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A B S T R A C T

The notion of limit is one of the fundamental concepts which underpins advanced calculus of one or more var-
iables in the field of analysis. However, understanding the concept of limit has been an impenetrable problem for
many students in Ethiopian Universities. Only very few literatures were documented focusing on overcoming the
difficulty of learning the concept of limit. For this reason, the overarching aim of the present study is to enhance
students' conceptual understanding of limit by empowering their visualization skills using GeoGebra integrated
with multi-teaching approaches. The study employed mixed methods experimental (intervention) design within
an APOS paradigm. Both qualitative and quantitative data were collected. Qualitative data was collected using
students' reflections and interviews, whereas quantitative data was collected through pretest and posttest using
diagnostic tests. The results of the qualitative data analysis revealed that the learning milieu created a positive
impact on students' understanding of the concept of limit. Additionally, students provided coherent and viable
reasons while making mental constructions and their coordination in the learning process based on the genetic
decomposition grounded in APOS theory. Furthermore, the results of the quantitative (posttest) data analysis
proved that students' mean scores on conceptual understanding of limit in the experimental group was signifi-
cantly better than those in the control group. Thus, it could be possible to conclude that students’ conceptual
understanding of limit is improved using GeoGebra integrated with multi-teaching approaches within an APOS
paradigm. The findings open a great opportunity to suggest technology integrated mathematics curriculums for
the teaching and learning of mathematics.
1. Introduction

Calculus is an increasingly important area in the field of analysis
and applied mathematics [1]. It entails a comprehensive account of
concepts such as limit, continuity, derivative and integrals of func-
tions among other things. Limit is one of the fundamental concepts
which underpins advanced calculus of one or more variables in the
field of analysis [2, 3]. For example, concepts such as continuity,
derivative, integrals of functions and convergence theories have been
defined using the notion of limit. The concept of limit is an abstract
and complex idea; as a result, it demands and develops students’
advanced mathematical thinking [3].

The notion of limit has been given to students in different disciplines
in most of the Universities in Ethiopia. However, students are facing
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difficulties in learning the concept [4]. Most of the students do not have
conceptual understanding of limit. Specially, understanding the formal
conception of limit is found to be an impenetrable problem for many
students. There has been a universal agreement amongst mathematics
teachers and researchers that students learn the concept of limit amid
major challenges in conceptual understanding [5, 6]. This problem
triggered us to be part of a solution and consequently add new points to
the existing literatures. In fact, in resolving the aforementioned prob-
lems, different endeavors were made by researchers and mathematics
teachers using pedagogical strategies, technology integrated with peda-
gogical strategies and theoretical models. For example, Cottrill et al. [7]
did a strong attempt to improve students’ conceptual understanding of
limit using technology (Computer programing) integrated with peda-
gogical strategies and a theoretical model.
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Apart from this, mathematics software such as Geometer's Sketchpad,
CAS, Spreadsheet and GeoGebra are some of the commonly used tech-
nologies that support mathematics teaching and learning. GeoGebra is
one of the newly emerging technologies in mathematics education to
support the teaching-learning process of mathematics from primary
school up to university level [8]. It is a freely available multi-platform
dynamic mathematics software which brings geometry, algebra and
calculus together. The dynamic nature, multi-platform, friendly use,
multiple representation and open accessibility are among others that
make GeoGebra be a powerful and preferred tool for students' learning
[9]. However, the use of GeoGebra alone is unlikely to bring a significant
change on learners conceptual understanding. For example, a study
documented that students' posttest achievement was significantly lower
than their pretest achievement after the treatment using GeoGebra [10].
Therefore, it is demanding to integrate it with worthwhile teaching
approaches.

On the other hand, considering a theoretical model of understanding
mathematical concepts plays a significant role to enhance students'
learning [11]. In line with this, APOS theory is a powerful theory for
modeling students' understanding of mathematical concepts, its nature
and development [12]. The theory is an extension of Piaget's idea of
reflective abstraction [13]. It was originally created to apply Piaget's
concepts of reflective abstraction to postsecondary mathematics educa-
tion, but some works have also been done in the context of primary and
secondary school mathematics [12]. The main points of the theory were
introduced by Dubinsky [14]. The acronym APOS refers to actions,
processes, objects and schemas, which was first introduced by Cottrill
et al. [7]. According to the APOS theory, mathematical knowledge arises
from an individual's proclivity to respond to a perceived problem situa-
tion through reflection about the problem and its solution in a social
context and by constructing or reconstructing actions, processes and
objects, and organizing these in schemas so as to deal with the problem
situation [12]. Cottrill et al. [7] used APOS paradigm to investigate
students' conceptual understanding of limit. It involves interconnections
of theoretical analysis, design and implement instruction, and empirical
data. In their study, a genetic decomposition model was employed. Ge-
netic decomposition is a description of mental constructs that learners
might experience while understanding a mathematical concept. How-
ever, students were not managed activities on the concept of limit, which
demanded higher level mental structures based on the genetic
decomposition.

In sum, students' mental constructions may be elicited based on
successful enactment of physical operations using computer activities,
and paper and pencil work. In this regard, GeoGebra may be considered
as a powerful cognitive tool to link students’ physical activities on
computers, and paper and pencil work with mental operations in a better
way as compared to other mathematical software [9, 15]. In addition to
this, for understanding abstract concepts like limit and some other
mathematical concepts in a better way, integrating teaching approaches
with worthwhile technology might be inevitable [16]. These were some
of the rationales or reasons why GeoGebra, multi-teaching and APOS
theory are used in this study. Details are available in the literature review
sections.

The purpose of the present study is to enhance students' conceptual
understanding of the notion of limit by boosting students' visualization
skills using GeoGebra integrated with multi-teaching approaches.
Experimental (intervention) design coupled with the APOS paradigm is
used to explore students’ conceptual understanding of limit. The findings
of the present study might have invaluable contribution to teaching and
learning of mathematics for University mathematics students.

To achieve this, the following research questions were framed.

1. What were the views of students about learning the limit concept
using GeoGebra integrated with multi-teaching approaches?

2. What is the nature of students' reasoning while working on carefully
designed limit activities based on the genetic decomposition model?
2

3. Is there a statistically significant difference in students' mean scores
on conceptual understanding of the notion of limit between the
experimental group and the control group?

2. Literature review

2.1. The concept of limit

The notion of limit has been a controversial and much debated
concept in the area of calculus. Güçler [6] asserted that students' mis-
conceptions of limit were mainly associated with the phrases “ap-
proaches”, “tends to” and “gets close to” in expressing the symbol
“limx→afðxÞ” in the informal conception. Another researcher also argued
that the phrases “approaches”, “tends to” and “gets close to” entail dy-
namic or process conception, whereas the conventional ε-δ form shows a
static conception; as a result of this, the dynamic or process conception
interferes with the formal conception of limit and hinders students’
learning [17].

