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Abstract

Despite resting state networks being associated with a variety of cognitive abilities, it

remains unclear how these local areas act in concert to express particular cognitive

operations. Theoretical and empirical accounts indicate that large-scale resting state

networks reconcile dual tendencies towards integration and segregation by operating

in a metastable regime of their coordination dynamics. Metastability may confer

important behavioural qualities by binding distributed local areas into large-scale

neurocognitive networks. We tested this hypothesis by analysing fMRI data in a large

cohort of healthy individuals (N = 566) and comparing the metastability of the brain's

large-scale resting network architecture at rest and during the performance of several

tasks. Metastability was estimated using a well-defined collective variable capturing

the level of 'phase-locking' between large-scale networks over time. Task-based rea-

soning was principally characterised by high metastability in cognitive control net-

works and low metastability in sensory processing areas. Although metastability

between resting state networks increased during task performance, cognitive ability

was more closely linked to spontaneous activity. High metastability in the intrinsic

connectivity of cognitive control networks was linked to novel problem solving or

fluid intelligence, but was less important in tasks relying on previous experience or

crystallised intelligence. Crucially, subjects with resting architectures similar or 'pre-

configured' to a task-general arrangement demonstrated superior cognitive perfor-

mance. Taken together, our findings support a key linkage between the spontaneous

metastability of large-scale networks in the cerebral cortex and cognition.
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1 | INTRODUCTION

The brains of subjects at 'cognitive rest' display circumscribed pat-

terns of neural activity or resting state networks (Fox et al., 2005;

Fox & Raichle, 2007) that broadly overlap with task-based activations

(Cole, Bassett, Power, Braver, & Petersen, 2014; Smith et al., 2009).

Somehow these large-scale networks of the brain rearrange them-

selves on a fixed anatomical structure to support internal processes
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relevant to cognition (Bola & Sabel, 2015; Braun et al., 2015;

Cohen, 2018; Cohen & D'Esposito, 2016; Lewis, Baldassarre, Com-

mitteri, Romani, & Corbetta, 2009; Sadaghiani & Kleinschmidt, 2013;

Spadone et al., 2015). One proposal is that neuronal assemblies are

dynamically bound into coherent coordinative structures known as

neurocognitive networks (Bressler & Kelso, 2001, 2016). The concept

of the neurocognitive network represents an important compromise

between two antagonistic viewpoints: the first, localisation, which

holds that complex cognitive functions are localised to specific regions

of the brain, the second, globalism, which posits that complex func-

tions are distributed and arise through global coordination (Bressler &

Mcintosh, 2007; McIntosh, 1999, 2000, 2004, 2007). Neurocognitive

networks realise a type of dynamics where the brain's tendencies

towards integration and segregation are simultaneously realised. Local

areas are permitted to express their intrinsic functionality yet also

couple together and coordinate globally. Cognition, in this context, is

the real-time expression of distributed local areas whose states of

mutual coordination are adjusted dynamically over time (Bressler &

Tognoli, 2006). An important challenge is to understand how these

local areas become dynamically linked in the execution of particular

cognitive operations, and equally, how these patterns of dynamic con-

nectivity evolve over time (Cabral, Kringelbach, & Deco, 2017;

Gonzalez-Castillo & Bandettini, 2017).

The coordination of neurocognitive networks appears to arise

from a dynamic regime that balances counteracting tendencies

towards integration and segregation (Shanahan, 2010; Sporns, 2013;

Tognoli & Kelso, 2014a; Tononi, Edelman, & Sporns, 1998; Tononi,

Sporns, & Edelman, 1994). Empirical and theoretical accounts indicate

that the brain derives this behaviour from its identity as a complex

dynamical system operating in the metastable regime of its coordina-

tion dynamics (Kelso, 1995, 2012; Kelso & Tognoli, 2007; Shine,

Koyejo, & Poldrack, 2016; Tognoli & Kelso, 2009; Tognoli &

Kelso, 2014b; Shine et al., 2016b). The concept of metastability repre-

sents an important theoretical solution to the requirement that local

areas operate independently yet also combine and behave synergisti-

cally (Kelso, 2012; Kelso & Tognoli, 2007; Tognoli & Kelso, 2014b).

Metastability is also important as an observable phenomenon, furnish-

ing a dynamical explanation for how large-scale brain regions coordi-

nate their activity in space and time to support cortical function

(Bressler & Kelso, 2001, 2016; Jirsa & McIntosh, 2007; Kelso, 2008;

Tognoli & Kelso, 2009). In the language of coordination dynamics,

metastability refers to a coupled or collective oscillatory activity which

falls outside its equilibrium state for dwell times that depend on dis-

tance from equilibrium (Kelso, 1995). The overall dynamic

stability~flexibility of these systems, where the tilde symbolizes the

dynamic nature of this complementary pair, may be estimated by cal-

culating a well-defined collective variable or order parameter (Cabral,

Hugues, Sporns, & Deco, 2011; Kuramoto, 1984; Shanahan, 2010; Wil-

die & Shanahan, 2012). The Kuramoto order parameter captures the

average phase of a group of oscillators to quantify how 'phase-locked'

they are at a given moment in time. Accordingly, the variation in this

order parameter has been proposed as a measure of a system's meta-

stability and the mean of the phase-locking across time as a measure

of the system's overall synchrony. Metastability is high in a system that

visits a range of different states over time (dynamic flexibility) whereas

both highly ordered and highly disordered states are characterised by

low metastability (dynamic stability), and high and low phase syn-

chrony, respectively. These mutually related dynamics admit an inter-

pretation at both the functional level, in terms of neural flexibility, and

at the cognitive level, in terms of behavioural flexibility. A concrete

example of a metastable dynamical system is the 'winnerless competi-

tion' (Rabinovich, Huerta, Varona, & Afraimovich, 2008; Rabinovich,

Varona, Selverston, & Abarbanel, 2006). However, metastable phe-

nomena may emerge from a variety of underlying mechanisms (where

certain conditions are satisfied) and it is in this broader sense that we

use the term (Balaguer-Ballester, Moreno-Bote, Deco, &

Durstewitz, 2018; Deco & Jirsa, 2012; Deco & Kringelbach, 2016;

Friston, 1997; Kringelbach, McIntosh, Ritter, Jirsa, & Deco, 2015;

Stratton & Wiles, 2015).

The concept of phase synchronisation was originally introduced

in physics to study the behaviour of weakly coupled oscillators

(Rosenblum, Pikovsky, & Kurths, 1996). The original motivation was

to compare the temporal structure of two time series by removing

information related to amplitude (Varela, Lachaux, Rodriguez, &

Martinerie, 2001). Signal processing techniques such as the Hilbert

transform make it possible to separate a time series into its ampli-

tude and phase by converting the real signal into its complex analytic

version (Boashash, 1992). Importantly, unlike correlation-based

sliding-window analysis, which mandates an arbitrary choice of win-

dow length, the phase synchronisation approach provides time-

resolved functional connectivity at the same resolution as the input

narrowband fMRI signal (Glerean, Salmi, Lahnakoski, Jaaskelainen, &

Sams, 2012). Moreover, unlike correlation, which is a linear measure

of association between variables, phase synchronisation is a mea-

sure of statistical dependence that is sensitive to both linear and

non-linear relationships (Pereda, Quiroga, & Bhattacharya, 2005).

Recently, the phase synchronisation approach has successfully iden-

tified changes in the time-varying properties of brain connectivity

associated with several neural disorders (Alderson, Bokde, Kelso,

Maguire, & Coyle, 2018; Córdova-Palomera et al., 2017; Demirtaş

et al., 2017; Hellyer, Scott, Shanahan, Sharp, & Leech, 2015;

Koutsoukos & Angelopoulos, 2018; Lee, Doucet, Leibu, &

Frangou, 2018).

Theoretical accounts stipulate that metastability at rest corre-

sponds to an optimal exploration of the dynamical repertoire inherent

in the static structural linkages of the anatomy where the probability

of network switching is maximal (Cabral et al., 2011; Deco,

Kringelbach, Jirsa, & Ritter, 2017; Ponce-Alvarez et al., 2015). A criti-

cal next step in our understanding is to evaluate not only the degree

of metastability arising spontaneously from the brain's intrinsic net-

work dynamics but also the degree of metastability engendered by

the attendant demands of a task (Fingelkurts & Fingelkurts, 2001;

Rabinovich et al., 2008). Here, we invoke the theoretical framework

of metastable coordination dynamics (Kelso, 1995, 2012) to explain

how resting state networks are dynamically linked into task-

dependent neurocognitive networks (Bressler & Kelso, 2016). Given
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that patterns of brain activity appear to be more stable during cogni-

tive operations requiring explicit attention (Chen et al., 2015;

Cohen, 2018; Elton & Gao, 2015; Hutchison & Morton, 2015), we

anticipated reduced metastability between task-relevant neural net-

works as a function of task performance.

