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Abstract

Given substantial regional differences in absolute humidity across the US and our under-

standing of the relationship between absolute humidity and influenza, we may expect impor-

tant differences in regional seasonal influenza activity. Here, we assessed cross-seasonal

influenza activity by comparing counts of positive influenza A and B rapid test results during

the influenza season versus summer baseline periods for the 2016/2017 and 2017/2018

influenza years. Our analysis indicates significant regional patterns in cross-seasonal influ-

enza activity, with relatively fewer influenza cases during the influenza season compared to

summertime baseline periods in humid areas of the US, particularly in Florida and Hawaii.

The cross-seasonal ratios vary from year-to-year and influenza type, but the geographic pat-

terning of the ratios is relatively consistent. Mixed-effects regression models indicated abso-

lute humidity during the influenza season was the strongest predictor of cross-seasonal

influenza activity, suggesting a relationship between absolute humidity and cross-seasonal

influenza activity. There was also evidence that absolute humidity during the summer plays

a role, as well. This analysis suggests that spatial variation in seasonal absolute humidity

levels may generate important regional differences in seasonal influenza activity and

dynamics in the US.

Introduction

Improving our understanding of the seasonal nature of influenza is important since it provides

insight into the underlying mechanisms modulating influenza transmission [1–3], it likely has

important effects on viral evolutionary processes [4–6], and because it can illuminate pan-

demic influenza patterns [7–11]. As such, numerous studies have investigated seasonal influ-

enza epidemic patterns and have shown that influenza is strongly seasonal in temperate

regions with epidemics that peak during the winter; whereas in subtropical and tropical

regions the seasonality of influenza can be less pronounced, characterized by multiple peaks,

or relatively aseasonal [1, 12–16].

A non-linear relationship between absolute humidity and influenza activity has been sug-

gested to underlie the seasonal influenza signals observed globally. Although some laboratory

studies have found no measurable relationship between influenza and humidity [17], most
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laboratory studies indicate that low absolute humidity increases the survival and transmission

of influenza [3, 18] which is consistent with annual influenza epidemics that peak during the

winter when absolute humidity is near minimal levels in temperate regions [3, 19–21]. On the

other hand, in subtropical and tropical regions influenza activity tends to peak when absolute

humidity is at high levels [16, 19, 22, 23]. Although the associations between influenza and

absolute humidity for temperate and tropical regions appear paradoxical, these observations

have been reconciled by studies showing a U-shaped relationship between influenza transmis-

sion and absolute humidity, with suppressed influenza activity when absolute humidity is at

moderate levels [19, 23]. That said, the mechanisms that link absolute humidity and transmis-

sion are not fully understood, and it is possible that additional and confounding factors are

responsible for the relationships observed.

A recent study showed that Australia is characterized by wintertime influenza epidemics,

but summer influenza activity is elevated in the northern subtropical and tropical regions of

the country [5]. The study also used phylogenetic data to show that many viruses circulating in

the summer displayed extended chains of transmission that continued into the winter influ-

enza season, suggesting that the increased summer influenza activity in tropical and subtropi-

cal Australia may play an important role in seasonal influenza dynamics. Given the significant

spatial and seasonal variation in absolute humidity in the US, and our current understanding

of the relationship between humidity and influenza activity, it would not be surprising if the

seasonal nature of influenza varies across the US which may impact seasonal influenza

dynamics.

As such, here we investigate spatial differences in influenza activity during the influenza

season relative to activity outside of the influenza season, or “cross-seasonal influenza activity.”

We use a recently available influenza dataset that is highly resolved in both spatial and tempo-

ral dimensions and, more importantly, distinguishes between influenza A and B. These

detailed influenza A and B time-series allow us to show significant regional differences in the

seasonal nature of influenza in the US, and develop hypotheses about their causes.

