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Abstract: Heavy metals (HMs) stress causes severe damage to physiology and biochemistry of plant
species leading to stunted growth and low yield. Phytoremediation via phytoextraction, a viable
low-cost and environment-friendly alternative to other techniques that are often too expensive,
impractical and hazardous. However, phytoextraction potential, physiological and biochemical
response of various plant species against HMs stress is not fully understood. Among other HMs,
lead (Pb) is an inorganic pollutant with deleterious biotic effects. Bioavailability and mobility of the
Pb can be enhanced by addition of organic acids. A pot scale experiment was done to assess the
effects of Pb on Alternanthera bettzickiana (Regel) G. Nicholson and its ability to accumulate Pb with or
without acetic acid (AA). The Results showed that Pb caused significant damage in A. bettzickiana,
and its ecotoxicity was evident from increased levels of lipid peroxidation up to 107% under Pb stress.
The significant decrease in plant height (32%), root length (21%), leaf area (38%) and number of leaves
per plant (46%) was observed. On the other hand, application of AA to Pb stressed plants reduced
the oxidative damage by further enhancing the activities of ascorbate peroxidase (APX) and catalases
(CAT) up to 16% and 21% respectively. Moreover, addition of AA significantly improved plant total
chlorophylls (15%) and carotenoids (50%). The application of AA also promoted Pb accumulation in
leaf, stem and roots up to 70%, 65% and 66% respectively. This research concluded that AA has the
ability to enhance the phytoextraction of Pb and support the plant growth and physiology under Pb
stress condition.

Keywords: accumulation; bioavailability; enzymatic activities; phytoextraction; reactive oxygen
species

1. Introduction

Human life, surrounded by luxuries and technological advances, has produced a variety of wastes
including organic and inorganic pollutants that have deleterious effects on the biotic (fauna and flora)
and abiotic (air, water, and soil) components of the environment [1]. Among these pollutants, HMs are
highly persistent and bioaccumulate in the environment due to their non-biodegradable nature [2].
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Various studies have been performed to understand the toxicity of Pb in the ecosystem [3]. In soil, Pb is
highly persistent and potentially poisonous, even at very low concentrations [4]. These anthropogenic
activities severely harm the biosphere, and particularly human health and other ecological systems.
Pb has the ability to change various metabolic pathways in many plants as well as decrease nutrient
uptake and the rate of transpiration [2,4]. The permissible limit approved by the Environment
Protection Agency, USA (US-EPA) for Pb is 50 mg L−1 in aquatic environments; this limit approved by
Environment Protection Agency of Pakistan (Pak-EPA) is 0.5 mg L−1 for land water, soil, and sea for
the protection of human health [5].

In plants, HMs concentration is the major reason for oxidative stress generated by reactive
oxygen species (ROS) [6]. These ROS can overcome cells’ essential antioxidant systems and lead
to cell death [7]. Chlorophylls are more susceptible to the negative impact of HMs compared to
carotenoids [8]. Heavy metals decrease cell viability by severely affecting nascent protein homeostasis
through interfering with the folding process and the aggregation of nascent [9].The plant biochemical
response, including antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase
(APX), and catalase (CAT), increases its activities under HMs stress to overcome enhanced lipid
peroxidation [10]. Heavy metals affect living organisms by accumulating in their fatty tissues
(bioaccumulation) and pass from one trophic level to the next trophic level (biomagnification) [6,7].

Many physical approaches are used for treating polluted soil including capping, deep burial,
and soil excavation, along with chemical methods techniques that also affect the physical, chemical,
and biological properties of soil, and making it useless for the growth of plants [11]. Keeping in
view these constraints, the branch of bioremediation technique known as phytoremediation,
further categorized as phytoextraction, is considered an attractive substitute for soil remediation,
because it is one of the cheapest and most ecofriendly method compared with other physical and
chemical techniques [7,12]. Halophytes are naturally capable of living in dry, rough, and saline
environmental conditions and have the ability to absorb harmful HMs [13]. A. bettzickiana is perennial
hardy plant that is capable of growing in highly saline, dry, and hot environments and only a few
studies have evaluated the phytoremediation potential of A. bettzickiana for Pb, Cd, and Cr [14,15].
The physiological and biochemical responses of A. bettzickiana under HMs stress have not been
evaluated extensively in the literature.