In light of the foregoing, we tested the hypothesis that coupling

between the brain's large-scale networks is more metastable at rest

than during the execution of an explicit task. We compared the meta-

stability of fMRI BOLD signal in resting and task-evoked functional

MRI data in a large cohort of healthy individuals (N = 566) from the

Human Connectome Project (Van Essen et al., 2013). Changes in

metastability were sought among 13 resting state networks

encompassing hundreds of regions and every major brain system

(Gordon et al., 2016). Finally, a link between the metastability of indi-

vidual network connections and task performance was sought across

several cognitive domains.

The methodological analysis comprised five stages: (1) changes in

metastability between large scale networks evoked by seven types of

task-based reasoning were examined using the network based statis-

tic (NBS); (2) seven tasks (plus rest) were classified according to the

metastability exhibited between large-scale brain networks using a

convolutional neural network (CNN); (3) changes in metastability com-

mon to all seven tasks were sought through principal component anal-

ysis (PCA); (4) the cognitive relevance of metastability between

networks was examined at rest and during the performance of an

explicit task and (5) the contribution of metastable network dynamics

to the efficient transformation between rest and task-driven network

architectures, as captured by the similarity of task and rest-based net-

work configurations, was investigated.

Overall, we found that–contrary to expectations–the metastabil-

ity of couplings between large-scale networks was actively enhanced

by task performance, principally in regions known to be devoted to

cognitive control. Although metastability was evoked by task, cogni-

tive performance was more closely aligned with the metastability of

the brain's intrinsic network dynamics.

2 | METHODS

2.1 | Participants

Data were obtained through the Washington University-Minnesota

Consortium Human Connectome Project (HCP; Van Essen

et al., 2013). Subjects were recruited from Washington University and

surrounding area. The present paper used 566 subjects from the

1,200 healthy young adult release (aged 22–35; see https://www.

humanconnectome.org/data). All participants were screened for a his-

tory of neurological and psychiatric conditions and use of psychotro-

pic drugs, as well as for physical conditions or bodily implants.

Diagnosis with a mental health disorder and structural abnormalities

(as revealed by fMRI) were also exclusion criteria. All participants sup-

plied informed consent in accordance with the HCP research ethics

board. The subset of subjects comprising monozygotic and dizygotic

twin pairs were excluded from the present study. All subjects attained

at a minimum a high school degree.

2.2 | MRI parameters

In all parts of the HCP, participants were scanned on the same equip-

ment using the same protocol (Smith et al., 2013). Whole-brain

echoplanar scans were acquired with a 32 channel head coil on a modi-

fied 3T Siemens Skyra with TR = 720 ms, TE = 33.1 ms, flip angle = 52�,

BW = 2,290 Hz/Px, in-plane FOV = 208 × 180 mm, 72 slices, 2.0 mm

isotropic voxels, with a multi-band acceleration factor of 8. Rest (eyes

open with fixation) and task-based fMRI data were collected over two

sessions. Each session consisted of two rest imaging sessions of approxi-

mately 15 min each, followed by task-based acquisitions of varying

length (totalling 30 min). The sessions were conducted on consecutive

days at approximately the same time. Four tasks were acquired in the

first session and three in the other. Except for the run duration, task-

based data were acquired using the same EPI pulse sequence parame-

ters as rest. Seven tasks lasting a total of 1 hr were acquired. Counter

balancing of task order was not performed. The seven tasks (run

times in minutes) were collected in the following order: working

memory (10:02), gambling/reward learning (6:24), motor responses

(7:08), language processing (7:54), social cognition (theory of mind;

6:54), relational reasoning (5:52) and emotion perception (4:32; Barch

et al., 2013). Only resting state data from the first session were

utilised. High-resolution 3D T1-weighted structural images were also

acquired with the following parameters: TR = 2,400 ms, TE = 2.14 ms,

TI = 1,000 ms, flip angle = 8�, BW = 210 Hz/Px, FOV = 224 × 224

and 0.7 mm isotropic voxels.

2.3 | Task protocols

Task-evoked fMRI data were downloaded to examine the changes in

metastable interactions between large-scale cortical networks during

attention demanding cognition. In total there were seven in-scanner

tasks designed to engage a variety of cortical and subcortical net-

works related to emotion perception, relational reasoning, language

processing, working memory, gambling/reward learning, social cogni-

tion (theory of mind) and motor responses. These included:

1. Emotion perception: participants were presented with blocks of tri-

als asking them to decide which of two faces presented on the

bottom of the screen matched the face at the top of the screen, or

which of two shapes presented at the bottom of the screen mat-

ched the shape at the top of the screen. The faces had either an

angry or fearful expression (Hariri, Tessitore, Mattay, Fera, &

Weinberger, 2002).

2. Relational reasoning: participants were presented with two pairs of

objects, with one pair at the top of the screen and the other pair at

the bottom of the screen. Subjects were first asked to decide if the

top pair of objects differed in shape or differed in texture and then
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to decide whether the bottom pair of objects also differed along

the same dimension (Smith, Keramatian, & Christoff, 2007).

3. Language processing: the task comprised a story and math compo-

nent. The story blocks presented participants with brief auditory

stories (5–9 sentences) adapted from Aesop's fables, followed by a

2-alternative forced-choice question that asked participants about

the topic of the story. The math task also presented trials auditorily

and required subjects to complete addition and subtraction prob-

lems (Binder et al., 2011).

4. Two-back working memory: task participants were presented with

blocks of trials that consisted of pictures of places, tools, faces and

body parts (non-mutilated, non-nude). The task consisted of indi-

cating when the current stimulus matched the one from two steps

earlier.

5. Gambling/reward learning: participants were asked to guess the

number on a mystery card in order to win or lose money. Partici-

pants were told that potential card numbers ranged from one to

nine and that the mystery card number was more than or less than

five (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000).

6. Social cognition (theory of mind): participants were presented with

short video clips (20 s) of objects (squares, circles, triangles) that

either interacted in some way, or moved randomly on the screen.

After each video clip, participants were asked to judge whether a

mental interaction had occurred; did the shapes appear to take into

account each other's thoughts and feelings? (Castelli, Happé,

Frith, & Frith, 2013; Wheatley, Milleville, & Martin, 2007).

7. Motor responses: participants were presented with visual cues that

asked them to either tap their left or right fingers, squeeze their

left or right toes, or move their tongue (Buckner, Krienen,

Castellanos, Diaz, & Yeo, 2011; Yeo et al., 2011).

Full timing and trial structure for the seven tasks are provided as

Data S1.

2.4 | Task fMRI behavioural data

Task performance was evaluated using behavioural accuracy and reac-

tion time data. Only those tasks which showed normally distributed

behavioural accuracy scores were subject to linear regression analyses

(see Figure S1). As confirmed by a Kolmogorov–Smirnov test (p < .05)

three of the seven tasks satisfied this criterion including relational rea-

soning (M = 0.76, SD = 0.12), language processing (M = 0.88,

SD = 0.71) and working memory (M = 0.83, SD = 0.10). Of the other

four tasks, the gambling task accuracies were no better than chance

(participants were asked to guess if a mystery card was higher or

lower than five). The emotion (M = 0.97, SD = 0.03) and social

(M = 0.96, SD = 0.12) task accuracies were perfect or near perfect for

most subjects and hence showed a strong ceiling effect. Finally, the

motor task accuracy scores were not recorded (subjects were asked

to move tongue, hands, or feet). All seven tasks showed normally dis-

tributed reaction time data, as confirmed by a one-sample

Kolmogorov–Smirnov test (p < .05).

2.5 | Cognitive measures

Cognitive performance was also evaluated using test scores

obtained outside the scanner. These included two complementary

factors of general intelligence: fluid and crystallised intelligence. The

former linked to novel problem solving and the latter to previously

acquired knowledge and experience (Jensen & Cattell, 2006). Execu-

tive function/inhibitory control was also investigated due to its

strong association with tonic (Sadaghiani & D'Esposito, 2015) and

phasic (Cole et al., 2013; Cole, Yarkoni, Repovs, Anticevic, &

Braver, 2012) aspects of attention. The HCP provides a comprehen-

sive and well-validated battery of cognitive measures based on tools

and methods developed by the NIH Toolbox for Assessment of Neu-

rological and Behavioural Function (Gershon et al., 2013). Relevant

cognitive measures were downloaded from the Connectome Data-

base (https://db.humanconnectome.org; Hodge et al., 2015). These

included:

1. Penn progressive matrices (PMAT): measures fluid intelligence via

non-verbal reasoning using an abbreviated version of the

Raven's Progressive Matrices Form A developed by Gur and

colleagues (Bilker et al., 2012). Participants are presented with

patterns made up of 2 × 2, 3 × 3 or 1 × 5 arrangements of

squares, with one of the squares missing. The participant must

pick one of five response choices that best fits the missing

square on the pattern. The task has 24 items and three bonus

items, arranged in order of increasing difficulty. However, the

task discontinues if the participant makes five incorrect

responses in a row.