In contrast to the aforementioned studies, however, Cottrill et al.
[7] contended that the dynamic conception of limit was a foundation
for the formal conception of limit and did not hinder students'
learning. They believed that the quantification associated with the ε-δ
form in the formal conception makes it more complex and abstract for
students' learning. In addition to this, in our teaching experience of
mathematics, we observed that mathematics teachers oftentimes
introduced the conventional ε-δ definition without establishing sound
connections with the intuitive notion and proved limit problems using
ε-δ form irrespective of students' understanding. Apart from this,
research outputs on overcoming such obstacles were very scant, if
any, and were only theoretical considerations driven mainly by
cognitive constructivism. For instance, Cottrill et al. [7] utilized
“APOS theory” coupled with genetic decomposition (a seven step
model) to investigate the conception of limit; Bagni [18] explored the
notion of limit using “Register semiotic representations”; and Juter
[19] explained students’ concept growth using “Three worlds of
mathematics” coupled with “Concept image and concept definition”.
Nevertheless, endeavors to understand epsilon-delta form of defining
and proving the limit concept did not make a significant contribution
to alleviating the perennial problems in mathematics education, and
students are still struggling to learn abstract mathematical concepts.
Moreover, difficulty of learning the limit concept has brought about
considerable challenges in learning subsequent mathematical con-
cepts [20] for many years to come. As a result, the quest for con-
ceptual understanding of limit becomes more intensified in
mathematics education.The commonly used intuitive and formal
definition of limit are briefly indicated below.

Intuitive (informal) definition of limit: Let ƒ be a function defined
at each point of some open interval containing α, except possibly at α
itself. Then a number L is the limit of ƒ(x) as x approaches α, written
limx→af ðxÞ ¼ L iff limx→a � f ðxÞ ¼ L ¼ limx→a þ f ðxÞ.

Formal definition of limit: Let ƒ be a function defined at each point
of some open interval containing α, except possibly at α itself. Then a
number L is the limit of ƒ(x) as x approaches α, iff for every number ε >
0 there is a number δ > 0 such that if 0 < jx�aj < δ; then jf ðxÞ � Lj < ε.
In this case it is written as lim

x→a
f ðxÞ ¼ L.

A recent study by Swinyard [21] disclosed a reinvention of the formal
conception of limit using the radical constructivism theoretical frame-
work. In his study, Swinyard [21] probed the existence of a coherent
definition of limit, wherein students constructed nine steps in the rein-
vention process. In the same vein, Swinyard and Larsen [22] extended
the conceptual framework of Cottrill et al. [7] so as to explore students'
reinvention of the formal definition based on Swinyard's [21] descriptive
approach. They found an encouraging result although it was not vali-
dated in a normal whole class context. However, they utilized the concept
of limit at infinity to establish limit at a point during the formal
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Figure 1. A theoretical perspective (paradigm).
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conception of limit, which might be against students' concept image of
limit [23], contradicting the natural way of learning mathematics. We
argued that students must learn first simple and concrete concepts based
on their cognitive development to ascertain conceptual understanding,
but the concept of limit at infinity might be a more abstract concept than
limit at a point with regard to formal conception of limit. The debates still
continue unabated. Thus, we strongly believe that a body of research
focusing on such abstract and complex concepts may trigger pedagogical
suggestions which could help to alleviate the existing situations. As we
have worked with the concept of limit for several years, we have
developed personal interests and enthusiasm to make a substantial
contribution to the existing literature, and also solve the problem of
teaching and learning of the concept of limit in Ethiopian Universities.
With this back drop of the concept of limit, let us discuss in brief teaching
approaches, the role of GeoGebra and the APOS theory to substantiate
one's understanding of our endeavor to synthesize the present approach
for addressing the aforementioned problem.

2.2. Multi-teaching approaches

Flexible use of pair, group and whole class discussion which involves
teacher's questioning, and variety of compositions in lessons are among
other things that account for effective teaching [24]. Accordingly, the
present study employed multi-teaching approaches incorporating brain-
storming, individual learning, group discussions and interactive lecture
to enhance students' learning. Brainstorming encourages students'
engagement and increases their achievement [25]. Providing students
opportunities to attempt some activities individually might help to
nurture their creativity and critical thinking skills. Moreover, learners
actively construct, elucidate and restructure knowledge in an individual
manner [26]. Furthermore, integrative implementation of group discus-
sion and interactive lecture could engender students' learning [27].

2.3. GeoGebra and mathematics learning

GeoGebra has different interfaces that serve for teaching and learning
of mathematical concepts. Algebraic view, graphics view and spread-
sheet view are some of the commonly used GeoGebra interfaces in
mathematics education [8]. Mathematical objects such as points, lines,
planes and space figures could be sketched and also dynamically
described with ease using GeoGebra. GeoGebra played a predominant
role in mediating the physical operations of students' paper and pencil
work, computer activity, and mental process involved in learning new
concepts. Indeed, students could stimulate the data on the GeoGebra
window by manipulating the slider and information may evolve out of
the data [15]. Consequently, the working memory tracks the information
and executes processing henceforth to construct knowledge. In addition,
GeoGebra could empower learners to articulate their visual and analytic
thinking in the learning process. It also encourages students' visualization
and understanding while learning [28]. Different research studies
revealed that empowering students' visualization skills of mathematical
concepts certainly improves their learning [29, 30]. Arcavi [30] pointed
out that visualization serves not only as an illustrative purpose, but also
as a fundamental component of reasoning in conceptual learning. How-
ever, he suggested managing visualization tools carefully as it might not
be a panacea for every problem in mathematics. Moreover, Yung and
Paas [29] reported that computer assisted visualization could enhance
deep learning and minimize cognitive load problems. For example, stu-
dents develop positive opinions and improve their achievement in un-
derstanding statistics concepts using GeoGebra [10]. Nobre et al. [31]
also documented that GeoGebra software increases students' motivation
for learning calculus contents. Furthermore, integrating GeoGebra with
constructivist instruction enhances students’ learning better than
constructivist instruction alone [16, 32]. In general, integrating Geo-
Gebra with flexible teaching approaches could provide learners with
myriad options to articulate and figure out their learning.
3

2.4. Theoretical framework

2.4.1. The APOS theory
APOS theory has tremendous benefits for instructional design asso-

ciated with how students might make mental constructions in the
learning process based on a genetic decomposition [11]. Mental mech-
anisms such as interiorization, encapsulation and thematization are
reflective abstractions, which lead to constructions of mental structures
like actions, objects, processes and schemas [11]. Action is the first level
in concept formation which is governed by external transformation of a
formerly perceived object [33]. In this case, externally perceived actions
could spur construction of internal mental actions in an individual's
mind. Such an internal mental action is said to be process. It is note-
worthy to note that process is the second level in concept construction,
which is realized because of interiorization of an action. Students
accomplish the transformation totally in their mind devoid of explicitly
executing each step during processing [33, 34]. Students' mental con-
struction of process could be conceived through reflections on repeated
actions and contemplation based on their prior and tacit knowledge.
Encapsulation of two or more processes forms cognitive object, which is
the third level in concept construction. Cognitive objects are mental
structures created through students' cognitive imagination [33]. The
collective and synchronized organization of actions, processes and ob-
jects provides a coherent cognitive structure called schemas, which
espoused conceiving the situation and solving the problem. Schemas
entail “logico-mathematical structures”, which build individual's analytic
thinking; and thematization of schemas may create cognitive object [11].
The construction of “logico-mathematical structures” of an individual is
explained based on Piaget's concept of reflective abstraction during
cognitive development [35]. A growing number of research studies used
the APOS theory to examine students' mathematics learning [11]. In the
present study, we employed the APOS theory to guide instruction and
analyze data based on a genetic decomposition. The framework of the
present study is adapted from Cottrill et al. [7] indicated in Figure 1
below.