Different organic acids, for example, oxalic acid, citric acid, and acetic acid, are used as chelating
agents in the phytoextraction process to enhance the bioavailability of HMs for plant uptake, and these
acids play important roles in the rhizosphere [16]. These organic acids are typically involved in many
processes that control the physiochemical properties of the soil and help plants to uptake insoluble,
deficient, and unavailable nutrients from the soil [17]. These acids perform a number of functions such
as maintenance of the carbon cycle, breaking down complex nutrients, providing nutrients to microbes,
and detoxifying organic and inorganic pollutants [18]. These organic acids have the ability to dissolve
the complex nutrients in the soil and promote three major processes: exchange reaction, chelation,
and acidification, resulting in enhanced solubility of HMs in the soils [19,20].

The objectives of this study were (a) to observe the influence of Pb concentration on growth
characteristics of A. bettzickiana, (b) to measure the effect of AA on the physiology and growth of
A. bettzickiana against Pb stress, and (c) to evaluate the phytoextraction potential of A. bettzickiana for
Pb with AA amendment.

2. Results

2.1. Agronomic Traits

Significant variation was found in the agronomic traits of A. bettzickiana treated with different
concentration of Pb, including plant height, root length, leaf area, number of leaves per plant, and fresh
and dry biomass (leaf, stem, and root), as shown in Table 1. Increasing concentrations of Pb significantly
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affected the plants’ agronomic traits. The maximum decrease in agronomic traits was measured at the
highest concentration (10 mM) compared to the rest of the treatments.

Table 1. Effect of Pb (0, 2.5, 5, 7.5 and 10 mM) with and without AA (2.5 mM) on fresh and dry biomass
of leaf, stem and root of A. bettzickiana.

Pb Concentration (mM)

Treatments Pb 0 Pb 2.5 Pb 5 Pb 7.5 Pb 10

Root Dry Weight (g)
AA 0 13.45 ± 0.89 c 12.27 ± 0.32 c 9.98 ± 0.41 ef 8.25 ± 0.36 fg 7.29 ± 0.44 g

AA 2.5 mM 18.89 ± 0.40 a 16.29 ± 0.81 b 11.74 ± 0.38 cd 10.26 ± 0.80 de 9.65 ± 0.79 ef

Stem Dry Weight (g)
AA 0 21.85 ± 0.70 b 17.98 ± 0.94 c 13.16 ± 0.57 d 8.84 ± 0.39 e 6.50 ± 0.38 f

AA 2.5 mM 24.96 ± 0.84 a 23.31 ± 0.64 ab 19.24 ± 0.66 c 13.03 ± 0.91 d 10.75 ± 0.49 e

Leaf Dry Weight (g)
AA 0 20.27 ± 0.95 bc 18.18 ± 0.84 d 14.07 ± 0.36 e 11.26 ± 0.48 f 9.50 ± 0.44 f

AA 2.5 mM 23.22 ± 0.87 a 20.88 ± 0.65 b 18.87 ± 0.77 cd 17.41 ± 0.43 d 13.39 ± 0.55 e

Root Fresh Weight (g)
AA 0 12.55 ± 0.56 de 10.63 ± 0.25 f 8.48 ± 0.21 g 9.21 ± 0.22 g 7.28 ± 0.28 h

AA 2.5 mM 17.37 ± 0.30 a 15.27 ± 0.27 b 14.00 ± 0.58 c 13.18 ± 0.65 cd 11.41 ± 0.28 ef

Stem Fresh Weight (g)
AA 0 22.99 ± 0.82 a 18.90 ± 0.78 b 14.19 ± 0.60 cd 9.85 ± 0.38 e 7.50 ± 0.38 f

AA 2.5 mM 24.29 ± 0.58 a 23.02 ± 0.89 a 20.24 ± 0.66 b 15.96 ± 0.81 c 12.28 ± 0.72 d