2. NIH Toolbox Picture Vocabulary Test and NIH Toolbox Oral Reading

Recognition Test: measures crystallised intelligence by averaging

the normalised scores of each of the Toolbox tests that are

crystallised measures, then derives scale scores based on this new

distribution. One can interpret this crystallised cognition compos-

ite as a more global assessment of individual and group verbal rea-

soning. Higher scores indicate higher levels of functioning. The

Picture Vocabulary Test is a measure of general vocabulary knowl-

edge for ages 3–85. The participant is presented with an audio

recording of a word and four photographic images on the com-

puter screen and is asked to select the picture that most closely

matches the meaning of the word. Higher scores indicate higher

vocabulary ability. The Reading Test is a measure of reading ability

for ages 7–85. The participant is asked to read and pronounce let-

ters and words as accurately as possible. Higher scores indicate

better reading ability.

3. NIH Toolbox Flanker Inhibitory Control and Attention Test: measures

executive function, specifically tapping inhibitory control and

attention for ages 3–85. The test requires the participant to focus

on a given stimulus whilst inhibiting attention to flanking stimuli.

Sometimes the middle stimulus points in the same direction as the

flankers (congruent) and sometimes in the opposite direction

(incongruent). Scoring is based on a combination of accuracy and

reaction time.
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All three cognitive measures were consistent with a normal distri-

bution as confirmed by a one-sample Kolmogorov–Smirnov

test (p < .05).

2.6 | fMRI pre-processing

All pre-processing was conducted using custom scripts developed in

MATLAB 2017a (The MathWorks, Inc., Natick, MA). Motion between

successive frames was estimated using framewise displacement

(FD) and root mean square change in BOLD signal (DVARS; Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012; Power et al., 2014;

Power, Schlaggar, & Petersen, 2015; Burgess et al., 2016). FD was cal-

culated from the derivatives of the six rigid-body realignment parame-

ters estimated during standard volume realignment. In keeping with

previous time-resolved experiments (Shine, 2016a), and in light of the

significant positive relationship between motion during rest and

motion during each of the seven tasks (p < .01), if more than 20% of a

subject's resting state frames exceeded FD > 0.5 mm they were

excluded from further analysis. Based on these criteria, 566 out of

890 subjects were retained for further analysis. To preserve the tem-

poral structure of the signal no data 'scrubbing' was performed

(Power, 2014). Motion was defined as the SD in FD. A positive rela-

tionship between motion during rest and motion during task was iden-

tified in each of the seven domains. These included emotion

perception (F[1,565] = 21.6, p < .01, r = .34), relational reasoning (F

[1,565] = 43.6, p < .01, r = .28), language processing (F[1,565] = 48.2,

p < .01, r = .37), working memory (F[1,565] = 107.1, p < .01, r = .42),

gambling/reward learning (F[1,565] = 57.2, p < .01, r = .35), social cog-

nition (F[1,565] = 96.8, p < .01, r = .46) and motor responses (F

[1,565] = 62.9, p < .01, r = .31).

We used a minimally pre-processed version of the data that

included spatial normalisation to a standard template, motion correc-

tion, slice timing correction, intensity normalisation and surface and

parcel constrained smoothing of 2 mm full width at half maximum

(Glasser et al., 2013). The data corresponded to the standard

'grayordinate' space consisting of left and right cortical surface

meshes and a set of subcortical volume parcels which have greater

spatial correspondence across subjects than volumetrically aligned

data (Glasser et al., 2016). To facilitate comparison between rest and

task-based conditions both sets of data were identically processed.

Cortical reconstruction and volumetric segmentation was per-

formed with the Freesurfer image analysis suite, which is documented

and freely available for download online (http://surfer.nmr.mgh.

harvard.edu/). Briefly, this processing includes motion correction and

averaging (Reuter, Rosas, & Fischl, 2010) of multiple volumetric T1

weighted images (when more than one is available), removal of non-

brain tissue using a hybrid watershed/surface deformation procedure

(Ségonne et al., 2004), automated Talairach transformation, segmenta-

tion of the subcortical white matter and deep grey matter volumetric

structures (including hippocampus, amygdala, caudate, putamen, ven-

tricles; Fischl et al., 2002, 2004) intensity normalisation (Sled,

Zijdenbos, & Evans, 1998), tessellation of the grey matter white

matter boundary, automated topology correction (Fischl, Liu, &

Dale, 2001; Ségonne, Pacheco, & Fischl, 2007) and surface deforma-

tion following intensity gradients to optimally place the grey/white

and grey/cerebrospinal fluid borders at the location where the

greatest shift in intensity defines the transition to the other tissue

class (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; Fischl and

Dale, 2000). To mitigate partial volume effects, white matter and ven-

tricle masks were subsequently eroded by one voxel on all edges

using FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) tool

fslmaths (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012;

Smith et al., 2004; Woolrich et al., 2009). Average signals were

extracted from the voxels corresponding to the ventricles and white

matter anatomy. Variables of no interest were removed from the time

series by linear regression. These included six linear head motion

parameters, mean ventricle and white matter signals, and

corresponding derivatives.

To obtain meaningful signal phases and avoid introducing

artefactual correlations, the empirical BOLD signal was bandpass fil-

tered (Glerean et al., 2012). Since low frequency components of the

fMRI signal (0–0.15 Hz) are attributable to task-related activity

whereas functional associations between high frequency components

(0.2–0.4 Hz) are not (Sun, Miller, & D'Esposito, 2004), a temporal ban-

dpass filter (0.06–0.125 Hz) was applied to the data (Shine

et al., 2016a). The frequency range 0.06–0.125 Hz is thought to be

especially sensitive to dynamic changes in task-related functional

brain architecture (Bassett et al., 2011, 2013; Bassett, Yang, Wymbs, &

Grafton, 2015; Glerean et al., 2012).

Since each task comprised two runs (one from each session) both

runs were concatenated into a single time series. The individual sig-

nals were demeaned and normalised by z-scoring the data. To pre-

empt the possibility that variation in synchrony (our definition of

metastability) was being driven by alternating blocks of task and fixa-

tion, task blocks were concatenated. Since artificially concatenating a

series of disjoint task blocks resulted in a discontinuous time series,

the analysis was also performed with cue and fixation blocks included.

Overall, retaining cue and fixation blocks did not alter the pattern of

metastability between large-scale networks (only the statistical signifi-

cance). The present analysis pertains to the case where cue and fixa-

tion blocks are removed. To ensure that any observed differences

were due to dynamics rather than bias associated with signal length,

the same number of contiguous frames from task and rest were

utilised; the resting state scan was truncated to match the length of

the task run (after cue and fixation blocks were removed).

2.7 | Brain parcellation

Mean time series were extracted from regions of interest defined by

the Gordon atlas (Gordon et al., 2016). The separation of regions

into functionally discrete time courses is especially suitable for inter-

rogating dynamic fluctuations in synchrony between large-scale net-

works. The Gordon atlas assigns regions to one of 12 large-scale

networks corresponding to abrupt transitions in resting state
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functional connectivity. These include dorsal attention, ventral

attention, fronto-parietal, cingulo-opercular, salience, default mode,

medial parietal, parietal-occipital, visual, motor mouth, motor hand

and auditory networks. Regions outside these domains are labelled

as 'none'. The atlas was downloaded from the Brain Analysis Library

of Spatial Maps and Atlases database (https://balsa.wustl.edu; Van

Essen et al., 2017). Whole-brain coverage consisted of 333 cortical

regions (161 and 162 regions from left and right hemispheres

respectively), and one subcortical volume corresponding to the thal-

amus. The thalamus, which exhibits domain-general engagement

across multiple cognitive functions, also plays a critical role in inte-

grating information across functional brain networks (Hwang,

Bertolero, Liu, & D'Esposito, 2017).

2.8 | Calculating resting state network
metastability

The first step in quantifying phase synchronisation of two or more

time series is determining their instantaneous phases. The most com-

mon method is based on the analytic signal approach (Gabor, 1946;

Panter, 1965). The advantage of the analytic signal is that by ignoring

information related to amplitude additional properties of the time

series become accessible. From a continuous signal x(t) the analytic

signal xa(t) is defined as,

xa tð Þ= x tð Þ+ iH x tð Þ½ �

where H is the Hilbert transform and i=
ffiffiffiffiffiffiffiffiffiffiffi
−1ð Þp

. If Bedrosian's theo-

rem (Bedrosian, 2008) is respected then the analytic signal of a time

series can be rewritten as,

xa tð Þ= a tð Þeiθ tð Þ

where a(t) is the instantaneous envelope and θ(t) the instantaneous

phase. The Bedrosian theorem makes a clear prediction–the narrower

the bandwidth of the signal of interest, the better the Hilbert trans-

form is able to generate an analytic signal with meaningful envelope

and phase. For this reason, bandpass filtering of empirical BOLD signal

is essential prior to performing the transform. In accordance with the

foregoing, the 334 narrowband mean BOLD time series were trans-

formed into complex phase representation via a Hilbert transform.

The first and last 10 time points were removed to minimise border

effects inherent to the transform (Córdova-Palomera et al., 2017;

Ponce-Alvarez et al., 2015).

To relate findings to the existing literature and to preserve poten-

tially important task-based neural components in the data, global sig-

nal regression was not performed in this study. The global signal is

defined as the mean time-series of signal intensity across all voxels.

