrome. To
avoid complexifying this assumption, we voluntary restricted our analysis to studies not
dealing with in-depth mechanistic information, but simply gave an overview of the most
recent findings regarding 22q11DS and the involvement of synaptic plasticity deficits in
the occurrence of cognitive abnormalities, and then to link it to developing astrocytes and
mitochondria disturbances. In addition, even though the findings reported in the present
review originate from animal studies, they have the merit of pointing out the importance of
implementing translational studies by using, for instance, hiPSC [181] or the cutting-edge
technology of human cerebral organoids that has recently been shown to be suitable to
study synaptic processes [182].

7. Search Strategy and Selection Criteria

Data for this review were identified by searches of PubMed mainly focused over
the last 20 years. References from relevant articles were obtained using the search terms
(i) mitochondria or mitochondrial biogenesis; (ii) 22q11 DS or 22q11 deletion syndrome;
(iii) schizophrenia or psychosis; (iv) developmental disorders or neuropsychiatric disorders;
(v) cognition deficits; (vi) astrocytes, and (vii) synaptic plasticity. In addition, we paid
particular attention to use both historical and the most up-to-date references to respectively
address well-known assertions and the more recent and pioneering works.
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