Leaf Fresh Weight (g)
AA 0 21.60 ± 0.42 bc 20.50 ± 0.50 cd 17.39 ± 0.29 e 14.59 ± 0.30 f 11.61 ± 0.39 g

AA 2.5 mM 25.45 ± 0.42 a 22.56 ± 0.42 b 20.47 ± 0.50 cd 19.53 ± 0.41 d 16.43 ± 0.35 e

Treatments *** *** *** *** ***
Pb *** *** *** *** ***

Tr × Pb *** *** *** *** ***

Values are mean of three replicates ± S.D. Different lowercase letters indicate significant differences between
treatments at p < 0.05; and *** indicate significance at the p < 0.01 level.

Pb at (10 mM) significantly reduced plant height, root length, leaf area, and the number of leaves per
plant by 32%, 21%, 38%, and 46%, respectively, compared to the control treatments. Similarly, fresh and
dry biomass of root, stem, and leaf declined by 42%, 67%, and 46% and 45%, 53%, and 70%, respectively,
in comparison to the control. However, the addition of AA significantly alleviated Pb-induced
morphological damage by modulating the morphology of the plants. This growth-promoting role of
AA under Pb stress is also evident in Tables 1 and 2. The application of AA (2.5 mM) alone or with Pb
(2.5, 5, 7.5, and 10 mM) significantly enhanced the agronomic traits of plants. The maximum increase
in the growth of plant height (32%), root length (29%), leaf area (47%), and number of leaves per plant
(37%) was measured compared with the rest of the treatments. Similar results were observed in fresh
and dry biomass of leaf, stem, and root: 9–41%, 5–63%, and 38–65%, and 14–54%, 14–65%, and 17–40%
respectively under combined application of AA and Pb (0–10 mM).

Table 2. Effect of Pb (0, 2.5, 5, 7.5 and 10 mM) with and without AA (2.5 mM) on growth parameters of
A. bettzickiana.

Pb Concentration (mM)

Treatments Pb 0 Pb 2.5 Pb 5 Pb 7.5 Pb 10

Plant Height (cm)
AA 0 15.57 ± 0.34 c 13.57 ± 0.46 d 12.52 ± 0.20 e 11.78 ± 0.26 e 10.58 ± 0.19 f

AA 2.5 mM 19.52 ± 0.36 a 17.53 ± 0.40 b 16.60 ± 0.51 b 14.08 ± 0.32 d 12.55 ± 0.18 e

Root Length (cm)
AA 0 24.97 ± 0.83 bc 23.17 ± 1.05 cde 22.43 ± 1.09 de 21.41 ± 0.34 ef 19.56 ± 0.36 f

AA 2.5 mM 32.44 ± 1.17 a 26.55 ± 0.38 b 24.30 ± 0.39 bcd 23.84 ± 0.55 cd 21.27 ± 1.19 ef

Leaf Area (cm2)
AA 0 8.71 ± 0.19 b 8.25 ± 0.38 bc 6.91 ± 0.31 de 6.47 ± 0.35 def 5.33 ± 0.20 g

AA 2.5 mM 12.82 ± 0.46 a 9.22 ± 0.50 b 7.41 ± 0.38 cd 6.19 ± 0.31 efg 5.74 ± 0.15 fg

No. of Leaves Plant−1

AA 0 1259.33 ± 40.01 c 1055.66 ± 20.09 de 861.66 ± 33.65 fg 834.33 ± 35.11 g 672.00 ± 45.13 h

AA 2.5 mM 1649.66 ± 37.55 a 1452.33 ± 49.08 b 1159.33 ± 29.56 cd 954.33 ± 32.08 ef 810.00 ± 40.03 g

Treatments *** *** *** *** ***
Pb *** *** *** *** ***

Tr × Pb *** *** *** *** ***

Values are mean of three replicates ± S.D. Different lowercase letters indicate significant differences between
treatments at p < 0.05; and *** indicate significance at the p < 0.01 level.
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2.2. Photosynthetic Pigments