Its removal by inclusion as a nuisance regressor in the general linear

model, or global signal regression, has provoked controversy (Liu,

Nalci, & Falahpour, 2017; Murphy & Fox, 2017). On the one hand, the

global signal represents a 'catch-all' component reflecting various

respiratory, scanner and motion related artefacts (Liu et al., 2017;

Murphy & Fox, 2017). On the other hand, its removal has been linked

to the introduction of artefactual anti-correlations in the data (Fox,

Zhang, Snyder, & Raichle, 2009; Murphy, Birn, Handwerker, Jones, &

Bandettini, 2009), altered distributions in regional signal correlations

(Gotts et al., 2013) and distorted case–control comparisons of func-

tional connectivity measures (Gotts et al., 2013). Moreover, although

the global signal reflects non-neural confounds in the data, it may also

contain a substantial neural component. This is supported by evidence

suggesting that spontaneous fluctuations in local field potentials cor-

relate with fMRI signals across the entire cerebral cortex (Schölvinck,

Maier, Ye, Duyn, & Leopold, 2010) and by a recent study suggesting

that 14–50% of the variance of the global signal is related to network-

specific time series and not to factors such as arousal (Gotts,

Gilmore, & Martin, 2020). These findings, combined with studies dem-

onstrating a behavioural connection (Chang et al., 2016; Wen &

Liu, 2016; Wong, Olafsson, Tal, & Liu, 2013), suggest that global signal

regression is removing important neural information. Ultimately,

whether or not to perform global signal regression is contingent upon

the scientific aims of the investigation and must be taken into account

when interpreting the results (Liu et al., 2017; Murphy et al., 2009).

The effect of removing the global signal on estimates of metastability

is provided as a supplemental analysis (see Figure S2).

The Hilbert transform is able to produce an analytic signal with

meaningful envelope and phase for any finite block of bandpass fil-

tered data. Issues may arise when attempting to extract meaningful

phase relationships from short time series however, as robust estima-

tion of metastability is contingent on time series being of sufficient

length so as to permit adequate variation in synchrony between a set

of regions to occur. The impact of estimating metastability on time

series of different lengths is provided as supplementary information

(see Figure S3). Estimates of metastability were stable across the

length of time series considered in the present study including the

shortest, emotion (4:32) and the longest, rest (15 mins). Sampling rate

was not considered a significant factor in the estimation of metastabil-

ity due to the already slow haemodynamic response.

The 'instantaneous' collective behaviour of a group of phase oscil-

lators may be described in terms of their mean phase coherence or

synchrony. A measure of phase coherence–the Kuramoto order

parameter (Acebrón, Bonilla, Vicente, Ritort, & Spigler, 2005;

Strogatz, 2000)–was estimated for: (1) the set of regions comprising a

single resting state network; and (2) to evaluate interactions, the set

of regions comprising two resting state networks as:

RRSN tð Þ= 1
N

XN

k =1
eiθK tð Þ

���
���

where k = {1, …, N} is region number and θK(t) is the instantaneous

phase of oscillator k at time t. Under complete independence, all

phases are uniformly distributed and RRSN approaches zero. Con-

versely, if all phases are equivalent, RRSN approaches one and full

phase synchronisation. The maintenance of a particular communica-

tion channel through coherence implies a persistent phase
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relationship. The number or repertoire of such channels therefore cor-

responds to the variability of these phase relationships. Accordingly,

metastability is defined as the SD of RRSN and synchrony as the mean

of RRSN (Cabral et al., 2011; Deco & Kringelbach, 2016;

Shanahan, 2010). Global metastability was estimated by considering

the interactions of all resting state networks simultaneously i.e., all

334 cortical and subcortical signals.

The Hilbert transform permits temporal relationships between

brain regions to be analysed by extracting the phase of a signal and

discarding its amplitude. Accordingly, the result of the Hilbert trans-

form may be conceptualised as a set of phase oscillators rotating

around the circumference of the unit circle. The length of the vector

pointing from the centre of the circle to the mean phase of the group

is commensurate with the synchrony between oscillators. Variation in

the length of this vector over time, from zero (no synchrony) to one

(full synchrony), provides a measure of the system's overall metasta-

bility. Although two systems may differ in terms of synchrony, as

reflected by vectors of different lengths, both can share the same

metastability as reflected by a vector of constant length over time.

The situation is illustrated by two oscillators rotating in-phase (with

synchrony equal to one) versus two oscillators rotating π
2 out-of-phase

(with synchrony equal to 0.5). In both cases, the lengths of the vectors

is constant and metastability is zero.

2.9 | Assessing changes in empirical resting state
network metastability during tasks

Given that (1) the current formulation of metastability permits calcula-

tion between a group of regions; and (2) interconnected subnetworks

convey more behaviourally relevant information than functional con-

nections observed between pairs of regions observed in isolation, we

advocate for a method that exploits the clustering structure of con-

nectivity alterations between functionally related networks. For this

reason, we applied the NBS to estimates of empirical metastability

obtained from fMRI data at the network rather than regional level

(see also, Alderson et al., 2018). For each subject, we estimated an

'interaction matrix' reflecting the metastable interactions of the

13 resting state networks (and thalamus) defined by the Gordon atlas.

The same procedure was applied to compute an equivalent interaction

matrix based on synchrony.

The NBS is a non-parametric statistical test designed to deal with

the multiple comparisons problem by identifying the largest connected

sub-component (either increases or decreases) in topological space

whilst controlling the family wise error rate (FWER). To date, several

studies have used the method to identify pairwise regional connec-

tions that are associated with either an experimental effect or

between-group difference in functional connectivity (Zalesky, For-

nito, & Bullmore, 2010). Here, we use the NBS to identify topological

clusters of altered metastability (or synchrony) between empirical rest-

ing state networks under different conditions of task relative to rest.

Mass univariate testing was performed at every connection in the

graph to provide a single test statistic supporting evidence in favour

of the null hypothesis, namely, no statistically significant difference in

the means of resting state and task-based metastability. The test sta-

tistic was subsequently thresholded at an arbitrary value with the set

of supra-threshold connections forming a candidate set of connec-

tions for which the null hypothesis was tested. Topological clusters

were identified between the set of supra-threshold connections for

which a single connected path existed. The null hypothesis, therefore,

was accepted or rejected at the level of the entire connected graph

rather than at the level of an individual network connection. The

above steps were repeated in order to construct an empirical null dis-

tribution of the largest connected component sizes. Finally, FWE-

corrected p values, corresponding to the proportion of permutations

for which the largest component was of the same size or greater,

were computed for each component using permutation testing.

2.10 | Classification of task and rest data

The interaction matrices corresponding to the seven different tasks

(plus rest) were classified using a modified CNN architecture

(Figure 1). BrainNetCNN is the first deep learning framework designed

specifically to leverage the topological relationships between nodes in

brain network data, outperforming a fully connected neural network

with the same number of parameters (Kawahara et al., 2017). The

architecture of BrainNetCNN is motivated by the understanding that

local neighbourhoods in connectome data are different from those

found in traditional datasets informed by images. Patterns are not

shift-invariant (as is a face in a photograph) and the features captured

by the local neighbourhood (e.g., a 3 × 3 convolutional filter) are not

necessarily interpretable when the ordering of nodes is arbitrary.

To reduce the number of parameters we included only a single

edge-to-edge layer (Meszlényi, Buza, & Vidnyánszky, 2017). The input

to the CNN is the set of 14 × 14 interaction matrices that capture the

metastability/synchrony between the 13 resting state networks (plus

the thalamus) defined by the Gordon atlas. The network classifies the

data into one of the seven tasks or the subject's resting state (random

classification accuracy is 12.5%). The model was evaluated using k-

fold cross validation where k = 5. This value of k has been shown to

yield test error rate estimates that suffer neither from excessively high

bias nor from very high variance (Kuhn & Johnson, 2013). The original

dataset was partitioned randomly into training (60%), validation (20%)

and testing sets (20%). That is, 340 subjects were assigned for training

the model, 113 subjects were assigned for tuning the model's hyper-

parameters, and a further 113 were withheld for validating the perfor-

mance of the trained model. This was repeated five times for k-fold

using different test subsets each time. In the case of metastability,

each of the 566 subjects was associated with eight interaction matri-

ces (seven task-based interaction matrices and one resting state inter-

action matrix). The same was true in the case of synchrony.

3218 ALDERSON ET AL.



Performance was evaluated using classification accuracy, that is, the

proportion of correctly identified instances. The above procedure was

repeated twice, once for the interaction matrices capturing metasta-

bility and again using the interaction matrices based on synchrony.

The CNN was implemented in Python using the Pytorch frame-

work (Paszke et al., 2017). Rectified linear units (RELUs; Nair &

Hinton, 2010) were used as activation functions between layers and

the probability of each class was calculated at the output layer using

the soft max function (Bridle, 1990). The network was trained using the

Adam optimiser (Kingma & Ba, 2015) with mini-batch size of 128, a

learning rate of 0.001 and momentum of 0.9. Dropout regularisation of

0.6 was applied between layers to prevent over-fitting (Srivastava,

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014; Wager, Wang, &

Liang, 2013). The model minimised a cost function associated with the

cross-entropy loss. Hyperparameters used in the optimisation stage

included momentum and drop-out regularisation.