Methods

Data

We received influenza A and B test results for July 1, 2016—June 30, 2018 from the Quidel

Corporation. These tests results are generated by a network of diagnostic sensors based at clin-

ics, hospitals and pharmacies through the Virena platform. The Virena platform uses an

immunofluorescence-based, lateral-flow assay that automatically transmit the data in real-time

to a cloud based database. The HIPPA compliant data are de-identified and include the loca-

tion (zip code), result (positive/negative), unique identifier for the reporting sensor, and date

of each test performed. The analysis included results from sensors that reported 1 or more

results in the prior year and in the final 90 days of the influenza year being analyzed.

We aggregated the influenza data from each sensor into geographic “subregions” that are

composed of groups of metropolitan areas that share economic, cultural and environmental

characteristics. The subregions were previously defined by the strength of commuter traffic

flows [24]. S1 Fig. maps the states that comprise each subregion and the distribution of report-

ing sensors. We also added Honolulu, HI as a unique subregion. Aggregating the data across

these broader spatial units (e.g., versus zip codes or metropolitan areas) increased the number

of test results per spatial unit, improving the stability of our measures of cross-seasonal influ-

enza activity (see below).

Specific humidity (a measure of absolute humidity, or total amount of moisture in the air)

and air temperature were obtained from the NCEP/NCAR Global Reanalysis (GR) dataset for

Cross-seasonal influenza in US
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2016–2018 [25]. The temperature and humidity data was extracted from the GR for the cen-

troid of the largest metropolitan area in each subregion. The GR was used because it provides

up-to-date environmental data across the US. The drawback of the GR dataset is its coarse spa-

tial scale (2º x 2º latitude/longitude), which can introduce statistical bias to humidity and tem-

perature estimates. Specific humidity and temperature were weighted by the number of

positive influenza tests to better reflect the average conditions during influenza transmission.

S2 Fig. illustrates the weighted average and maximum or minimum of specific humidity for

the baseline and influenza seasons.

The population size of each subregion was derived from census tract level population

counts from the 2010 US Census [26]. Vaccination rates were calculated using state level vacci-

nation data from the Center for Disease Control and Prevention for the 2016–2017 season

[27]. For subregions that intersected multiple states, a weighted average of the vaccination rate

was calculated based upon the contribution of each state to the total subregion population.

Analysis

A straightforward way to measure spatial variation in seasonal influenza activity would be to

calculate attack rates (i.e., the proportion of individuals infected), and compare across subre-

gions and seasons. However, since the data did not allow us to estimate total number of

infected individuals in each subregion we could not estimate attack rates, instead, we calcu-

lated a relative measure of influenza activity by comparing counts of positive influenza results

between “influenza” and “baseline” seasons. For each analytical procedure, we assessed the

2016–2017 and the 2017–2018 “influenza years” (July 1—June 30) independently.

Defining the influenza and baseline seasons

We defined the influenza season as the 270-day (~9 months) window corresponding to the

maximum count of positive tests during an influenza year. The baseline season was defined as

the remaining 95-days outside of the influenza season. These seasons were defined indepen-

dently for each subregion, influenza type and year to mitigate the potential impacts of differen-

tial timing of the influenza/baseline seasons on the analysis. Given the window size arbitrarily

defines the duration of the influenza and baseline season, we assessed, as a sensitivity analysis,

the consistency of the results for influenza seasons defined as the window corresponding to

the maximum count of positive tests for 180 and 330 days.

A “cross-seasonal ratio” was defined as the number of positive influenza tests during the

influenza season divided by the number of positive tests during the baseline season. Subregions

with fewer than 170 total positive tests during the influenza year were dropped from the analy-

sis. Although aggregating the data to the subregional level increased the number of cases in

each spatial unit, we still had subregions with limited data. As such, we artificially added a sin-

gle positive-test to the baseline season for subregions that had over 170 positive tests, but no

positive tests during the baseline season, to avoid division by zero. As additional support for

our findings, we also calculated the influenza percent-positivity rate, i.e., the percent of tests

that were positive for influenza, for both the epidemic and baseline seasons.