The increasing concentration of applied Pb caused significant reductions in carotenoids and
chlorophylls contents compared to the control (Figure 1). At 10 mM Pb, the contents of Chl a, Chl b,
total Chl, and carotenoids decreased by 37%, 50%, 43%, and 77%, respectively. The AA amendment
reduced Pb-induced toxic effects by improving the carotenoids and chlorophyll contents of plants.
A significant improvement was observed in Chl a (13–28%), Chl b (16–30%), total Chl (7–15%),
and carotenoids (7–50%) contents under combined application of Pb and AA as compared to Pb treated
only plant.
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Figure 1. Effect of Pb and AA on chlorophyll a (A), chlorophyll b (B), total chlorophylls (C) and
carotenoids (D) in A. bettzickiana grown in soil with increasing Pb (0, 2.5, 5, 7.5 and 10 mM) and AA
concentrations (0 and 2.5 mM). Values are mean of three replicates ± S.D. Different lowercase letters
indicate significant differences between treatments at p < 0.05; and *** indicate significance at the
p < 0.01 level.

2.3. Antioxidant Enzymatic Activities and MDA Production

The antioxidant enzymatic activities, including APX and CAT, in both roots and leaves were
measured along with the production of MDA under Pb and AA applications (Figure 2). The maximum
increases in the activities of APX and CAT were observed at Pb (7.5 mM) both in roots (28% and
46%, respectively) and leaves (47% and 59%, respectively). The activities of these enzymes tended
to decrease both in roots and leaves at 10 mM Pb. A significant increase in the production of MDA
was observed at 10 mM Pb both in roots and leaves at 75% and 107%, respectively. The addition
of AA further elevated the activities of antioxidant enzymes under Pb and AA combined treatment.
The highest values of antioxidant enzymatic activities were recorded both in leaves and roots under
the combined application of AA and Pb (7.5 mM). Under combined application of Pb and AA, the APX
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and CAT activities increased both in roots (3–11% and 2–9%, respectively) and leaves (4–16% and
6–21%, respectively). The addition of AA under Pb stress significantly decreased MDA contents both
in roots and leaves by 6–26% and 5–26%, respectively.Plants 2020, 9, x FOR PEER REVIEW 6 of 14 
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2.4. Soluble Protein and SPAD Value 

The soluble protein contents (root and leaf) and SPAD values of the plants declined with 

increasing Pb concentrations compared to the control (Figure 3). At 10 mM Pb, the protein contents 

in leaves and roots decreased by 36% and 45%, respectively, compared to the control. Similarly, SPAD 

values decreased by 60% at 10 mM Pb, respectively. The application of AA resulted in significant 

improvements in SPAD value and protein contents both in roots and leaves under Pb stress. The AA 

Figure 2. Effect of Pb and AA on APX in roots (A), APX in leaves (B), CAT in root (C), CAT in leaves (D),
MDA in root (E) and MDA in leaves (F) of A. bettzickiana grown in soil with increasing Pb concentrations
(0, 2.5, 5, 7.5 and 10 mM) and AA (0 and 2.5 mM). Values are mean of three replicates ± S.D. Different
lowercase letters indicate significant differences between treatments at p < 0.05; and *** indicate
significance at the p < 0.01 level.
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2.4. Soluble Protein and SPAD Value

The soluble protein contents (root and leaf) and SPAD values of the plants declined with increasing
Pb concentrations compared to the control (Figure 3). At 10 mM Pb, the protein contents in leaves
and roots decreased by 36% and 45%, respectively, compared to the control. Similarly, SPAD values
decreased by 60% at 10 mM Pb, respectively. The application of AA resulted in significant improvements
in SPAD value and protein contents both in roots and leaves under Pb stress. The AA increased soluble
protein contents both in roots and leaves by 21–37% and 25–48%, respectively. Likewise, the addition
of AA increased the SPAD value by 12–63% under Pb stress.
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Figure 3. Effect of Pb and acetic acid on soluble proteins in roots (A), soluble proteins in leaves (B) and
SPAD value (C) of Alternanthera bettzickiana grown in soil with increasing Pb concentrations (0, 2.5, 5,
7.5 and 10 mM) and AA (0 and 2.5 mM). Values are mean of three replicates ± S.D. Different lowercase
letters indicate significant differences between treatments at p < 0.05; and *** indicate significance at the
p < 0.01 level.