In this framework, theoretical analysis comes first to model cognition
of the limit concept, which is the basis for establishing the genetic
decomposition. The theoretical analysis is established based on concep-
tualization of the problem. In fact, our conceptualization of the problem
arises from the theory of learning, different literatures, our own under-
standing of the concept, and our experience of teaching and learning the
concept of limit. The theoretical analysis calls for instructional design
and implementation, and this in turn provides opportunities to collect
data and reconsider the theoretical analysis. Moreover, based on obser-
vation results and students’ feedback, a revised genetic decomposition
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might be realigned to construct and reconstruct epistemology of the
concept. While observation was taking place, we focused on whether or
not students made the required specific construction. While the analysis
of data was guided by the theoretical perspective, our genetic decom-
position was influenced by the data. This cyclical nature continuous until
students successfully construct epistemology of the concept, which calls
for by the genetic decomposition.

3. Methodology

3.1. Research design and methods of data collection

There is no single best approach in doing research [36]. Neither a
quantitative nor qualitative approach provides an inevitable evidence of
truth. Therefore, both stories and numbers inevitably provide ample in-
formation to properly articulate the problem in a better way and to
suggest a practical solution [36]. Researchers of the present study also
believe that to point out the underpinning epistemology of an abstract
and difficult concept, for example the notion of limit, employing mixed
methods research is extremely appropriate. Hence, the study employed
mixed methods experimental (intervention) design within an APOS
paradigm. Both quantitative and qualitative methods were used in the
present study. Quantitative data was collected using diagnostic tests,
whereas qualitative data were collected through students’ reflection
(view) and interview.

Data was collected after obtaining approval from the Research Ethics
Committee of College of Science, Bahir Dar University (PRCSVD/010/
2011) and securing students' written informed consent. The entire
research design of the present study is adapted from Creswell and Cres-
well [36] illustrated in Figure 2 below. The design could help to explore
how students experience the treatment while learning the concept of
limit. It is also helpful to convey fidelity of implemented procedures and
to identify students’ barriers while learning the concept of limit. The
design provides triangulated trustworthy information about the study.

3.2. Participants of the study

First year mathematics students in science stream at Bahir Dar and
Wollo Universities in 2018 participated (single section in each univer-
sity) in the present study. First year mathematics students in 2018 in
Ethiopian Universities were considered as population of the present
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study. One section of students at Bahir Dar Univeristy was used as an
experimental group and another section at Wollo University was used as
a control group using simple random sampling technique. The students
took introductory calculus course before a year while they were pre-
college students. In 2018 a pretest to assess the students' background
knowledge about the concept of limit was administered to both groups.
Next, the limit concept was delivered using GeoGebra integrated with
multi-teaching approaches based on the APOS paradigm for the experi-
mental group, whereas the same content was given to the control group
using the traditional (lecture dominated) method. A teacher with 3 years
of teaching experience was assigned to teach the experimental group, and
another teacher with 5 years of teaching experience was assigned to
teach the control group. Both teachers had master's degrees in teaching
mathematics.

3.3. Instruments for data collection

3.3.1. Two-tier diagnostic tests
The current investigators did literature reviews [20, 37] for devel-

oping two-tier diagnostic tests. The primary purpose of the diagnostic
tests was to gauge students' higher cognitive thinking in relation to their
conceptual understanding of limit. The first tier of each Item was a
multiple choice question having four choices focusing on content, while
the second tier was also a multiple choice question with equal number of
choices addressing students’ possible justifications or reasons for the
answer given in the first tier. Each diagnostic test incorporated six Items
each involving two questions, some Items from informal conception of
limit, some Items requiring coordinated schema and some Items from
formal schema. An example of two tier diagnostic test is indicated as
shown below.

Item 1:
FT: If jx�3j < a for all x then

��x2 � 9
�� < 1, which one is a possible

value of a;
A. 1=7, B. 1=5 C. 7 D. 1

ST: Which one could be a possible reason in the above problem?
A. Because if jx � 3j < 1, then

��x2 � 9
�� � 1

7 jx � 3j
B. Because if jx � 3j < 1, then

��x2 � 9
�� � 5jx � 3j

C. Because if jx � 3j < 1, then
��x2 � 9

�� � 7jx � 3j
D. Because if jx � 3j < 1, then

��x2 � 9
�� � jx � 3j

Answer: Students first simplify
��x2 � 9

�� in order to express it in terms
of jx � 3j and then apply comparison to decide the value of a.
Ɵon
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Now we have
��x2 � 9

�� ¼ jðx � 3Þðxþ3Þj ¼ jx � 3jjxþ3j, but for x
sufficiently closer to 3, it is possible to consider an assumption jx � 3j <
1, as a result we get

��x2 � 9
�� ¼ jðx � 3Þðxþ3Þj ¼ jx � 3jjxþ3j � 7jx �

3j < 1, which implies jx�3j < 1=7 and hence, a ¼ 1= 7, since 1
7 < 1.

Therefore, A is the correct choice for the first tier FT and C is the correct
choice for the second tier ST. Students who might have conceptual un-
derstanding of FT, could answer ST with ease. As it is shown above the
second tier is an intermediary step while finding the value of a.

3.3.2. Students’ reflections and interview
The investigators of the present study continuously observed the

experimental group and collected feedback from students so as to
improve their learning using open-ended questionnaires. However, their
final reflections were collected and incorporated in this study. The
following open ended questionnaires were used to collect students’ re-
flections: “What is your comment about the impact of GeoGebra inte-
grated with multi-teaching approaches in learning the concept of limit?”
and “What were the difficulties you encounter in the learning
environment?”

The investigators also conducted interviews with randomly selected
students while they were learning the notion of limit. Semi-structured
interviews were conducted to collect data so as to explore the partici-
pants’ conceptual understanding based on a genetic decomposition. The
interview data was collected using field notes and audio tape recording.

3.4. Validity and reliability

Validity and reliability tests ensure how well research instruments
indicate the appropriateness and trustworthiness of the instruments. A
two tier diagnostic test was among the instruments employed in the
present study to measure students' conceptual understanding of the
notion of limit. Both pretest and posttest were adapted from different
calculus exams prepared by University mathematics teachers. Further-
more, the validity of the tests was verified using five expert University
mathematics teachers, whereas the reliability of the instruments was
checked using data from the pilot study. Indeed, checking the validity of
the tests entailed test contents representativeness and appropriateness so
as to measure students' conceptual understanding, whereas ensuring the
reliability of tests addressed internal consistency of the test Items to meet
its objective. Cronbach's alpha coefficient of reliability of 0.71 showed
that the diagnostic tests had high internal consistency [38].