We used multiple Fisher’s exact tests to evaluate if the observed frequencies of influenza

cases during the influenza and baseline seasons in each subregion significantly diverged from

expected frequencies based on the data pooled across all other subregions. We used the Benja-

mini-Hochberg procedure to correct for the multiple tests performed, with the false discovery

rate (Q) set to 0.01 [28]. We then assessed spatial autocorrelation of the cross-seasonal ratios

(log transformed) using global Moran’s I (MI) [29]. Neighbors were defined as subregions

whose centroid fell within a 600 km radius of each subregion. This threshold distance generally

Cross-seasonal influenza in US
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included 4–7 of a subregion’s nearest neighbors. The spatial weights matrix was row standard-

ized and the MI were calculated using the PySAL library [30]. Likewise, we used Fisher’s Exact

tests to evaluate differences in percent-positivity for each subregion as compared against the

data pooled from all other subregions, and corrected for multiple testing using the Benjamini-

Hochberg procedure.

Next, we assessed the relationship between the cross-seasonal ratios and candidate indepen-

dent variables using bivariate mixed-effects maximum likelihood regression. The dependent

variable was the log of cross-seasonal ratios (it was transformed to reduce the weight of outli-

ers). Different models considered each independent variable: seasonal (epidemic or baseline)

weighted-mean specific humidity or temperature (we also included square humidity and tem-

perature terms to assess non-linear relationships), latitude, longitude, vaccination rate, or total

population. We treated each subregion as a random effect to account for the repeated samples

from each unit. After selecting the best fitting bivariate relationships, we further adjusted the

effect estimates by including fixed effect dummy variables to account for year and influenza

type. Finally, a forward stepwise AIC variable selection procedure tested whether the best fit-

ting bivariate relationship could be further improved by the remaining independent variables.

Results

We analyzed the results of 755,170 tests from 7,533 unique sensors administered between July

1, 2016 and June 30, 2018, with 136,793 positive for influenza A and 86,498 positive for influ-

enza B (S1 Fig). The number of subregions analyzed varied between 34–40 by year and influ-

enza type (Tables 1 and 2). In general, the 270-day window with the greatest influenza activity

was from early September through the end of May, with influenza A and B influenza seasons

highly aligned (Fig 1). Accordingly, the summer baseline season was defined as approximately

June-August for a wide majority of subregions in both years and influenza types. Median

cross-seasonal ratios varied by influenza type and year, ranging from 104–426 (Table 1).

The cross-seasonal ratios were spatially autocorrelated for each influenza type and year, and

the autocorrelation tended to be stronger for influenza B than for influenza A (Table 1). The

spatial patterns were characterized by lower cross-seasonal ratios in the southeastern quadrant

of the US and Hawaii (HI), and they were always significantly lower (p<0.0001, Q<0.01) in

Florida (FL) and HI (Table 2, Figs 2 and 3). Outside of the southeastern US and HI, there

tended to be little or no trend in cross-seasonal ratios (Fig 2). Although the general spatial

structure of the cross-seasonal ratio patterns observed was consistent across types and years,

the pattern was weakest during the severe 2017–2018 influenza A season (Table 1, Fig 2 and S1

File). The geographic pattern of the ratios was relatively consistent across all seasonal defini-

tions, with lower ratios in the southeastern US and HI (S2 Fig).

Table 1. Basic summary of the results stratified by year and influenza type. Moran’s I values are similar to correlation coefficients with values typically ranging from -1

to 1 and higher values indicating higher spatial autocorrelation.

Type / Influenza Year # Subregions # Positive

Influenza Season

# Positive

Baseline Season

Median Cross-Seasonal Ratio Moran’s I

Influenza A / 2016–2017 37 57,554 386 237 0.24

(p<0.01)

Influenza A / 2017–2018 40 79,239 547 426 0.19

(p<0.02)

Influenza B / 2016–2017 34 37,521 632 104 0.42 (p<0.001)

Influenza B / 2017–2018 37 48,977 613 277 0.30 (p<0.001)

https://doi.org/10.1371/journal.pone.0212511.t001
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Table 2. Cross-seasonal ratios for each subregion by year and influenza type. For more detailed results see the S1 File.