2.5. Lead Concentration, Accumulation and Translocation Factor

Increasing the concentration of Pb (2.5, 5, 7.5, and 10 mM) significantly increased Pb uptake and
accumulation in the leaves, stems, and roots of plants (Table 3). Trace levels of Pb were found in
untreated plants, which might have been due to the presence of background Pb in the soil. The highest
accumulations and concentrations of Pb were recorded at 10 mM Pb along with the application
of AA in leaves, stems, and roots by 239%, 90%, 266% and 548%, 427% and 517%, respectively,
compared to 2.5 mM Pb-treated plants. The addition of AA to Pb-stressed plants significantly enhanced
accumulation and concentration of Pb in leaves, stems, and roots by 61–240%, 68–115%, and 44–190%,
and 20–196%, 14–120%, and 12–118%, respectively. In the present study, the root–shoot translocation
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factor (TF) was less than but near to 1. The maximum translocation factor was observed at 2.5 mM Pb
+ 5 mM AA treatment at 0.91, followed by 0.87 at 5 mM Pb only.

Table 3. Effect of Pb (0, 2.5, 5, 7.5 and 10 mM) with and without AA (2.5 mM) on Pb concentration,
accumulation and root-shoot translocation factor (TF) in A. bettzickiana.

Pb Concentration (mg kg−1) Pb Accumulation (µg Plant−1)
TF

Treatments Leaf Stem Root Leaf Stem Root

CK 0.01 ± 0.00 h 0.06 ± 0.08 h 0.06 ± 0.02 i 0.15 ± 0.001 f 1.28 ± 0.06 f 0.84 ± 0.01 h 0.87 ± 0.75 a

AA 0.02 ± 0.00 g 0.02 ± 0.00 h 1.74 ± 0.18 i 0.37 ± 0.001 f 0.58 ± 0.003 f 32.86 ± 0.07 g 0.02 ± 0.00 b

Pb 2.5 mM 4.16 ± 0.96 f 7.04 ± 2.04 g 13.95 ± 3.91 h 75.56 ± 0.73 e 126.60 ± 1.73 e 171.30 ± 1.64 f 0.80 ± 0.04 a

Pb 2.5 + AA 12.33 ± 0.90 e 15.54 ± 1.24 f 30.48 ± 2.05 g 257.50 ± 0.31 c 362.47 ± 0.71 c 496.82 ± 1.69 e 0.91 ± 0.02 a

Pb 5 mM 13.18 ± 0.98 de 18.48 ± 0.85 f 36.24 ± 1.84 f 185.48 ± 0.31 d 243.19 ± 0.48 d 361.63 ± 0.80 e 0.87 ± 0.03 a

Pb 5 + AA 15.87 ± 1.51 d 22.54 ± 2.42 e 45.06 ± 5.11 e 299.52 ± 1.05 c 433.69 ± 1.60 b 528.95 ± 1.48 d 0.85 ± 0.05 a

Pb 7.5 17.45 ± 1.06 d 30.50 ± 1.41 d 62.56 ± 2.29 d 196.48 ± 0.44 d 269.91 ± 0.47 d 516.11 ± 0.82 d 0.76 ± 0.06 a

Pb 7.5 + AA 21.67 ± 1.20 c 34.90 ± 1.21 c 72.74 ± 2.66 c 377.27 ± 0.59 b 454.72 ± 1.01 b 746.27 ± 1.88 b 0.77 ± 0.01 a

Pb 10 26.96 ± 2.62 b 38.39 ± 1.10 b 83.68 ± 2.84 b 256.42 ± 1.33 c 249.90 ± 0.40 d 610.03 ± 1.13 c 0.78 ± 0.00 a

Pb 10 + AA 32.48 ± 2.17 a 48.14 ± 2.17 a 95.34 ± 1.27a 434.95 ± 1.12 a 517.48 ± 0.89 a 919.99 ± 0.91 a 0.84 ± 0.04 a

Treatments *** *** *** *** *** *** ***
Pb *** *** *** *** *** *** ***

Tr × Pb *** *** *** *** *** *** ***

Values are mean of three replicates ± S.D. Different lowercase letters indicate significant differences between
treatments at p < 0.05; and *** indicate significance at the p < 0.01 level.