3.5. Procedures

Prior to the intervention, lesson activities integrated with GeoGebra
were prepared based on the APOS theory in consultation with the teacher
assigned to the experimental group. Next, the GeoGebra software was
installed in the mathematics laboratory at Bahir Dar University. More-
over, appropriate training on GeoGebra software and multi-teaching
approaches was given to the teacher. Students were also given 4 hours
of training in how to manage the GeoGebra software during mathematics
learning. Then, using theoretical analysis, an initial genetic decomposi-
tion model was developed. The theoretical analysis was carried out based
on our understanding of limit concept, different literatures, theories of
learning and our experience of learning and teaching calculus. After that
the teaching-learning process was started in both the experimental group
as well as the control group at Bahir Dar University andWollo University,
respectively. As of the first class, the investigators of this study discussed
with the teacher while the teaching-learning process was going on so as
to change the strategy and approach based on observed data and stu-
dents' reflections in response to the given genetic decomposition for the
sake of maximizing their learning. Accordingly, the teacher continuously
redesigned the procedures in response to the students' learning. Along
the way, the researchers of this study collected relevant data using in-
terviews. During the instructions in the experimental group, a single
5

activity could be presented first using brainstorming, next individual
learning followed by group discussion including pair, triple and
quadruple discussions with the use of GeoGebra and without it. In
addition, interactive lecture might be implemented after group discus-
sion, which could be realized using whole class discussion led by the
teacher using GeoGebra as well as without GeoGebra simply using paper
and pencil work. However, the teacher could vary the sequence of ap-
proaches depending on students' prior knowledge and the type of mental
constructions needed in alignment with the genetic decomposition. This
continued for three weeks having two days per week for three hours each
day. The approach may provide a flexible learning milieu which ac-
commodates students' natural way of learning, and teacher's collective
endeavor of leading, facilitating and teaching [24]. At the end of the limit
content, students' reflections were collected from the experimental group
and a posttest was administered to both groups to probe students' con-
ceptual understanding of the limit concept.
3.6. Genetic decomposition

In the present study, a four level genetic decomposition model, which
was adapted from Cottrill et al. [7], used to analyze students’ conceptual
understanding of limit.

The genetic decomposition model, which is driven by the underlying
APOS theory, could illustrate what is going on in the minds of students
while they are learning a mathematical concept based on their success or
failure in executing each activity of the model. While a genetic decom-
position guides instruction, its description could portray how a concept
might be constructed and reconstructed in the mind of a learner and
could unearth how their mental mechanisms might be realized in a
specific problem context. Data obtained from students’ interview is
analyzed using the model. In addition, the model plays a fundamental
role in instruction design for learning the concept of limit.
3.7. Methods of data analysis

The qualitative data was analyzed (interpreted) using thematic
analysis by coding students' reflections. Moreover, a genetic decompo-
sition model was applied to analyze the nature of students' reasoning
using data collected from students' interviews. The model portrayed
students’ conceptual understanding of limit based on their action, pro-
cess and encapsulation of the cognitive object inductively by employing
particular instances to synthesize the formal schema in a coherent and
pragmatic way. The quantitative data was analyzed using descriptive
statistics and independent samples t-test. The quantitative analysis was
conducted using SPSS statistical software version 21.
3.8. Data analysis and results

3.8.1. Qualitative data analysis(interpretation)

3.8.1.1. Analysis of students’ reflections. In each session students were
requested to reflect on a sticky note regarding the following open-ended
questions a) what is your comment about the impact of GeoGebra inte-
grated with multi-teaching approaches in learning the concept of limit?
b) what were your learning difficulties in the learning environment?

Based on students’ reflections, actions were taken to improve their
learning. However, their last reflections were summarized and analyzed
using thematic analysis. The following categories were identified during
the analysis: The benefits of GeoGebra integrated with multi-teaching
approaches, suggestions for other courses and learning difficulties. The
thematically analyzed data was coded using different categories for in-
depth analysis. Students were coded as S1, S2, S3, etc. The number of
students involved in a given code was considered as frequency (f)
(Table 1).



Table 1. Codes for different categories of students’ view.

Category Code f

Benefits of GeoGebra integrated
with multi-teaching approaches

Provides better visualization 13

Increases understanding 10

Encourages participation 10

Promotes individual and team work 8

Creates enjoyable learning environment 8

Increases interest and motivation 8

Boosts imagination 5

Suggestion for other courses Implementing for other concepts and courses 3

Learning difficulties Shortage of time 3

Lack of skills to manipulate GeoGebra 3
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Table 1 reveals that students conveyed positive views regarding the
importance of GeoGebra and multi-teaching approaches. Students stated
that GeoGebra integrated with multi-teaching approaches provided bet-
ter visualization, improved understanding, encouraged participation,
promoted their team work and individual work, created enjoyable
learning environment, boosted their interest, motivation and imagina-
tion. Moreover, some students suggested using GeoGebra integrated with
multi-teaching approaches for some other concepts in calculus and in
some other courses. In addition, the majority of the students did not face
learning difficulties in the learning process. Only few students faced
shortage of time during brainstorming and lack of computer skills to
manipulate GeoGebra software.

Thirteen students reported that GeoGebra integrated with multi-
teaching approaches provided better visualization. Two students’ com-
ments were as follows:

“I have got better visualization of the relation between |x-a| and |f(x)-L| in
a dynamic manner to validate L is the limit of f(x) using a slider.” (S3)

“GeoGebra technology integrated with multi-teaching approaches provided
us a better visualization in the learning process.” (S2)

Ten students stated that GeoGebra integrated with multi-teaching
approaches improved their understanding. Two students’ reflections
were as follows:

“Although limit was a difficult concept, employing GeoGebra increased my
understanding.” (S23)

“I believe that the learning environment improved my understanding of the
limit concept.” (S5)

Ten students stated that GeoGebra integrated with multi-teaching
approaches enhanced their participation. Two students commented as
follows:

“GeoGebra integrated with multi-teaching approaches encouraged me to
participate in each activity.” (S7)

“I have been actively participating during group discussion using GeoGebra
integrated with multi-teaching.” (S8)

Eight students reflected that GeoGebra integrated with multi-
teaching approaches promoted individual and team learning. Two stu-
dents reflected as follows:

“The learning environment encouraged us to use individual learning and
team learning.” (S16)

“I benefited from GeoGebra integrated with multi-teaching through indi-
vidual and team learning.” (S9)

Eight students reported that GeoGebra integrated with multi-teaching
approaches created enjoyable learning environment. Two students’
comments were as follows:
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“We practiced an enjoyable teaching-learning process.“(S17)

“I enjoyed the learning of limit through GeoGebra integrated with multi-
teaching.”(S13)

Eight students reflected that GeoGebra integrated with multi-
teaching approaches increased their interest and motivation. Two stu-
dents’ comments were as follows:

“I have learned the relation between the informal and formal limit concept
in an interesting and motivating manner.”(S24)

“In my view, GeoGebra integrated with multi-teaching approaches
increased my interest to learn the concept of limit.”(S18)

Five students reported that GeoGebra integrated with multi-teaching
approaches increased their imagination. Two students said the
followings:

“The learning environment expanded my imagination of the concept of
limit.”(S15)

“I found GeoGebra integrated with multi-teaching approaches are
powerful to increase my imagination of the relationship between δ and
ε.”(S11)

Three students reported that some other concepts in calculus and
other mathematics courses are also abstract; hence, implementing Geo-
Gebra might solve the problem. Two students suggested followings:

“I suggest GeoGebra to be used for learning abstract concepts in calculus
and in other mathematics courses.” (S24)

“I believe that GeoGebra integrated with multi-teaching approaches could
be helpful for learning other abstract concepts in mathematics.” (S10)

Three students reported that they faced shortage of time in the
learning process. Two students complained as follows:

“There is shortage of time during the brainstorming stage in the learning
process.” (S22)

“I believe that learning the concept of limit using GeoGebra demands
sufficient time for practice. However, I faced shortage of time during
brainstorming and individual learning.” (S19)

Three students stated that they faced lack of computer skills in the
learning process. Two students’ comments were as follows:

“Truly speaking, I did not properly utilize the key board while entering
functions.” (S6)

“Lack of computer skills influenced my learning of limit using GeoGebra.”
(S4)

From the reflections provided above, it was possible to learn that
the participants were able to have better visualization and under-
standing of the concept of limit using GeoGebra integrated with
multi-teaching approaches. Their views indicated that they were
actively participating in individual as well as group learning.
Moreover, many participants reported that they learned the concept
of limit in an interesting, motivating and enjoyable manner. In
addition, students stated that GeoGebra integrated with multi-
teaching approaches increased their mental imagination. Generally,
the participants suggested using GeoGebra integrated with multi-
teaching approaches for learning some other abstract concepts in
mathematics. On the other hand, some students reported that they
faced shortage of time and computer skills while learning the
concept of limit using GeoGebra integrated with multi-teaching
approaches. Overall, the participants forwarded positive reflections
regarding their learning of limit using GeoGebra integrated with
multi-teaching approaches.
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3.8.1.2. Analysis of students’ interviews. The analysis of the activity
below was among the different activities on the contents of limit covered
in the experimental group.