2016 / 2017 2017 / 2018

Subregion Influenza A Influenza B Influenza A Influenza B

Albany — — 1189 513

Albuquerque 283 — 740 535

Atlanta 132 77 699 133

Austin 51 28 257 131

Birmingham 33 18 264 89

Boston 211 159 536 191

Buffalo 606 393 454 411

Charleston 119 21 338 54

Charlotte 61 34 1410 131

Chicago 178 184 592 753

Cleveland — — 421 —

Columbus 598 413 605 316

Corpus Christi 299 99 437 150

Dallas 148 46 671 232

Denver 543 109 409 231

Des Moines 1730 331 2535 1586

Detroit 780 150 1653 836

Honolulu 16 10 59 33

Houston 105 29 470 212

Indianapolis — — 410 212

Kansas City 400 226 684 375

Knoxville 546 468 655 163

Louisville 114 33 1642 1301

Lubbock 253 41 3299 805

Memphis 122 25 945 2615

Miami — — 58 39

Midland 258 100 1072 527

Milwaukee 289 506 337 257

Minneapolis 388 430 2555 755

Nashville 105 15 632 339

New Orleans 162 44 411 151

New York City 109 — 1639 1627

Oklahoma City 357 101 821 5313

Omaha 237 397 506 1998

Orlando 54 19 158 70

Phoenix 247 257 486 105

Pittsburgh — — 259 —

Raleigh 381 135 1304 771

Richmond 150 105 396 410

San Diego — — 205 169

San Francisco — — 163 —

Seattle — — 442 434

Sioux Falls 239 221 270 —

St Louis 153 — 205 —

Washington DC 1363 122 1098 666

https://doi.org/10.1371/journal.pone.0212511.t002
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We also assessed the percent-positivity rate for each year and influenza type. During the

influenza season positivity rates averaged approximately 14–19% and 7–13% for influenza A

and B, respectively. There did not appear to be a consistent geographic pattern to positivity

rates during the influenza season (S3 Fig). During the summer baseline season influenza posi-

tivity rates were lower, averaging 2–5% and 1–4% for influenza A and B, respectively (Fig 3).

There was a strong geographic trend in positivity rates during the summer baseline season

with rates significantly lower outside of the southeastern US, and a higher number of positive

tests for influenza A and B in the southeastern US (Fig 3).

Mixed-effects models

Bivariate mixed-effects regression analysis showed several variables were significantly associ-

ated with cross-seasonal ratios, including temperature during the influenza season, specific

humidity during the baseline season, latitude and vaccination rate (Table 3). Based on BIC,

however, weighted specific humidity during the influenza season was a stronger fit than the

other variables (AIC only provided marginal support over other models). Adding dummy vari-

ables that accounted for differences in influenza type and year also significantly improved the

fit (Table 4). Adding additional variables to the model containing these dummy variables and

Fig 1. 7-day moving average of positive test results for influenza A and B in each subregion. The y-axis indicates the proportion of annual

positive test results. To highlight differences is seasonal characteristics across regions we display Orlando, FL (red) and Des Moines, IA (blue).

The thick horizontal line at the bottom of the plot shows the distribution of the beginning/end of the influenza season; black areas are within the

influenza season for all locations and lighter shades are a mix between influenza and baseline seasons.

https://doi.org/10.1371/journal.pone.0212511.g001
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specific humidity (during influenza season) did not improve the model. Moran’s I showed that

the residuals from the mixed effects models were not spatially autocorrelated (Moran’s

I = 0.01, p-value = 0.48).