3. Discussion

3.1. Agronomic Traits under Pb and AA Application

In plants, HMs ecotoxicity depends on various factors such as HMs concentration, exposure period,
plant species, and genotype [21]. Pb interferes with plant metabolic processes, leading to deterioration
of growth and development of plants [22], and particularly to reduction in photosynthesis and
protein synthesis and destruction at the cellular and subcellular levels [23]. Similar toxic effects of Pb
were reported in Brassica napus [24] and A. bettzickiana [15]. Similar to other organic acids, the AA
growth-promoting effect is confirmed in the literature where organic acids such as citric acid (2.5, 5,
and 10 mM), glutamic acid (2.5 and 5 mM), and ascorbic acid (5 mM) were used for Brassica napus,
sunflower [24,25], Lemna minor L. [26], and Solanum nigrum L. [27], respectively, in the presence of
HMs stress.

3.2. Chlorophyll and Carotenoids

Pb stress promoted negative effects on the transpiration rate and net photosynthetic efficiency
of plants with reduced chlorophyll contents. However, the addition of AA significantly improved
these contents. The literature revealed that Pb stress disturbs chloroplast, photosynthetic pigments,
and protein complexes due to the increase in the activity of chlorophyllase under HMs stress [28,29].
The role of AA in promoting the photosynthetic rate occurs due to increased chlorophyll contents [30].
A similar promoting role of indole-3-acetic acid was reported in S. nigrum by Ji et al. [31].

3.3. Oxidative Stress and Antioxidant Enzymes

Ecotoxicity of Pb in plants was already observed in terms of enhanced antioxidant enzymes
activities and higher production of MDA in A. bettzickiana by Tauqeer et al. [15], in B. napus by
Shakoor et al. [24], and in S. nigrum by Ji et al. [31]. Kanwal et al. [14] reported similar results for
A. bettzickiana when exposed to Cd stress. Addition of AA with Pb improved the plant defensive
mechanisms which helped to overcome the lipid peroxidation caused by Pb stress. A similar mechanism
was reported by Kanwal et al. [14] in A. bettzickiana under Cd and citric acid treatment. Some antioxidant
enzymes (SOD, CAT, and APX), as well as other metabolites, perform a specific role in the tolerance
and adaptation of plants to Pb ecotoxicity [4]. At 10 mM Pb, the antioxidant enzymatic activities tended
to decrease while production of MDA continued to increase, which resulted in disruption of plant
metabolic pathways and reduced nutrient uptake [14,29]. Enhanced production of MDA is usually
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observed as an indication of severe oxidative stress under metal stress which eventually destroys the
plant cells [32,33].

3.4. Lead Accumulation, Concentration, and Translocation Factor

Accumulation of HMs in plant tissues is evidently associated with their concentration in the
environment. In the present study, the Pb concentration in all parts of A. bettzickiana increased with
increasing concentration of applied Pb in soil. The larger uptake of Pb in roots compared to leaves
and stems was due to the direct exposure of roots to Pb in soil [34]. Our findings agree with those of
Tauqeer et al. [15] and Kanwal et al. [14], who confirmed the phytoextraction potential of A. bettzickiana
for Pb and Cd, respectively. However, a few studies suggested that Pb mostly accumulated in the roots,
and only a small fraction can be translocated to the aerial parts of plants [35]. Similar to other plants
such as B. napus, L. minor, and Typha latifolia, [24,26], A. bettzickiana accumulated Pb from media [15].
Conversely, a few plant species such as T. orientali restricted the accumulation of Pb in roots [34].
Addition of AA under Pb stress significantly increased the uptake of Pb and its accumulation in leaves,
stems, and roots, similar to the findings reported by Bjelkova et al. [36] and Ji et al. [31]. AA and other
organic acids offer the electrons and protons and construct complex ions to be readily up taken by
plant roots [37]. Ji et al. [27] confirmed that indole-3-acetic acid significantly enhanced the uptake of Pb,
Cd, and Zn in S. nigrum. In present study, the TF was observed <1 at all Pb concentrations with and
without AA amendment. The similar results have been reported by Suthari et al. [38] for Alternanthera
plant species such as A. philoxeroides for Pb at 9 different sites ranges from 0.35–0.96 which was higher
than the TF of Fe and Mn and lower than Zn.