Activity: Exploring and proving that limx→2f ðxÞ ¼ 7, where f ðxÞ ¼
3x þ 1.

First, students were requested to enter the function f ðxÞ ¼ 3xþ 1 in
the input field of GeoGebra and create a slider for the sake of manipu-
lation by tracing points A and B along the x-axis closer to 2 and y� axis
closer to 7 respectively (Figure 4). In fact, most students identified the
behavior of f ðxÞ ¼ 3x þ 1 near 7 associated with the behavior of x near 2
(Figure 4) exhibiting step 1(a) and (b) in the genetic decomposition
(Figure 3).

Consider the following excerpt taken from students’ interview by
researchers (R) for determining limit candidates

1. R: What do you observe closer to 2 on the x� axis and closer to 7 on
the y� axis?
2. Taye: You know, if x is 1:9; then fðxÞ becomes 6:7, if x is 1:99; then
fðxÞ becomes 6:97 and, if x is 1:999; then fðxÞ becomes 6:997 and so
on. Besides, if x is 2:1; then f ðxÞ becomes 7:3, if x is 2:01; then fðxÞ
becomes 7:03 and if x is 2:001; then fðxÞ becomes 7:003 and so on.
3. R: What is the relation between the two changes?

4. Taye: Ok, if x is within 0:1 of 2; then fðxÞ becomes within 0:3 of 7; if
x is within 0:01 of 2; then fðxÞ becomes within 0:03 of 7; if x is within
0:001 of 2; then fðxÞ becomes within 0:003 of 7 and so on. So, in
general using the slider I noticed that whenever x is closer and closer
to 2, fðxÞ becomes also closer and closer to 7 from the algebraic and
graphics view of GeoGebra. Hence, lim

x→2
fðxÞ ¼ 7.

5. R: Why?
6. Taye: You know, fðxÞ approaches to 7 whenever x is gets close to 2,
from either side of 2.

7. R: Ok, given sðxÞ ¼
8<
:

2x; for x < 2
6; for x ¼ 2
x þ 1; for x > 2

, and rðxÞ ¼
8<
:

2x; forx < 2
6; forx ¼ 2
x þ 2; forx > 2

what is the limit of sðxÞ at 2?

8. Taye: Does not exist
1a) The acƟon of evaluaƟng f x = 3x + 1 at diff
both sides.

b) InteriorizaƟon of the acƟons in step (1a) and
2 and the range process of f( x) near 7.

2 i) CoordinaƟon of process concepƟon of x − 2

0 < x − 2 < δ, for every real number x, the

a) 3x + 1 − 7 < 5 b) 3x + 1 − 7 <

ii) CoordinaƟon of process concepƟon of x − 2

if 0 < x − 2 < δ, for every real number x, th

3. Establish a quanƟficaƟon schema to complete

4. Employ a quanƟficaƟon schema to construct

Figure 3. Genetic deco
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9. R: Why?
10. Taye: Because sðxÞ approaches 4 as x approaches 2 from the left
and sðxÞ approaches 3 as x approaches 2 from the right, hence, sðxÞ
does not approach to a unique value whenever x approaches 2.
11. R: Ok, what is the limit of rðxÞ at 2?
12. Taye: 4
13. R: why?
14. Taye: You know, the rule of the game is closer to 2, not necessarily
exactly at point 2:

From the excerpts, the action of describing the behavior of f ðxÞ
near 7 at different points closer to point 2 was exhibited (2). This
qualified Taye's successful actions at successive points closer to 2 on
the x� axis which induced changes at successive points closer to 7
on the y� axis. Besides, Taye successfully coordinated the process

conception of f ðxÞ near 7 (4 & 6) and a discontinuous function rðxÞ
near 4 together with the process of x near 2 (12 &14). In addition,

Taye also characterized the behavior of sðxÞ as x gets close to 2 (8

& 10). Alex, Biru, Hana and Sara also elicited similar attributions.
Hence, it could be argued that students successfully developed the
process conception of limit; because, the reason that lim

x→a
f ðxÞ ¼ L

might be regarded as the point-wise dependency of the behavior of
f ðxÞ “near” L on the behavior of x “near” a; warrants the process
conception of f ðxÞ to be sufficient and necessary condition for un-
derstanding the intuitive notion of limit [39]. This uncovered that
students' coordination of processing mental images regarding the
behavior of f ðxÞ closer to 7 as x close enough to 2 figure out the
construction of intuitive (informal) cognitive schema within their
mind. Moreover, researchers' classroom observations also confirmed
a high prevalence of manifestation of similar attributions in the
majority of the students in the experimental group.

Next, students were requested to enterjx�2j and j3xþ1�7j in the
input field of GeoGebra so as to notice their relations using a slider
(Figure 4). Specially, students were critically observing points A, B, C and
D, and the graphs of gðxÞ, hðxÞ and f ðxÞ on the graphics by manipulating
the slider (Figure 4). They were requested to describe the relationship
erent successive points closer to 2 from

coordinate the domain process of x near

and f x − 7 and esƟmaƟng δ if
n

3 c) 3x + 1 − 7 <

and x − 4 and esƟmaƟng δ,
en a) x − 4 < 1, b) x − 4 < 10

the reconstructed process of step 2.

the formal schema.

mposition model.
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between 3x þ 1; jx�2j and j3xþ1�7j near point 2 using the slider
(Figure 4).

Consider the following excerpt taken from students’ response.

15. Alex: You know, j3xþ1�7j ¼ 3jx�2j using simple algebra and
from the algebraic and graphics view of GeoGebra. Moreover, jx�2j
and j3xþ1 � 7jbecomes closer to zero and fðxÞ ¼ 3xþ 1 tends to 7as
x gets close to 2, which is obvious with the use of slider.
16. Biru: Ok, from the algebraic and graphics view of GeoGebra,
jx�2j is one third of j3xþ1�7j and both approach to zero, while
fðxÞ ¼ 3xþ 1 approaches to 7, whenever x gets close to 2:
17. Sara: It is quite obvious from the GeoGebra window that
j3xþ1�7j ¼ 3jx�2j and both converge to zero, but f ðxÞ ¼ 3xþ 1
approaches to 7; whenever x approaches to 2:

From the excerpts, Alex, Biru and Sara successfully identified
and coordinated the connections among the process (15, 16 & 17).
The majority of the students also elicited similar attributes. This
established students’ concept map as a dynamic process which
substantiate the creation of cognitive structures for quantification
schema.