As a sensitivity analysis, we also defined the influenza season as the 180 and 330 days with

maximum influenza counts. For both alternative definitions of the influenza season, the

mixed-effects regression models showed that specific humidity was the strongest predictor of

cross-seasonal ratios (S1 Table and S2 Table). Indeed, the multivariate models for the 180 day

influenza season were similar to the main results (S3 Table). However, when the influenza sea-

son was defined by 330 days, specific humidity during the baseline season–rather than the

influenza season–generated the best bivariate model. Further, based on AIC (but not BIC), the

Fig 2. Maps of cross-seasonal ratios for each subregion by influenza year and type. Plus/minus symbols indicate subregions where the ratio was significantly

below/above expected value (based on Fisher’s exact tests). Dashed areas are subregions with no or inadequate numbers of positive tests.

https://doi.org/10.1371/journal.pone.0212511.g002
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combination of specific humidity during the influenza and baseline seasons provided the best

multivariate model fit, although this was only a marginal improvement relative to other mod-

els with baseline specific humidity and baseline temperature (S4 Table).

Discussion

Here we measured variation in the seasonal distribution of influenza activity across the US by

contrasting influenza activity within and outside of the influenza season, or “cross-seasonal”

influenza activity. The results indicate that seasonal characteristics of influenza vary across the

US, and that this variation is associated with absolute humidity. We suggest that these seasonal

changes may highlight important differences in seasonal influenza dynamics in the US.

Specifically, our analysis suggests that seasonal characteristics of influenza vary across the

US, following climatological gradients (S4 Fig). We analyzed two years of influenza data for

~40 subregions and found that the rate of influenza detection during the influenza season rela-

tive to the summer season to be lower in the southeastern US and HI (Table 2, Fig 2). For

example, during the 2016–2017 influenza season the median cross-seasonal ratio in the south-

eastern US and HI was approximately 80/1 for influenza A, meaning for every positive influ-

enza A test result in the influenza season, there was one positive influenza A test result in the

summer baseline season; whereas it was 280/1 outside of these regions (Table 2). The spatial

Fig 3. Percent-positivity rates during the baseline season for influenza A and B during 2016–2017 and 2017–2018. Plus/minus

symbols indicate subregions where the ratio was significantly below/above expected value (based on Fisher’s exact tests).

Dashed areas are subregions with no or inadequate numbers of positive tests.

https://doi.org/10.1371/journal.pone.0212511.g003
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patterning of cross-seasonal ratios was broadly consistent for influenza A and B in both years

with lower ratios in the southeastern quadrant of the US and HI (Fig 2), however, the ratios

varied by year and influenza type (Table 1).

Cross-seasonal ratios provided significant analytical traction for detecting differences in the

seasonal characteristics of influenza across the US, however, this measure was not well suited

for determining whether the differences observed were associated with processes during the

influenza and/or the summer baseline season. However, our mixed-effects regression models

showed that absolute humidity levels during the influenza season demonstrated a much stron-

ger fit to the data than other variables assessed (Tables 3 and 4), suggesting that the underlying

mechanism causing variation in cross-seasonal ratios is related to humidity during the influ-

enza season. Given the moderate levels of absolute humidity during the influenza season in the

southeastern US and HI (S4 Fig), this is consistent with our understanding of absolute humid-

ity and influenza, i.e., influenza transmission is less efficient in moderate levels of humidity.

This also aligns with the result of a past study showing a significant and negative relationship

between influenza mortality and absolute humidity (during the influenza season) across the

US [31]. Overall, this suggests that the differences in cross-seasonal ratios may be, at least par-

tially, a result of decreases in influenza activity during the influenza season in humid regions.

We also observed increased influenza percent-positivity rates during the summer baseline

season in the southeastern US across both years and subtypes, and there were more positive

test results in the southeastern US during the baseline season than in other regions (Fig 3).

This suggests that influenza activity is greater in the southeastern US and HI during the humid

summer season. Further, when we extended the influenza season to 330 days, specific humidity

during the baseline season (i.e., the summer) provided the best-fit to cross-seasonal ratios,

which is consistent with the results of previous studies showing increased influenza activity in

some subtropical regions when absolute humidity is at high levels [16, 19, 22, 23].

Altogether, our analysis suggests that variability of cross-seasonal ratios may be driven by

spatial variability in the intensity of influenza activity during both the influenza and summer

baseline seasons. A potential mechanistic explanation of our findings is that the moderate-

Table 3. Results of bivariate mixed-effects regression analysis where the log of the cross-seasonal ratio was the

dependent variable. The models were sorted in ascending order by AIC.