2.11 | Defining update/reconfiguration efficiency

The ability to switch from a resting state network architecture into a

task-based configuration was designated as update efficiency

(Schultz & Cole, 2016). Highly similar rest and task-based network

configurations are commensurate with high update efficiency, as few

changes are required to transition between the two whilst highly dis-

similar resting state and task-based architectures are linked to low

update efficiency, reflecting the many changes that are required to

make the switch. Update efficiencies were calculated for all 566 sub-

jects by vectorising the upper triangular half and diagonal of the rest

and task-general interaction matrices and calculating their Pearson's

correlation coefficients. The latter were converted to a normal distri-

bution by performing Fisher's z transformation.

3 | RESULTS

3.1 | Higher global metastability during task
than rest

The metastability of fMRI BOLD signal was examined during the resting

state and during the execution of several cognitively demanding tasks

(Figure 2). One-way ANOVA identified a statistically significant differ-

ence between groups (F[7,4,520] = 37.32, p < .01). Subsequent Tukey

post hoc test revealed significantly higher global metastability during the

seven tasks as compared to the resting state (M = 0.112, SD = 0.019).

These included emotion perception (M = 0.132, SD = 0.031), relational

reasoning (M = 0.133, SD = 0.030), language processing (M = 0.134,

SD = 0.027), working memory (M = 0.135, SD = 0.027), gambling/reward

learning (M = 0.136, SD = 0.029), social cognition (M = 0.141, SD = 0.029)

and motor responses (M = 0.143, SD = 0.030). Changes in metastability

are compared among the seven tasks as a supplemental analysis.

3.2 | Task related increases in metastability
between resting state networks

The NBS was subsequently used to identify changes in the metastabil-

ity of fMRI BOLD signal of individual network connections (task

vs. rest). In total, 566 resting state interaction matrices were com-

pared to 566 task-based interaction matrices within each of the seven

behavioural task domains. The null hypothesis, namely, that there was

no difference in metastability between rest and task, could then be

rejected at the level of individual network connections.

Consistent with the role of resting state networks in mediating

behaviour (Sadaghiani, 2010; Sadaghiani & Kleinschmidt, 2013), the

NBS identified statistically significant (p < .01; corrected) increases in

F IGURE 1 Schematic overview of the modified convolutional neural network architecture used to classify the eight different network
configurations (seven tasks and one resting state; Kawahara et al., 2017). Each block represents the input/output of a numbered filter layer. The
third dimension (m) represents the result of convolving the input with m different filters (feature maps). First, an interaction matrix composed of
the interactions of 14 networks (based on synchrony or metastability) is entered as input. This is convolved with an edge-to-edge (1, E2E) filter
which weights the edges associated with adjacent brain networks in topological space. The output from this layer is then convolved with an edge-
to-node (2, E2N) filter which assigns each network a weighted sum of its edges. Next, a node-to-graph (3, N2G) layer outputs a single response
based on all the weighted nodes. Finally, the number of features is reduced to eight output classifications through a series of fully connected
(4/5/6, FC) layers
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metastability between several large-scale networks during task engage-

ment relative to the more unconstrained resting state. A single test sta-

tistic threshold, that is, 16, was selected for all seven tasks so as to

permit visualisation of the increases in metastability between large-

scale networks on the same scale (Figure 3). Figure 3 shows the largest

connected sub-graph of increased metastability detected by the NBS at

a fixed threshold for all seven tasks where each node is scaled to reflect

its relative importance within the sub-graph (the sum of its effect sizes).

To characterise these increases across all seven tasks, we

summed the test statistics associated with each network's interactions

(see Figure S4). Networks related to cognitive control, including the

fronto-parietal, dorsal attention and cingulo-opercular networks, along

with thalamo-cortical networks linked to memory, learning and flexi-

ble adaptation (Alcaraz et al., 2018; Wolff & Vann, 2018), demon-

strated the most consistent increases in metastability across the

seven tasks. Moreover, metastability increased to a greater extent in

regions associated with cognitive control than regions linked to

sensory–motor processing (see Figures S5–S9).

3.3 | Increases in metastability were more
widespread than equivalent increases in synchrony

Edges associated with each sub-graph (metastability and synchrony)

were summed to reveal the total number of network connections

recruited for each task (Figure 4). Increases in metastability spanned a

greater number of cognitive subsystems than equivalent increases in

synchrony (in all but emotion and motor tasks). In both cases, the NBS

received an identical threshold.

3.4 | Each task is characterised by a small number
of task-evoked changes in synchrony

The highly correlated properties of metastability and synchrony (see

Figure S10) were disassociated using a deep learning framework.

Accordingly, task and rest network states captured by the 14 × 14

interaction matrices of metastability and synchrony were provided

as input to a CNN for classification. The network correctly identified

the seven different tasks (plus rest) based on synchrony with high

accuracy (76% average; chance level 12.5%; Figure 5a) but per-

formed less well when trained on metastability (46% average;

Figure 5b). The high sensitivity (true positive rate) and specificity

(true negative rate) exhibited by the classifier when trained on syn-

chronous interactions between networks suggests that each behav-

ioural domain was characterised by a small number of unique task-

evoked network changes. This was confirmed by masking out inputs

(interactions between networks) relevant for correct classification

(Figure 6) and re-evaluating the pre-trained classifier. Overall,

occluded inputs were associated with exceptionally poor classifica-

tion accuracy (Figure 5c).

In detail, guided backpropagation was used to identify the most

important inputs for correctly classifying each task. Guided bac-

kpropagation provides a set of gradients relating input to output.

High gradients at the input level have a large effect on the output

and are therefore important for classification. Recall, that each

row/column of the 14 × 14 input represented the interaction of a

single network (plus thalamus) with 14 others. Thus, guided bac-

kpropagation produced a 14 × 14 matrix of gradients. A consensus

across all subjects for a particular task was obtained by setting each

subject's top 10% of gradients (the most positive gradients) to one

and the remaining entries to zero, summing the matrices and divid-

ing by the total number of subjects. Entries important for correct

classification in more than 90% of individuals were set to zero in

the input (the interaction matrix). The performance of the pre-

trained classifier was then re-evaluated based on the occluded

input data. In a separate experiment, retraining on the occluded

inputs also produced extremely poor classification accuracy (not

shown).

3.5 | Different behaviours recruit a similar set of
metastable connections

So far, we have demonstrated that increases in metastability can be

distinguished from increases in synchrony in two ways: (1) their over-

all network size, that is, increases in metastability encompass a wider

network of cognitive-related brain systems than those based on

F IGURE 2 Empirical global metastability of fMRI BOLD signal in
the resting state (in green) and during several cognitively demanding
tasks (in grey). Bars display mean, 95% CI and one SD with individual
subjects indicated. Tasks arranged in ascending order of mean
metastability. One-way ANOVA revealed significantly higher
metastability during task execution relative to resting
state (p < .01)
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synchrony; and (2) their discriminatory utility, that is, tasks can be

identified with high accuracy based on a small subset of network

changes in synchrony (but much less so in terms of metastability).

Taken as a whole, these findings led us to hypothesise that common-

alities between tasks may be centred on a metastable core of task-

general network interactions.

To quantify the degree to which the seven task-based configu-

rations shared features in common, we used a dimension-reduction

tool–PCA–to reduce a larger set of variables (the seven task-based

interaction matrices) to a smaller set (a single task-general network

architecture) retaining most of the information. Accordingly, enter-

ing the seven task-based interaction matrices based on metastabil-

ity into a PCA yielded a single task-general architecture for each

subject. On average, the first principal component accounted for

78% of the variance between the seven tasks. The loadings were

positive and distributed equally between the seven tasks suggesting

that each task-based configuration contributed equally to the task-

general structure. These included emotion perception = 0.37, rela-

tional reasoning = 0.37, language processing = 0.36, working mem-

ory = 0.36, gambling/reward learning = 0.36, social cognition = 0.37

and motor responses = 0.38. This result likely speaks to the high

similarity between task-based configurations engaged by different

behaviours (see Figure S11). An exemplar task-general architecture

was subsequently derived through simple averaging across

subjects.

F IGURE 4 Increases in metastability (blue) are associated with a
greater number of network connections than equivalent increases in
synchrony (red). Figure shows size of sub-graph identified by the
network-based statistic (see Figure3) rankorderedbymetastability

F IGURE 3 Statistically significant (p < .01; corrected) increases in BOLD signal metastability between empirical resting state networks during
task as compared to resting state. Circular graphs show largest connected sub-graph of increased metastability identified by the network-based
statistic at a fixed threshold (16). Nodes are scaled to reflect the relative importance of their interactions (the sum of their effect sizes). Overall,
the connectivity of the dorsal attention (green) and fronto-parietal networks (yellow) are the most metastable
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3.6 | Task general architecture is composed of
subnetworks of increased and decreased metastability

We explicated this structure by performing another PCA analysis

on the interaction matrices obtained by subtracting task from

rest. In doing so, the task general architecture was decomposed

into subnetworks of high (Figure 7; top) and low (Figure 7; middle)

metastability. High metastability (Figure 7; red) was found in

networks associated with cognitive control including dorsal atten-

tion (selective attention in external visuospatial domains) and

fronto-parietal networks (adaptive task control). Tertiary

thalamo-cortical contributions were also apparent (memory, cate-

gory learning and adaptive flexibility). In contrast, low metastabil-

ity (Figure 7; blue) was linked to unimodal (or modality specific)

sensory processing architecture including motor, auditory and

visual networks.