4. Materials and Methods

A. bettzickiana plants and the surrounding loamy soil were collected from the botanical garden of
the University of Gujrat, Gujrat, Pakistan. The physico-chemical parameters of soil are listed in Table 4.
A pot-based experiment was conducted in the Botanical Garden of University of Gujrat under natural
environmental conditions to evaluate the effect of Pb on the growth of A. bettzickiana and its uptake
under acetic acid amendments.

Table 4. Physico-chemical characterization of soil.

Soil Properties

Texture 60 (loam)
Saturation (%) 35

pH 7.9
EC (µS cm−1) 1401

Organic matter (%) 0.46–0.59
Available Phosphorus (mg kg−1) 5

Total Nitrogen (%) 0.037
Exchangeable Sodium (mMc 100 g−1) 0.7

Potassium (mg kg−1) 200
Calcium Carbonate (mg kg−1) 0.1

HCO3 (mmol L−1) 2.40
Cl- (mmol L−1) 1.69

Available Pb (mg kg−1) 0.01

4.1. Growth Conditions

All plants were cleaned with distilled water and cuttings were planted individually in pots.
All pots were watered regularly with tap water to sustain soil moisture. After 20 days of growth,
each pot had a healthy plant and was allowed to grow for further 3 weeks before the application of Pb
stress. The experiment was performed from March to May 2017.
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4.2. Treatments

After 6 weeks of cultivation, different Pb concentrations were applied to plants alone and in
combination with AA: T1, CK (control plant without Pb and AA); T2, AA 2.5 mM; T3, Pb 2.5 mM; T4,
Pb 2.5 mM + AA 2.5 mM; T5, Pb 5 mM; T6, 5 mM + AA 2.5 mM; T7, Pb 7.5 mM; T8, 7.5 mM + AA
2.5 mM; T9, Pb 10 mM; and T10, Pb 10 mM + AA 2.5 mM. The Pb treatments were prepared from the
most appropriately available lead nitrate (Pb(NO3)2. A dose of 250 mL for each treatment of Pb was
applied weekly. However, in combined treatments (Pb + AA), a total of 500 mL was applied weekly
for the next 4 weeks. A completely randomized design (CRD) for the experiment was followed with
three replicates of each treatment.

4.3. Experiment Duration and Harvesting

After 4 weeks of treatment application, plants were harvested and carefully segregated into roots,
leaves, and stems to measure agronomic traits such as height, number of leaves per plant (all leaves
were included), and the fresh and dry biomass of plants. For dry biomass measurements, fresh samples
of plant organs were placed in an oven for 72 h at 90 ◦C.

4.4. Leaf Area

Leaf area of plants was measured by using a leaf meter (L1-2000, LI-COR, Lincoln, NE, USA).

4.5. Determination of SPAD Value and Soluble Protein Content

The soil plant analysis development (SPAD) value/greenness of leaf was estimated using a
SPAD-502 m (Zhejiang Top Instruments Co., Ltd., Zhejiang, Hangzhou, China). The fresh leaves
and roots (0.5 g each) were ground using a prechilled mortar and pestle and then placed in 0.05 M
phosphate buffer (pH 7.8). The mixture was then filtered through four layers of muslin cloth and
centrifuged at 4 ◦C at 12,000× g for 10 min. The soluble protein content was estimated using Coomassie
brilliant blue G-250 as a dye and albumin as a standard according to the Bradford method [39] using a
UV-visible spectrophotometer (T60, PG Instruments, Warwick, UK).