Students also explored the detail relationship between jx�2j and
j3xþ1�7j indicated as in the following excerpts for determining a
single quantification schema.

18. R: If jx � 2j < δ, for every real number x; then j3xþ1 � 7j < 5,
how do you get the value of δ?
19. Biru: Ok, since, j3xþ1�7j ¼ 3jx�2j < 5 is evident using slider in
the GeoGebra window or applying simple algebra. Therefore,
jx�2j < 5

3 , as a result, δ ¼ 5
3:
Figure 4. Algebraic and graphics representation of f ðxÞ ¼ 3x þ 1; j3x þ 1� 7jandjx
namic manner with GeoGebra.
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20. R: Ok, do you think that δ is unique?

21. Biru: Um, ok, no, it is possible to take δ � 5
3, since if δ < 5

3, then
“the distance between x and 2 “ becomes very Small, as a result
j3xþ1�7j could be as small as we wish.
22. R: Ok, what if δ ¼ 0?
23. Biru: Um, uh, ok, δ 6¼ 0, since jx�2j < 0 is impossible.
24. R: Why?
25. Biru: You know, jx�2j ¼ 0 or jx�2j > 0; cannot be negative. So,
in both case jx�2j < 0 is impossible.

26. R: Ok, good, what is the value of δ; if jx�2j < δ; for every real
number x; then j3xþ1 � 7j < 3?; what if j3xþ1 � 7j < 1

2?

27. Biru: δ ¼ 3
3 ¼ 1 and δ ¼ 1

6 respectively.

The excerpts uncovered that Biru subsumed the process
conception and coordinated schema based on the pattern of dis-
tances of jx�2j and j3xþ1�7j using the slider as x gets close 2
(Figure 4) to construct cognitive structures to establish a single

quantification schema (19,21, 23, 25 &27) exhibiting step 2(i) and
(ii) in the genetic decomposition (Figure 3). Moreover, Alex, Hana,
Sara and Taye elicited manifestation of similar attributes in the
classroom. Consider also the following excerpts for validating the
limit candidate.

28. R: If 0 < jx � 2j < δ, for every real number x; then j3xþ1 �
7j < ε, where δ and ε were positive numbers. What is the relation
between δ and ε?
29. Hana: Ok, δ ¼ ε

3
30. R: Have you noticed what δ and ε represent?
� 2j together with their property closer to 2 manipulated using slider in a dy-
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31. Hana: Yes, I noticed that δ represented “distance between x and
2”, whereas, ε represented “the distance between 3xþ 1 and 7”.
32. R: Ok, if 0 < jx�2j < δ for the aforesaid δ value, can you establish
the relation j3xþ1 � 7j < ε?
33. Hana: Yes.
34. R: How?

35. Hana: You know, 0 < jx�2j < δ ¼ ε
3; implies 3jx � 2j ¼ j3xþ1 �

7j < ε.
36. R: What do you think about the relation between jx�2j and
j3xþ1 � 7jif ε is arbitrary small positive number?

37. Hana: Ok, I think that jx�2j will be almost zero and this again
induced j3xþ1�7j to be almost zero.

38. R: Can you describe the relation between δ and ε?
39. Hana: Yes, I can, δ could be dependent on ε.
40. R: So, can you guess the end result warranted by this process?

41. Hana: I think that lim
x→2

ð3xþ1Þ ¼ 7:

The excerpts revealed that Hana established quantification schema
based on the notion of “distance” (29, 31, 33& 35). The thematization of
the quantification schema created a coherent cognitive object in the form
of limit (37, 39& 41). Alex, Biru, Sara, and Taye also established a similar
cognitive structure which was germane to convey the formal conception
of limit exhibiting step 3 in the genetic decomposition (Figure 3).
Consider the excerpts taken from Taye’ interview for

Constructing complex quantification schemas to establish
formal schemas.

42. R: If 0 < jx � 2j < δ, for every real number x; then
��x2 � 4

�� < 1,
consider the following. For x sufficiently closer to 2 , we have��x2 �4

�� ¼ jðx�2Þðxþ2Þj � 5jx�2j < 1; this implies jx�2j < 1
5 , then

δ ¼ 1
5 , do you think that the choice of δ is correct?

43. Taye: Yes I think so!

44. R: Really ? What if
��x2 � 4

�� < 10?

45. Taye: δ ¼ 10
5 ¼ 2

46. R: Really?, Ok, suppose δ ¼ 2, then jx � 2j < δ ¼ 2, and let x ¼
3:9, then

��x2 � 4
�� ¼ 11:21 < 10, why this happen? use GeoGebra to

explore the relationship between jx�2j and ��x2 �4
�� using a slider?

Consider the value of
��x2 �4

�� for the case jx � 2j < 1, and jx � 2j < 2?

47. Taye: Um,…, Ok, I noticed that
��x2 �4

�� � 5jx�2j
wheneverjx�2j < 1; and fails whenever jx � 2j < 2. It means, for a
δ > 1 the estimation does not work. So, δ ¼ 1

5 is smaller than 1 is a
choice for

��x2 � 4
�� < 1, and δ ¼ 1 < 2 is a choice for

��x2 � 4
�� < 10.

48. R: What if 0 < jx � 2j < δ, for every real number x; then
��x2 �

4
�� < ε, for every positive real number ε?

49.Taye: Ok, you know, δ ¼ ε
5, using the assumption jx � 2j < 1, so, δ

is the smaller of the two values.

50. R: Do you mean δ ¼ min
�
ε
5;1

�
, minimum of ε

5 and 1?
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51.Taye: Yeap!

52.R: Ok, how do you describe }lim
x→a

fðxÞ ¼ L} using the previous

approach?

53.Taye: For any given ε > 0; by finding a δ > 0 if exists which could
be dependent on ε, that satisfy the property, if 0 < jx � aj < δ, then
jfðxÞ � Lj < ε:

From the excerpts, Taye successfully established quantification
schema inductively based on the patterns on each particular cases (43,
45, 47, 49, 51 & 53). The thematization of this create a mental object;
and again using reflective abstraction [35] a formal schema was
exhibited for the learning of limit. Similarly, Alex, Biru, Hana and Sara
also successfully exhibited manifestation of similar cognitive structures
which were germane to formal conception of limit based on step 3 and
step 4 in the genetic decomposition (Figure 3). They were capable of
constructing informal, coordinated and formal schemas using the affor-
dances of GeoGebra which might trigger logico mathematical thinking
for learning the concept of limit. They elicited a coherent and viable
reasons in the learning process. Moreover, whilst learning the concept of
limit using slider in GeoGebra, students boost their mental constructions
of the concept, and somehow minimized cognitive difficulties like
diductical obstacles (due to the nature of teaching) and epistemological
obstacles (due to the nature of the concepts). Overall, the analysis arti-
culated students’ understanding of the concept of limit.

Note that the names: Alex, Biru, Hana, Sara and Taye in this study
are pseudonym for the sake of protecting students’ anonymity.

3.8.2. Quantitative data analysis
The quantitative data was organized and analyzed using the SPSS

statistical software package. Descriptive statistics and independent
samples t-test were employed to analyze the data collected using pretest
and posttest on conceptual understanding of the notion of limit.