F IGURE 5 Convolutional neural network performance in terms of classification accuracy where each row represents the true class and each
column represents the classification made by the neural network. Diagonal elements report the percentage of instances correctly classified. Off-
diagonal elements report the percentage of instances that are incorrectly classified. Inputs are classified as belonging to one of eight different
network states (seven tasks plus one resting state condition) where each row/column corresponds to the interaction of one network with
13 others (in terms of either synchrony or metastability). (a) Classification accuracy in terms of the synchrony between networks (average
accuracy = 76%; chance level 12.5%). (b) Classification accuracy in terms of the metastability between networks (average accuracy = 46%).
(c) Classification accuracy in terms of occluded network synchrony (average accuracy = 2%). Here, classification accuracy was reduced by masking
out (setting to zero) a small subset of network interactions (see Figure 6)

F IGURE 6 Each network state (one rest and seven tasks) is defined by a small number of task-evoked changes in synchrony between resting
state networks. Here, network connectivity important for correct classification in more than 90% of individuals (as determined by guided
backpropagation) is masked out (black). Such 'occluded' inputs are associated with exceptionally poor classification accuracy (Figure 5c). The
width of each column/row is scaled to reflect the relative number of regions in each network
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3.7 | High metastability of cognitive control
systems at rest is predictive of task performance

We next examined the metastable interactions of large-scale net-

works during task engagement for evidence that they informed

behaviour. Behavioural accuracy scores for each subject were

entered into a linear regression analysis as the dependent variable

with one of 196 (14 × 14) task-based network connections (esti-

mated in terms of metastability) as predictors. Overall, metastable

interactions between networks during task did not explain the vari-

ance in cognitive ability. Resting state metastability was then

entered as an additional independent factor. Across the three in-

scanner tasks, several network connections demonstrated a signifi-

cant positive association between intrinsic metastability and cogni-

tive performance (Figure 8 bottom; p < .01; FDR corrected for

multiple comparisons). Three additional cognitive measures acquired

outside the scanner were also analysed. These included fluid intelli-

gence, crystallised intelligence and executive function. Across the

three measures, several network connections demonstrated a signif-

icant positive association between intrinsic metastability and cogni-

tive performance (Figure 8 top; p < .01; FDR corrected for multiple

comparisons). The addition of reaction time data across the six tasks

did not increase the percentage of explained variance in cognitive

performance. In a separate linear regression analysis, no statistically

significant associations between behaviour/cognition and network

synchrony were identified (p < .01; FDR corrected for multiple

comparisons).

Interactions between networks are presented as circular graphs

where each edge represents a significant positive correlation between

network metastability and cognition (Figure 8). In the main, the

F IGURE 7 Principal component analysis reveals a task-general network architecture. Task-based reasoning is principally characterised by

high metastability in regions associated with cognitive control (top; red) and low metastability in regions associated with sensory processing
(blue; middle). On average the first principal component accounts for 78% of the variance. Loadings are distributed equally between the seven
tasks. Regions are colour coded by the sum of their ingoing/outgoing connectivity. Nodes are colour coded according to the Gordon atlas
(bottom). Node diameter is proportional to the sum of ingoing/outgoing connectivity. Recurrent connections correspond to activity within a
network
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metastability of large-scale networks related to cognitive control was

strongly related to task performance (see also Figures S12 and S13).

These included fronto-parietal, dorsal attention and cingulo-opercular

networks, and to a lesser extent the default mode, ventral attention

and salience networks. In general, the metastability of networks

related to primary sensory processing (including motor, auditory and

visual networks) was less relevant to cognitive performance (see again

Figures S12 and S13). These results are broadly consistent with the

task-general network architecture previously discussed.

Concerning the three tasks assessed outside the scanner, the

metastability of connections associated with cognitive control

networks, including fronto-parietal, cingulo-opercular and dorsal

attention, was strongly related to fluid intelligence. In contrast, the

metastability of these networks was less important in the execution

of crystallised intelligence (see Figure S14 for a statistical comparison).

A qualitative comparison of these same tasks revealed an important

role of cingulo-opercular network metastability in executive function/

inhibitory control. In regard to the three in-scanner tasks, the working

memory task was qualitatively distinguished from relational reasoning

and language processing by a stronger association between metasta-

bility and behavioural accuracy in the thalamus. Likewise, language

processing was qualitatively distinguished from relational reasoning

F IGURE 8 Resting state metastability of cognitive control networks is predictive of task performance. Each edge represents a statistically
significant positive correlation between the intrinsic metastability of a connection and cognition/behaviour (p < .01; FDR corrected) shaded to reflect
standardised effect sizes (Pearson's r or correlation coefficients). Nodal diameter is scaled to reflect the sum of their ingoing/outgoing connectivity.
Cognitive measures were obtained outside the scanner (top); measures of behavioural accuracy were acquired inside the scanner (bottom).
Metastability in the connectivity of cognitive control networks is linked to task performance including the fronto-parietal (adaptive task control),
cingulo-opercular (sustained tonic attention) and dorsal attention networks (attending to visuospatial stimuli). Note the markedly different profiles
presented by fluid and crystallised intelligence
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and working memory by virtue of a stronger association between

metastability and cognition in the connectivity of the ventral attention

network. All six behavioural domains, including relational reasoning,

language processing, working memory, fluid intelligence, crystallised

intelligence and executive function/inhibitory control, demonstrated

significant positive correlations between cognitive performance and

spontaneous metastability in regions associated with cognitive control

(including the fronto-parietal, dorsal attention and cingulo-opercular

networks).

3.8 | High metastability within (and between)
cognitive control systems at rest promotes efficient
switching into task

Even though it is self-evident that for high update efficiency to be

achieved, a subject's resting and task-general architectures must be in

agreement, not all of these relationships will necessarily hold statisti-

cally at the chosen significance level (p < .01; FDR). For this reason,

we correlated the metastability of individual network connections

F IGURE 9 The efficiency of the transformation between resting and task-based network architecture is conditioned on high metastability in
the couplings of cognitive control networks and low metastability in the couplings of sensory networks. (a) Slope (coefficients) of the regression

line (negative or positive) relating metastability of network connectivity to update efficiency. (b) Statistically significant correlations between
metastability of network connectivity and update efficiency (p < .01; FDR corrected). (c) Statistically significant correlations between metastability
and update efficiency in low (blue; left) and high (red; right) metastability subnetworks (p < .01; FDR corrected) where low metastability is
associated with unimodal sensory networks (auditory, motor and visual) and high metastability is related to cognitive control (dorsal attention,
fronto-parietal, cingulo-opercular and default mode networks). Some networks such as the salience, medial parietal, parieto-occipital and
thalamus were sites of convergence for both high and low metastability connections (yellow; centre). Nodal diameter is scaled to reflect the sum
of their ingoing/outgoing edges
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with update efficiency and obtained the slope of the regression equa-

tion (Figure 9a) and its significance (Figure 9b).

A significant positive relationship between update efficiency and

metastability was found in the fronto-parietal, dorsal attention,

cingulo-opercular and default mode networks (Figure 9c; right; red),

and a significant negative relationship in the motor, auditory and

visual networks (Figure 9c; left; blue; p < .01; FDR corrected for multi-

ple comparisons). As expected, these results are in accord with the

structure of the task-general configuration (Figure 7). Overall, high

update efficiency was characterised by dynamic flexibility in the con-

nectivity of networks implicated in cognitive control and dynamic sta-

bility in primary sensory networks. Some networks such as the

salience, ventral attention, medial parietal, parieto-occipital and thala-

mus were sites of convergence for both high and low metastability

connections (Figure 9c; centre; yellow nodes).

3.9 | Subjects with similar resting and task-general
architectures demonstrate superior performance

We next examined whether cognitive performance and the efficiency

of the transformation between rest and task-based neural architec-

tures are related (Schultz & Cole, 2016). To this end, behavioural accu-

racies and update efficiencies were entered into linear regression

analysis. Statistically significant (p < .05; FDR corrected for multiple

comparisons) relationships between performance and update effi-

ciency were identified in the three in-scanner tasks. These included

relational reasoning (F[1,564] = 5.0, p = .026, r = .21), language

processing (F[1,564] = 5.3, p = .021, r = .24) and working memory

(F[1,564] = 4.9, p = .027, r = .20). Since metastability and update effi-

ciency are correlated (in some connections) and since update effi-

ciency predicts performance, we also confirmed that the efficiency-

performance relations survived in the face of controlling for global

metastability. Overall, these findings suggest that cognitive ability is

contingent upon resting state architecture being similar or 'pre-config-

ured' to a task-general arrangement.