Predictors Bivariate

Coefficients

(95% CI)

AIC/BIC

Weighted specific humidity (influenza season) -0.14

(-0.16, -0.11)

145/157

Weighted temperature (influenza season) -0.04

(-.05, -.04)

161/173

Latitude 0.04

(0.03, 0.06)

198/210

Weighted specific humidity (baseline season) -0.05

(-0.07, -0.03)

208/220

Vaccination Rate 0.05

(0.02, 0.08)

213/225

Weighted temperature (baseline season) -0.02

(-0.04, 0.00)

221/233

Longitude 0.00

(-0.01, 0.01)

225/237

Total Population / 105 0.01

(-0.26, 0.28)

225/237

https://doi.org/10.1371/journal.pone.0212511.t003
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humidity levels that characterize the southeastern US and HI during the influenza season may

slightly suppress influenza activity (i.e., lower attack rates), which engenders higher population

level susceptibility in the summer baseline season. This increased population level susceptibil-

ity, perhaps combined with higher humidity levels, allows for increased influenza activity in

the summer. This would be in contrast to drier subregions in the US where influenza may

transmit more efficiently during the winter and decrease the susceptible population to lower

levels thereby limiting significant summer influenza activity. If this is indeed the case, the

increased summer influenza activity and higher levels of susceptibility in the southeastern US

may be related to recent observations that influenza epidemics often begin in the southeastern

US [21, 32] including the 2009 A/H1N1 fall pandemic wave [33]. It is not readily clear how

this dynamic would progress over multiple years, but previous studies have shown that envi-

ronmental factors may have effects on influenza dynamics that emerge in the subsequent years

[34].

A recent study by Dalziel et al. (2018) showed a strong relationship between influenza-like-

illness (ILI), humidity and population density [35]. The study suggests that humidity affects

the intensity of epidemics, but that this effect is diminished in large cities due to increased

transmission efficiency in crowded conditions. Interestingly, we did not find that population

was a strong predictor of cross-seasonal ratios in our analysis which conflicts with their results.

This may indicate that cross-seasonal ratios are not a strong measure of epidemic intensity, or

that this relationships was obscured when we aggregated the data to a subregional scale (this

was necessary to increase the number of observations in each unit). That said, our conclusions

regarding humidity are consistent with their findings, i.e., influenza cases are distributed more

evenly across the year in more humid areas. We were also able to show evidence of substantial

differences between the cross-seasonal patterning of influenza A and B across the US, which

Table 4. Results of select multivariate mixed-effects regression models where the log cross-seasonal ratio was the dependent variable. The models were sorted in

ascending order by AIC. A null model that only includes the dummy variables was included for comparison.

Model 1 Model 2 Model 3 Null Model

Predictors Coefficients

(95% CI)

AIC/BIC Coefficients

(95% CI)

AIC/BIC Coefficients

(95% CI)

AIC/BIC Coefficients

(95% CI)

AIC/BIC

Latitude — 105/126 — 107/131 0.00

(-0.02, 0.02)

107/132 — 146/164

Longitude — — — —

Weighted specific humidity

(influenza season)

-0.10

(-0.13, -0.08)

-0.10

(-0.13, -0.07)

-0.10

(-0.14, -0.06)

—

Weighted specific humidity

(baseline season) — 0.00

(-0.02, 0.02)

— —

Weighted temperature

(influenza season)

— — — —

Weighted temperature

(baseline season)

— — — —

Total Population — — — —

Vaccination Rate — — — —

Influenza A/2016-2017 -0.15

(-0.28, -0.01)

-0.15

(-0.28, -0.01)

-0.15

(-0.29, -0.01)

-0.26

(-0.39, -0.12)

Influenza A/2017-2018 0.14

(0.01, 0.27)

0.14

(0.01, 0.27)

0.14

(0.01, 0.27)

0.21

(0.07, 0.34)

Influenza B/2016-2017 -0.40

(-0.55, -0.26)

-0.40

(-0.55, -0.25)

-0.40

(-0.56, -0.25)

-0.60

(-0.74, -0.46)

Influenza B/2017-2018 0 0 0 0

https://doi.org/10.1371/journal.pone.0212511.t004
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Dalziel et al. were unable to discern because their study used ILI data. Further, our analysis

suggests the possibility that summer humidity may also play a role which Dalziel et al. did not

consider.