3.8.2.1. Pretest result. Table 2 shows that the participants' average per-
formances in both groups were almost the same on the pretest. The in-
dependent samples t-test also showed that there was no statistically
significant difference between the students' average results in the control
group (M ¼ 4.23, SD ¼ 1.14) and experimental group (M ¼ 4.25, SD ¼
1.15, t ¼ .059, df ¼ 48, p > .05). This indicated that the participants’
conceptual understanding of the notion of limit was similar before the
intervention.

3.8.2.2. Posttest result. The diagnostic test items were categorized into
three groups: informal conception of limit, concepts demanding co-
ordinated schema and formal conception of limit as indicated in
Table 3.

Table 3 indicates that students in the experimental group correctly
responded to each Item and its corresponding reason associated with
informal conception of limit (Item 4 (100), Item 5 (100)). The partici-
pants in the experimental group (Item 1 (FT (45.83), ST (50)); Item 2 (FT
(79.17), ST (79.17))) showed better percentage of correct responses to
concepts requiring coordinated schema as compared to the participants
in the control group (Item 1 (FT (30.77), ST (38.46)); Item 2 (FT (46.15),
ST (34.62))). Moreover, the students' percentage of correct responses to
formal conception of limit in Item 3 was better in the experimental group
(FT (87.5), ST (83.33)) in comparison to the students in the control group
(FT (46.15), ST (53.85)). Besides, the students' answers to the second tier
questions were completely at odds with answers to the first tier in the



Table 2. Independent samples t-test result of students’ Pretest on conceptual understanding.

Group Mean(M) N SD t df p

Control 4.23 26 1.14

Experimental 4.25 24 1.15 0.059 48 .953

Table 3. Number and percentage of students who correctly responded on each tier of each item in the posttest.

Category Item Tier Experimental Group Control Group

N0 of student Percent N0 of student Percent

Informal conception of limit Item 4 First tier (FT) 24 100 22 84.62

second tier (ST) 24 100 23 88.46

Item 5 First tier (FT) 24 100 20 76.92

second tier (ST) 24 100 15 57.69

Concepts demanding coordinated schema Item 1 First tier (FT) 11 45.83 8 30.77

second tier (ST) 12 50 10 38.46

Item 2 First tier (FT) 19 79.17 12 46.15

second tier (ST) 19 79.17 9 34.62

Formal conception of limit Item 3 First tier (FT) 21 87.5 12 46.15

second tier (ST) 20 83.33 14 53.85

Item 6 First tier (FT) 3 12.5 2 7.69

second tier (ST) 3 12.5 6 23.1
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case of the control group (Item 4 (FT (84.62), ST (88.46)); Item 5 (FT
(76.92), ST (57.69)); Item 1 (FT (30.77), ST (38.46)); Item 2 (FT (46.15),
ST (34.62)); Item 3 (FT (46.15), ST (53.85)); Item 6 (FT (7.69), ST
(23.1))) relative to the experimental group (Item 4 (FT (100), ST (100));
Item 5 (FT (100), ST (100)); Item 1 (FT (45.83), ST (50)); Item 2 (FT
(79.17), ST (79.17)); Item 3 (FT (87.5), ST (83.33)); Item 6 (FT (12.5), ST
(12.5))). Furthermore, percentage of the students who selected correct
answers for both tiers in each Item was larger for the experimental group
compared with the control group (Table 4). However, most of the stu-
dents in both groups responded incorrectly to Item 6 (Table 3& Table 4).
This indicates that Item 6 could be a challenging problem for majority of
the students. Regardless of this, from Table 3 and Table 4, it is possible to
claim that students’ conceptual understanding of limit was better in the
experimental group as compared to the control group.

Each item in the diagnostic test had a weight of two points (1 point for
each tier) and totally the test was corrected (evaluated) out of twelve
points.

Table 5 indicates that the participants in the experimental group (M
¼ 8.33, SD ¼ 1.81) performed better than the participants in the control
group (M ¼ 6.04, SD ¼ 1.08) on the posttest. An independent samples t-
test for equal variance assumption using Levene's test (F ¼ 2.613, p >

0.05, t ¼ 5.500) also showed that there was a statistically significant
difference between the participants' average results in the control and
experimental groups (t ¼ 5.500, df ¼ 48, p < .05) (Table 5). This in-
dicates that the students in the experimental group have better con-
ceptual understanding of limit as compared to students in the control
group. Moreover, an effect size of 1.55 using standardized Cohen's
d indicates a very large effect based on Cohen's criteria [40]. This effect
size indicates that the mean of the experimental group is 1.55 standard
deviations higher than the mean of the participants in the control group.
This shows that GeoGebra integrated with multi-teaching approaches
guided by the APOS theory has a strong positive impact on the learning
of limit.
Table 4. Percentage of students who selected correct answers for both tiers in each i

Group N Item 1 Item 2

Control 26 30.77 34.62

Experimental 24 41.67 79.17
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4. Discussion

The purpose of this study was to enhance students' conceptual un-
derstanding of limit using GeoGebra integrated with multi-teaching ap-
proaches within an APOS paradigm. To this end, students' views
regarding benefits of GeoGebra integrated with multi-teaching ap-
proaches for learning the concept of limit were scrutinized; students'
interview in line with their reasoning while doing activities based on a
genetic decomposition model grounded in the APOS theory was inves-
tigated; and students’ quantitative data on the concept of limit were
examined.

With regard to the students' view, the results disclosed that the stu-
dents acquired better visualization (S2 & S3) and improved their con-
ceptual understanding of limit (S5 & S23) using GeoGebra in a multi-
teaching environment. In this regard, results of different research en-
deavors pointed out that the GeoGebra software increases the students'
visualization and understanding in mathematics learning [28, 41]. For
example, Saha et al. [41] documented that the GeoGebra software in-
creases students' visualization for learning coordinate geometry and also
enhances their performance. In addition, Taka�ci et al. [28] pointed out
that the GeoGebra software adds substantial visualization for the
learning of functions and their graphs. In their study, posttest results
evidenced that first year physics and chemistry University students
scored significantly higher results through GeoGebra as a visual tool in a
collaborative learning environment as compared to a collaborative
learning environment without GeoGebra. The finding of Karadag and
McDougall [15] also revealed that GeoGebra software provides a great
opportunity to link the dynamic visual and analytic representation for
better understanding of calculus contents. Similarly, the study of Nobre
et al. [31] also indicated that the implementation of GeoGebra software
increases students' dynamic visualization and understanding of limit and
other calculus concepts. Apart from this, results of students' views of the
present study also portrayed that the learning environment encourages
tem.

Item 3 Item 4 Item 5 Item 6

38.46 84.62 57.69 3.85

79.2 100 100 12.5



Table 5. Independent samples t-test result of students’ posttest on conceptual understanding.

Group Mean(M) N SD F Sig. t df p d

Control 6.04 26 1.08

Experimental 8.33 24 1.81 2.613 .113 5.500 48 .000 1.55
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their participation (S7 & S8) and enjoyment (S17 & S13) in both as an
individual and teamwork (S16& S9). Moreover, results of students' views
revealed that GeoGebra integrated with multi-teaching approaches
increased their interest and motivation (S24 & S18), and boosted their
imagination in mathematics learning (S15 & S11). Besides, only few
students reported that they were struggling to manage the GeoGebra
software (S6 & S4). The finding is in consonance with different research
studies [31, 42], which incorporated GeoGebra during mathematics
learning. For instance, Nobre et al. [31] confirmed that the GeoGebra
software has a positive contribution to students' motivation while
learning calculus contents. Tatar and Zengin [42] also disclosed that
students have positive opinions about the use of GeoGebra for learning
definite integrals. Furthermore, employing different teaching ap-
proaches, which involve effective technology that stimulate students’
interest in mathematics, inevitably improve their understanding and
achievement [9, 10].