4 | DISCUSSION

The present paper set out to answer a relatively simple question: is

metastable neural dynamics higher at rest or during the performance

of an explicit task? We sought to answer this question by comparing

the metastability of the brain's large-scale networks at rest and during

the execution of several cognitively demanding tasks. Current theory

suggests that spontaneous neural dynamics represent a repository of

functional states from which more stable global brain states are con-

structed during task-based reasoning. Metastability between net-

works should therefore be maximal when subjects are at 'cognitive

rest' and diminished during times of heightened cognitive demand.

Surprisingly, our findings support an alternative possibility: metastabil-

ity (or dynamic flexibility) between neural networks is actively

enhanced by task engagement (Figures 2 and 3). Explicit cognition

was characterised by two types of network architecture: (1) a task-

specific network structure based on a circumscribed set of task-

evoked changes in synchrony (Figure 6) and (2) a task-general network

structure based on widespread changes in metastability (Figure 7).

This task-general architecture was principally characterised by

increased metastability in cognitive control networks and decreased

metastability in sensory regions (Figure 7). Although resting state net-

works were dynamically linked into context-dependent

neurocognitive structures by virtue of task engagement, cognitive

performance was more closely linked to the intrinsic activity of large-

scale networks (Figure 8). High metastability in the intrinsic connectiv-

ity of cognitive control networks was associated with novel problem

solving (so-called fluid intelligence) but was less important in tasks

relying on previous experience (so-called crystallised intelligence).

Critically, subjects with resting state architectures similar or 'pre-con-

figured' to a task-general configuration demonstrated superior cogni-

tive performance that was linked to efficient switching of network

states (Figure 9). Overall, our findings suggest a key linkage between

the intrinsic metastability of the brain's large-scale network connectiv-

ity and cognition.

The present study used one measure of connectivity–metastabil-

ity–to assess the dynamic stability~flexibility within and between

large-scale networks of the brain. Increased stability of dynamic func-

tional connectivity appears to be a general property of cognitive

engagement across multiple behavioural paradigms irrespective of the

type of dynamic functional connectivity method employed

(Cohen, 2018). Consistent with the properties of a critical system,

dynamic functional connectivity is especially stable during tasks

requiring sustained attention (Haimovici, Tagliazucchi, Balenzuela, &

Chialvo, 2013; Meisel, Olbrich, Shriki, & Achermann, 2013). Focused

cognition appears to induce the sub-critical dynamics necessary for

reducing interference and optimising task performance (Fagerholm

et al., 2015). Such dynamic stability is associated with increased inte-

gration across cognitive control networks and between cognitive con-

trol and other task-relevant networks (Chen, Chang, Greicius, &

Glover, 2015; Elton & Gao, 2015; Hutchison & Morton, 2015). On the

surface, increased stability between networks during task engagement

appears at odds with the present finding of increased metastability.

How can something be both flexible and stable at the same time? For-

tunately, the paradox is resolved when we recognise that metastabil-

ity and synchrony are correlated attributes of brain function. Thus,

even though metastability (or the variation in synchrony) is increasing,

so too is the average synchrony (which can be viewed as a measure of

stability in this context). It should be emphasised that purely synchro-

nous episodes of spatio-temporal coordination between networks is

not reflective of typical neurocognitive processing. Our measure of

synchrony reflects this reality by reporting the average synchrony

(or mean phase coherence) over a period of time corresponding to a

series of concatenated task blocks. Using this approach, we show that

task blocks are characterised by on average higher levels of synchrony

and higher levels of metastability simultaneously. That is, synchrony

(the mean phase coherence over time) and metastability (the variation

in the mean phase coherence over time) increase together–a
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behaviour observed in cortical slice cultures excited pharmacologically

(Yang, Shew, Roy, & Plenz, 2012). In light of this, synchrony and meta-

stability should be considered as related rather than contrary methods

of viewing brain activity. Two possibilities exist: (1) that metastability

is the price paid for higher on average synchrony, that is, it is a form

of noise; or (2) metastability is an adaptive process reflecting the

ongoing engagement and disengagement of neural systems relevant

to cognitive and affective states. Our findings strongly support a func-

tional view of metastability–cognitive performance is linked to the

intrinsic metastability of large-scale networks. Indeed, theoretical and

empirical findings suggest that intrinsic neural architecture is

organised to support a range of functional states which can be a

posteriori selected via exogenous input (Cabral, Kringelbach, &

Deco, 2014; Deco et al., 2017; Deco & Kringelbach, 2016; Hansen,

Battaglia, Spiegler, Deco, & Jirsa, 2014; Kringelbach et al., 2015;

Ponce-Alvarez et al., 2015). One may argue that metastability is being

driven by the variation in synchrony obtained by artificially

concatenating a series of disjoint task blocks. However, in principle,

metastability within a single task block should also be enhanced on

the provision that synchrony also increases. Presently, the temporal

limits imposed by fMRI and the relatively short task runs preclude a

direct test of this hypothesis.

Task engagement was principally characterised by enhanced

metastability in the connectivity of cognitive control networks

(Figure 3). These included dorsal attention, fronto-parietal, cingulo-

opercular, default mode and ventral attention networks. The present

finding is consistent with the notion that task-positive networks cor-

respond to areas of the brain that respond with activation increases

to attention-demanding environments. The organisational state of the

system may facilitate or inhibit the processing of incoming external

stimuli by enacting a series of task-relevant synergies over the dura-

tion of the task (Kelso, 2009). Each of the networks presented similar

but not identical patterns of engagement across the seven tasks. Two

of the four, the dorsal attention and fronto-parietal networks, demon-

strated consistent activity across all seven of the in-scanner tasks and

were associated with the greatest increases in metastability. This

raises the question of why dorsal fronto-parietal regions are involved

in such a puzzling variety of tasks? One proposal is that cognitive

computations relying on dorsal fronto-parietal areas are concerned

with a single core function, namely 'offline motor planning' or 'action

emulation' (Ptak, Schnider, & Fellrath, 2017). Such findings are consis-

tent with the observation that hubs of the fronto-parietal network

alter their pattern of functional connectivity with nodes of other net-

works based on goal-directed cognition in an adaptive domain-general

manner (Cole et al., 2013; Cole, Repovš, & Anticevic, 2014). Rhythmic

attentional sampling linked to theta-band activity in large-scale dorsal

fronto-parietal regions (Fiebelkorn, Pinsk, & Kastner, 2018; Helfrich

et al., 2018) may also account for increased metastability. Changes in

metastability were not limited to interactions between cortical net-

works; they also involved subcortical, specifically, thalamo-cortical

components. The finding of increased metastability between thalamus

and dorsal fronto-parietal during task is consistent with empirical

evidence–thalamic input wires the contextual associations upon

which complex decisions depend into weakly connected cortical cir-

cuits (Halassa & Kastner, 2017; Schmitt et al., 2017).

The seven in-scanner tasks showed remarkably similar patterns of

increased metastability between large-scale networks (Figure 3). Such

findings resonate with prior studies showing similar patterns of static

functional connectivity between different tasks (Cole, Bassett,

et al., 2014; Schultz & Cole, 2016). Similarities between functional

network configurations evoked under different behavioural paradigms

constitute what has been referred to as a 'task-general architecture'

(Cole, Bassett, et al., 2014; Schultz & Cole, 2016). Our findings sug-

gest that different behaviours recruit a similar set of network connec-

tions through metastable neural dynamics. We base this claim on

three observations: (1) increases in metastability were more wide-

spread than increases in synchrony (Figure 4); (2) increases in syn-

chrony were highly specific to each task, whereas increases in

metastability were more task-general (Figures 5 and 6); and (3) most

of the variance (78%) between tasks was accounted for by a single

principal component (Figure 7). Our task-general configuration was

organised into distinct regions of high and low metastability (Figure 7).

Networks related to cognitive control exhibited dynamic flexibility

whilst primary sensory networks favoured dynamic stability. These

findings map onto our present understanding of cortical organisation

and function. Primary sensory areas are responsible for processing a

single modality whereas higher order association areas must integrate

information into more complex representations, for example, for lan-

guage, executive function, attention and memory. Thus, each step up

the hierarchy entails integrating information from a greater diversity

of sources, and this in turn is reflected in greater dynamic flexibility.

From another perspective, widespread increases in metastability are

quite surprising. They appear to indicate that most of the brain is

involved during tasks which appears to contradict findings from cogni-

tive fMRI studies showing only limited activation. One possibility is

that some of these changes in metastability are linked to suppression

of a given network during task performance.

Even during periods of apparent 'rest' a subject's network connec-

tivity continued to display strong integrative and segregative tenden-

cies linked to cognitive performance. Remarkably, a subject's ability to

answer questions correctly, both in and out of the scanner, related to

their intrinsic neural dynamics (Figure 8). Curiously, task-based

changes in metastability were not related to cognitive performance,

rather, subjects whose dynamics explored a greater range of network

configurations at rest demonstrated the highest cognitive test scores

and behavioural accuracy. Unlike crystallised intelligence, which was

largely unrelated to metastability, the flexibility of network states

afforded by metastable neural dynamics was strongly linked to fluid

intelligence. Accumulating evidence suggests that human intelligence

arises from the dynamic reorganisation of brain networks

(Barbey, 2018). Flexible network transitions may support the 'difficult-

to-reach' networks states associated with novel problem solving but

may be less relevant for accessing the local knowledge and experience

embodied in 'easy-to-reach' network configurations (Gu et al., 2015;

Power & Petersen, 2013). The link between metastable neural dynam-

ics and fluid intelligence was especially pronounced in systems
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involved in cognitive control. Our results are consistent with prior

observations linking cognitive control capacity and fluid intelligence

(Cole et al., 2012; Cole & Schneider, 2007; Conway, Cowan, Bunting,

Therriault, & Minkoff, 2002).