We did not have sufficient data in many populations in the western US to include in the

analysis and, thus, we were unable to make any general conclusions about cross-seasonal influ-

enza activity in these populations. As more data become available in future years it will be

interesting to assess cross-seasonal influenza activity in these regions. For example, many areas

in California are characterized by absolute humidity levels during the influenza season that are

commensurate with humidity levels in much of the southeastern US. Other regions such as the

high elevation areas and deserts of the interior western US may also have unusual seasonal

characteristics given their long low-humidity seasons. For instance, the influenza season in

Phoenix, AZ during the 2016–2017 season persisted into June, substantially later than other

subregions.

This study had several significant limitations. First, only two years of data were available

which is problematic for generalizing our findings beyond the years evaluated. However, given

that the data included information about influenza types A and B, we were able to assess pat-

terns across 4 distinct influenza seasons, including the severe 2017–2018 A/H3N2 season, and

the broad consistency of our results provides evidence that the patterns observed are a stable

feature of influenza activity in the US. Another major limitation inherent to this dataset is that

we do not know if protocols and practices of the health care organizations and clinics adminis-

tering tests vary seasonally. We assumed that the probability that a patient with ILI symptoms

was administered an influenza test was time invariant (or temporal variations were relatively

homogeneous across subregions), as differences in these practices could have significant con-

sequences for our findings. That said, although variability of clinical practices are likely present

in the data, these effects cannot easily explain the regional patterns of cross-seasonal influenza

activity observed since the data in each region were generated by numerous clinicians at multi-

ple independent healthcare organizations.

Our analysis shows that cross-seasonal influenza activity varies across the US and that this

variation is spatially structured. We suggest that the variability of cross-seasonal influenza

activity may be the result of decreased influenza activity during the influenza season (~Septem-

ber-May), and increased activity during the summer baseline season (~June-August) in the

southeastern US and Hawaii. We also showed that variability in cross-seasonal influenza activ-

ity is significantly associated with absolute humidity during the influenza season, and we

found some evidence that humidity during the summer may also play a role. The differences

in the seasonal nature of influenza across regions may highlight important differences in influ-

enza dynamics across the US.
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cate subregions where the ratio was significantly below/above expected value (based on Fish-
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demic seasons for influenza A and B during 2016–2017 and 2017–2018. Plus/minus symbols

indicate subregions where the ratio was significantly below/above expected value (based on

Fisher’s exact tests). Dashed areas are subregions with no or inadequate numbers of positive

tests.
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S4 Fig. Subregional humidity. Weighted average and max specific humidity levels by subre-

gions for the epidemic and baseline season for 2016–2017 and 2017–2018.
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S1 Table. Bivariate results for sensitivity analysis (180-days). Results of bivariate mixed-

effects regression analysis where the cross-seasonal ratio was the dependent variable and the

influenza season was defined as the 180 days with the maximum number of cases. The models

were sorted in ascending order by AIC.
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effects regression analysis where the cross-seasonal ratio was the dependent variable and the

influenza season was defined as the 330 days with the maximum number of cases.
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S3 Table. Multivariate results for sensitivity analysis (180-days). Results of select multivari-

ate mixed-effects regression models where the log cross-seasonal ratio was the dependent vari-

able and the influenza season was defined as the 180 days with the maximum number of cases.

The models were sorted in ascending order by AIC. A null model with dummy variables was

included for comparison.
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S4 Table. Multivariate results for sensitivity analysis (330-days). Results of select multivari-
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