With regard to the students' interviews, the results disclosed that the
students elucidated the different steps of conceptual understanding of
limit based on the stated genetic decomposition model, which is groun-
ded in the APOS theory. The students exhibited the action, process, and
their coordination to form a mental object during the conception of limit.
The versatility and interactivity of GeoGebra, and the flexible learning
environment activated the students' inquisitive mind and prompted them
to delve into deep learning. For example, the finding from Taye's inter-
view for determining limit candidate indicated that he successfully
interiorized the actions and evoked the process conception of limit. It is
also apparent from the students' interviews that the visualization
empowered by GeoGebra integrated with multi-teaching approaches
enabled them to coordinate the x� process along the x� axis and the y�
process along the y� axis simultaneously in a dynamic manner with the
use of slider. Consequently, the variations along the y� axis ðjf ðxÞ�LjÞ
and the variations along the x� axis ðjx�ajÞ were coordinated to
establish quantification schema in a dynamic manner with ease. For
example, Biru articulated process conception of limit and coordinated
schemas so as to establish a single quantification schema in alignment
with the genetic decomposition. In addition, the interview results of
Hana uncovered that thematization of quantification schemas establishes
validation of limit candidate as a cognitive object. Apart from this, the
interview results confirmed that Taye successfully managed the con-
struction of complex quantification schemas to establish formal schema
of limit. We feel that, this was the toughest, but a key step for con-
structing quantification schema and validating the limit. Cottrill et al. [7]
also concluded that the difficulty arises from formal conception of limit
was due to weak dynamic conception of limit. We also hold the same
position in this regard; nevertheless, the integrated approach helped us to
develop a strong coordinated schema so as to overcome the cognitive
obstacles while moving from the intuitive approach to the formal
conception of limit. The interview results also confirmed that once the
students realized the concept, finding δ for a given ε to validate limit
candidate of any function was found to be technical, and was not any
longer a big deal. We believe that this is a better alternative approach for
learning the concept of limit. Our result is in agreement with Swinyard
[21] and Swinyard and Larsen [22]; however, they used limit at infinity
to substantiate students' learning of limit at a point, and, in fact, it was
tested using only two students and four students, respectively. In their
study, ay� first principle of limit at infinity guides characterization of
limit at a point to reinvent the formal definition. They argued that the
dynamic (intuitive) approach (x� first principle) at a point is an obstacle
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to the formal conception of limit. In contrast to this, our result revealed
that the dynamic conception of limit found to be fundamental for stu-
dents' formal conception of limit. The physical operations, students'
computer activities using GeoGebra, and paper and pencil work on
purposefully organized activities (genetic decomposition model) groun-
ded in the APOS theory in a multi-learning environment enabled the
students to synthesize a viable and coherent reasoning of formal
conception of limit.

With regard to the quantitative data, the pretest result indicated that
there is no statistically significant difference between students' mean
scores of the experimental and control groups on conceptual under-
standing of limit. This uncovered that students had similar background
information on the concept of limit before the treatment. However,
posttest results revealed that there is a statistically significant difference
between students' mean scores of the experimental and control groups on
conceptual understanding of limit. Students in the experimental group
scored significantly higher than students in the control group on the
posttest. Students in the experimental group also showed better consis-
tency in responding to two tier diagnostic test than students in the control
group (Table 3). Moreover, percentage of students who correctly
answered both tiers of each Item in the posttest was higher in the
experimental group compared to the students in the control group
(Table 4). For example, percentage of the students who correctly
responded to diagnostic posttest Items requiring informal conception of
limit was higher in the experimental group as compared to the students in
the control group. Therefore, the findings of the present study revealed
that GeoGebra integrated with the multi-teaching approaches improved
the students' conceptual understanding of limit better than the traditional
method which dominantly used chalk and talk approach. Hence, it could
be possible to argue that employing purposefully organized activities
guided by the APOS theory integrated with the GeoGebra software in a
multi-learning environment played a significant role for students'
learning. Apart from this, based on our findings, it is clear that the stu-
dents' interest and motivation might play a significant role in improving
their learning and achievement [9]. The findings of the present study are
also in agreement with different empirical studies [28, 32], which got
positive impact on students’ learning in mathematics using GeoGebra.

In sum, the students' positive views, manifestations of coherent rea-
sons, their capability of mental constructions (object and schemas), and
providing correct and consistent responses to two tier Items, similar
background information and higher scores on the posttest all together
could elucidate the students' conceptual understanding of limit in the
experimental group. Therefore, employing GeoGebra in multi-teaching
environment based on an APOS paradigm enhances students’ concep-
tual understanding of limit. Over and above, the findings also indicate
the effectiveness of the APOS paradigm when it is integrated with Geo-
Gebra for learning difficult mathematical concepts.

5. Limitations

The present study found invaluable findings for teaching and learning
of mathematics. However, it has some limitations which may have little
impact on the results. Firstly, the teachers who taught the experimental
and control groups had different years of teaching experience even if
both had master's degrees in teaching mathematics. Secondly, the re-
searchers were always guiding the teacher teaching the experimental
group so as to implement each and every activity based on the design.
Therefore, these may have different impacts on the outcome of the study.
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6. Conclusions

In the present study, the impact of GeoGebra integrated with multi-
teaching approaches on students' conceptual understanding of limit
was explored using students' views, interviews and two-tier diagnostic
tests. Moreover, a genetic decomposition model based on the APOS
theory was employed to gauge students’ cognition of the concept of limit.
The findings were of paramount importance to the teaching and learning
of mathematics.

One of the significant findings emerging out of this study was the
effectiveness of GeoGebra integrated with multi-teaching approaches on
cultivating students' positive views in the learning process. The students
were capable of constructing informal, coordinated and formal schemas
using the affordances of GeoGebra which might trigger logico-
mathematical thinking for learning the concept of limit. Besides, stu-
dents elicited coherent and viable reasons while making mental con-
structions and their coordination in the learning process. Additionally,
GeoGebra integrated with the multi-teaching approaches guided by
APOS theory improved the students’ conceptual understanding of limit
better than the traditional method which dominantly used chalk and talk
approach. The students did formal proofs of limit successfully using the
affordances of the learning environment. Furthermore, the findings
indicated that paper and pencil work becomes more effective while it is
delivered simultaneously with technology affordances in the same
classroom. Overall, the findings of the present study could significantly
contribute to solving the prevailing problem associated with the concept
of limit for mathematics students; and developing technology integrated
curriculums in Ethiopian Universities.

7. Recommendations

7.1. Recommendations for future research

Future large scale studies on the same and other related concepts in
mathematics, could further probe the efficiency and drawbacks of Geo-
Gebra integrated with multi-teaching approaches based on the APOS
theory.
7.2. Recommendations for different stakeholders in education

The findings of the present study have very import implications for
practice of teaching mathematics. Therefore, curriculum designers and
policy makers should give much emphasis to GeoGebra integrated cur-
riculums and APOS theory to enhance students’ learning. Moreover, the
government should make resources available for teaching and learning of
mathematics through technology. Apart from this, appropriate training
should be given for teachers at any level of the education system with
regard to GeoGebra and multi-teaching approaches.
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