Metastable network dynamics displayed a combination of trait-

and state-like properties. Resting state metastability was significantly

lower on Day 2 scanning sessions versus Day 1 scanning sessions (see

Figure S15). This finding is consistent with metastability being linked

to arousal or fatigue. Differences in metastability observed between

scanning sessions (Day 1 vs. Day 2) was not sufficient to account for

the observed increase in metastability across conditions (task vs. rest),

as resting state metastability was significantly lower than task-driven

metastability on both days. Interestingly, metastability at rest was pro-

portional to the metastability exhibited during task in the same scan-

ning session (see Figure S16) suggesting that metastability may also

be linked to intrinsic factors such as anatomical connectivity; a view

that is consistent with prior observations linking reduced metastability

to altered network topology (Alderson et al., 2018; Córdova-Palomera

et al., 2017; Hellyer et al., 2015; Váša et al., 2015).

So why is metastability at rest predictive of behavioural and cog-

nitive performance as opposed to metastability during the task itself?

The idea that functional couplings between regions at rest contain

information relevant to cognition, perception and behaviour is

supported by substantial empirical evidence (Sadaghiani, 2010;

Sadaghiani & Kleinschmidt, 2013). Static resting state functional con-

nectivity has been linked to a number of general cognitive abilities

that include, among others, IQ, executive function, episodic memory

and reading comprehension (for review, see Vaidya & Gordon, 2013).

Thus, rather than simply reflecting invariant structural anatomy, histor-

ical co-activation patterns, or internal dynamics of local areas, intrinsic

activity predicts subsequent perceptual processing (Busch, Dubois, &

VanRullen, 2009; Hesselmann, Kell, Eger, & Kleinschmidt, 2008; Lou,

Li, Philiastides, & Sajda, 2014; Mathewson, Gratton, Fabiani, Beck, &

Ro, 2009; Sadaghiani, Hesselmann, & Kleinschmidt, 2009; Van Den

Berg, Appelbaum, Clark, Lorist, & Woldorff, 2016; van Dijk,

Schoffelen, Oostenveld, & Jensen, 2008).

Cognitive performance was also linked to the efficiency of the

transformation between rest and task-based network architectures.

Specifically, subjects whose resting state was similar to the task-

general architecture garnered the highest cognitive scores. Successful

cognition is likely contingent on possessing an adequate a priori

dynamic configuration before the onset of task-relevant stimuli, as

opposed to simple ad hoc adjustments after the fact (Bolt, Anderson, &

Uddin, 2018). Thus, resting state activity may reflect the brain's pre-

dictive engagement with the environment (Clark, 2016;

Sadaghiani, 2010; Sadaghiani & Kleinschmidt, 2013). Given that the

resting state reflects previous experience and the anticipation of likely

future events, a resting state network architecture 'pre-configured' to

task is more in line with future cognitive requirements (Bar, 2011).

Update efficiency, or the ability to switch from a rest- to a task-based

configuration mapped onto our task-general architecture (Figure 9).

High update efficiency was associated with dynamic flexibility in dor-

sal attention and fronto-parietal control networks and dynamic

stability in primary sensory networks. Such findings conform to our

intuitive expectation that cortical networks require varying amounts

of dynamic flexibility to fulfil their function. Presumably, sensory net-

works continue to function even when subjects are cognitively at rest,

hence, metastability increases less in these regions during times of

heightened cognitive demand. Interestingly, several regions demon-

strated high and low metastability connections. These included the

salience network of which the insula–a known site of multi-modal

integration of sensory, motor, emotional and cognitive information–is

a part (Gogolla, 2017). Update efficiency based on a static measure of

functional connectivity has been considered in a previous study

(Schultz & Cole, 2016). Our work differs from this approach in that we

consider the update efficiency within the context of a dynamic mea-

sure of network connectivity in which both integrative and segrega-

tive tendencies coexist (Kelso, 1995, 2012; Tognoli & Kelso, 2014b).

Potential limitations of the findings should be noted. Firstly, it is

worth emphasising that the division of neural activity into intrinsic

and task-evoked activity may be an artificial distinction and not an

actual division respected by neural properties (Bolt et al., 2018).

Moreover, the finding of increased metastability during task relative

to rest may, to some extent, be dependent on factors related to

experimental design including: (1) the time frame considered and

(2) the temporal resolution of the imaging modality used. Increased

metastability was identified in a series of concatenated task blocks.

A more desirable experimental setup would compensate for fMRI's

lack of temporal precision by measuring metastability over an

extended period within a single task block. Doing so would amelio-

rate the potential confound of introducing variations in synchrony–

our definition of metastability–by including rest, cue and fixation

blocks. In the present paper, we mitigated this risk by estimating

metastability with non-task block data removed. Moreover, due to

restrictions on the length of the runs, metastability was estimated

using the active and control components of the task. Hence, partici-

pants were not exclusively performing the 'cognitive task' but the

'control task' designed to compensate for non-specific effects

(e.g., the zero back condition in the working memory task). It is

worth noting however, that in most cases, there was either no con-

trol condition (e.g., the motor task) or subjects still performed a

meaningful exercise in the control task condition (e.g., the language

task which comprised a story and math component). Our results

were robust in that metastability was not driven by bias associated

with using time-series of different lengths (we used the same num-

ber of data points for rest and task), nor by alternating periods of

rest and task within a single run (we removed cue and fixation

blocks). Difference in acquisition moments (Day 1 vs. Day 2) also fail

to account for the observed increase in metastability (rest vs. task)

as resting state metastability was significantly lower than task-based

metastability on both days. Despite attention to such factors, it

remains of critical importance to establish the validity of observed

synchronisation dynamics particularly in light of recent findings

questioning the link between time varying functional connectivity

and task-relevant neural information (Hindriks et al., 2016; Laumann

et al., 2017; Liégeois, Laumann, Snyder, Zhou, & Yeo, 2017). Rapid
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changes in synchronisation may not be directly tied to external task

demands, but rather to internally driven factors that include atten-

tion, motivation, arousal, fatigue, goals or levels of consciousness

(Kucyi, 2017; Kucyi, Hove, Esterman, Hutchison, & Valera, 2017).

For instance, network integration during rest is linked with greater

pupil diameter; a proxy for arousal, as well as better task perfor-

mance (Shine, et al 2016a, Bissett, et al., 2016). Similarly, across

repeated resting state scans of the same individual, higher levels of

fatigue are related to more stable estimates of dynamic functional

connectivity whereas higher levels of attention are related to more

variable measures of dynamic functional connectivity (Shine,et al.,

2016b, Koyejo, & Poldrack, 2016). Rapid dynamics likely include

both meaningful neural information and physiological signals that

relate to differences in rate or volume of blood flow, respiration and

heart rate (Cohen, 2018). In addition, movement of the subject

within the scanner has been found to introduce spurious distance

dependent correlations in resting state data (Power

et al., 2012, 2014, 2015). Such motion induced artefacts arise

through the introduction of spurious variance in the 'true' time series

which decays with distance, thus, artefactual correlation is most sim-

ilar in nearby voxels (Power et al., 2014). In a similar way, estimates

of metastability may be biased by the introduction of spurious varia-

tions in synchrony between nearby regions. Thus, controlling for

head motion related artifacts is also of central concern in the analy-

sis of time-series phase estimates derived through the Hilbert trans-

form. More aggressive motion control strategies beyond the

traditional minimal pre-processing pipeline (regression of six head

motion parameters, mean white matter and cerebrospinal fluid sig-

nal) may therefore be indicated (Ciric et al., 2017). Untangling the

relationship between rapid dynamics, internal mentation, cognitive

performance, affective states, physiological noise, arousal, fatigue

and general cognition will become increasingly important as we seek

to understand the neural basis of human behaviour. Finally, since

task order was not counter balanced, the possibility that order

effects may have influenced the task-based analyses cannot be

discounted.

Taken together, our findings suggest that the metastable regime

of coordination dynamics (Bressler & Kelso, 2016; Kelso, 1995, 2012;

Tognoli & Kelso, 2014b) offers considerable potential as a theoretical

and conceptual framework for linking resting state network activity to

cognition and behaviour. Although resting state networks are dynami-

cally reconfigured during cognitive engagement, task onset impacts

the spatio-temporal properties of a pre-existing functional architec-

ture. Such coordinative behaviour, organised through spontaneous

metastable dynamics, appears to contribute to cognition by actively

anticipating incoming stimuli. Cognitive function is therefore not pri-

marily stimulus-driven or reflexive but arises from the brain's intrinsi-

cally self-organising character.
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