4.6. Determination of Chlorophyll Contents

The fully-grown topmost leaves were separated to measure chlorophyll a, chlorophyll b,
and carotenoids using a UV-visible spectrophotometer (T60, PG Instruments, Warwick, UK) according
to the method reported by Metzner et al. [40]. Carotenoids contents and chlorophyll a and b contents
were calculated using the following equations:

Chlorophyll a (µg mL−1) = 10.3 × E663 − 0.98 × E644, (1)

Chlorophyll b (µg mL−1) = 19.7 × E644 − 3.87 × E663, (2)

Total chlorophyll = chlorophyll a + chlorophyll b, (3)

Total carotenoids (µg mL−1) = 4.2 × E452.5 − ((0.0264 × chl a) + (0.426 × chl b)). (4)

At last, these pigment fractions were measured as mg g−1 fresh weight.

4.7. Determination of CAT, APX and MDA Contents

Antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), in roots and leaves
were evaluated using a UV-visible spectrophotometer (T60, PG Instruments, Warwick, England).
The activities of CAT and APX were estimated following the protocol reported by Aebi [41]. Similarly,
malondialdehyde (MDA) concentration was measured by the thiobarbituric acid (TBA) reaction method
of Heath and Packer [42] with minor modifications as proposed by Dhindsa et al. [43] and Zhang and
Kirham [44].
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4.8. Determination of Pb Content

We burned 0.5 g dry weight of the plant organ (root, stem, or leaf) to ash by placing it in a muffle
furnace (Forno Vulcan 3-550, Dentsplay, York, PA, USA) at 650 ◦C for 7 h. The ash was mixed in
concentrated hydrochloric acid (HCl) and nitric acid (HNO3) in a 1:3 ratio and placed on an orbital
shaker for 30 min until the ash dissolved in solution. Finally, the volume was brough up to 50 mL
by adding distilled water and examined using an atomic absorption spectrometer (NOVA A400,
Analytik Jena, Jena, Germany) to measure Pb concentration as described by Ehsan et al. [45]. The Pb
concentration was calculated as follows:

Pb concentration (mg kg−1) = Pb reading of digested sample (mg L−1) × dilution factor. (5)

The Pb accumulation was calculated as

Pb accumulation (mg plant−1) = Pb concentration in tissue (mg kg−1) × dry weight of plant organ (kg). (6)

The root to shoot translocation factor (TF) of A. bettzickiana was calculated as

TF = Metal concentration in aerial parts/Metal concentration in roots. (7)

4.9. Statistical Analysis

The data presented in this study are the average of three replicates for each treatment. ANOVA
was performed followed by Tukey’s post-hoc test, and significant differences were calculated by
all pairwise comparison by using statistical package SPSS version 16.0 (SPSS, Chicago, IL, USA).
Furthermore, t-test was performed to determine the significant differences between treatments with
and without AA for each soil Pb concentration. The different small letters in figures and tables describe
values that are significantly different at p ≤ 0.05 and *** indicate significance at p < 0.01.

5. Conclusions

Pb ecotoxicity significantly decreased plant growth, photosynthetic pigments, plant biomass,
protein content and antioxidants enzymes by increasing the lipid peroxidation along with higher Pb
uptake. Acetic acid alleviated Pb ecotoxicity and enhanced growth attributes of the plant. Therefore,
AA addition promoted photosynthetic attributes by stabilizing the oxidative damage of plant cells.
AA promoted antioxidative defense systems of plants and reduced the production of ROS to decrease
Pb ecotoxicity. The results also revealed that A. bettzickiana absorbed and accumulated larger amount
of Pb in its roots, stems and leaves under AA and Pb treated plants as compared to Pb only treated
plants. The present study also encouraged future endeavors to investigate the effects of Pb at plant
genetic level along with the identification of plant detoxification mechanism.
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