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Abstract: The extracellular parasite and causative agent of African sleeping sickness Trypanosoma
brucei (T. brucei) has evolved a number of strategies to avoid immune detection in the host. One
recently described mechanism involves the conversion of host-derived amino acids to aromatic
ketoacids, which are detected at relatively high concentrations in the bloodstream of infected indi-
viduals. These ketoacids have been shown to directly suppress inflammatory responses in murine
immune cells, as well as acting as potent inducers of the stress response enzyme, heme oxygenase 1
(HO-1), which has proven anti-inflammatory properties. The aim of this study was to investigate
the immunomodulatory properties of the T. brucei-derived ketoacids in primary human immune
cells and further examine their potential as a therapy for inflammatory diseases. We report that the
T. brucei-derived ketoacids, indole pyruvate (IP) and hydroxyphenylpyruvate (HPP), induce HO-1
expression through Nrf2 activation in human dendritic cells (DC). They also limit DC maturation
and suppress the production of pro-inflammatory cytokines, which, in turn, leads to a reduced
capacity to differentiate adaptive CD4+ T cells. Furthermore, the ketoacids are capable of modulating
DC cellular metabolism and suppressing the inflammatory profile of cells isolated from patients
with inflammatory bowel disease. This study therefore not only provides further evidence of the
immune-evasion mechanisms employed by T. brucei, but also supports further exploration of this
new class of HO-1 inducers as potential therapeutics for the treatment of inflammatory conditions.

Keywords: heme oxygenase 1; Trypanosoma brucei; inflammatory bowel disease; aromatic ketoacids;
dendritic cells; immunomodulation; anti-inflammatory therapies

1. Introduction

Infection of the mammalian vasculature and central nervous system (CNS) with the
extracellular protozoan parasite Trypanosoma brucei (T. brucei) can lead to fatal human sleep-
ing sickness, also known as African trypanosomiasis. Like most parasites, trypanosomes
are continuously challenged by the host-immune system, however, they have evolved very
effective evasion strategies in order to maintain infection and prolong the host’s survival [1].
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An infection with T. brucei is accompanied by the excretion of high levels of ketoacids into
the host’s bloodstream [2,3], a phenomenon that was, until recently, largely unexplained.
The ketoacids are derived from the conversion of aromatic amino acids (tryptophan, ty-
rosine, and phenylalanine) to indole pyruvate (IP), hydroxyphenylpyruvate (HPP), and
phenyl pyruvate (PP), through the action of a cytoplasmic aspartate aminotransferase
(TbcASAT), which is expressed by the parasite.

In recent years, we, and others, have demonstrated that these molecules have po-
tent immunomodulatory properties, which likely contribute to the suppression of host
immune responses, but that may also be exploited for potential therapeutic benefit [4–8].
For example, IP and HPP are potent inducers of the immunosuppressive enzyme heme
oxygenase-1 (HO-1) in murine glia and macrophages [5]. This occurs in a nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) dependent manner and leads to a reduction in LPS-
induced pro-inflammatory cytokines and innate immune cell maturation. Indeed, HO-1
has well established anti-inflammatory properties and is induced by a vast number of
stimuli during oxidative stress and inflammation. It catalyses the conversion of heme to
biliverdin with the liberation of free iron and carbon monoxide (CO). Biliverdin is then
converted to bilirubin by biliverdin reductase [9,10] and both biliverdin and bilirubin are
considered powerful antioxidants, while many of the anti-inflammatory effects of HO-1
are attributed to CO. The potent anti-inflammatory properties of HO-1 are underlined by
rare HO-deficiencies in humans and HO-1 knockout mice, which, along with the expected
sensitivity to oxidative stress, show high levels of chronic inflammation [11–13]. Unsurpris-
ingly, induction of HO-1 with known and novel HO-1 inducers is now being explored as
a therapy for a number of autoimmune and inflammatory diseases and we have recently
reviewed this in detail elsewhere [14].

In addition to HO-1 induction, T. brucei-derived ketoacids are also capable of inhibiting
HIF-1α–induced pro-IL-1β expression, as well as prostaglandin production, an effect which
was shown to be dependent on the activation of the aryl hydrocarbon receptor [4,5,8]. The
immunomodulatory effects of IP and HPP have also been confirmed in animal models of
disease. In a murine model of skin damage caused by exposure to ultraviolet B radiation,
administration of IP resulted in a reduction in damage lesions and expression of the
pro-inflammatory cytokines, IL-1β and IL-6 [6]. Furthermore, IP administration reduced
disease severity in the DSS colitis model, and this was accompanied by a decrease in the
expression of pro-inflammatory cytokines IL-12, TNF, IFNγ, and IL-1β, and an increase in
the expression of the anti-inflammatory cytokine IL-10 [7]. A reduction in Th1 cells, as well
as a reduced capacity for dendritic cells (DC) to activate T cells, was also observed [7].

Despite the recent interest in these ketoacids as immunomodulators, to date, they have
been primarily studied in murine immune cells with very little evidence to support their
mechanism of action in human immune cells. In this study, we investigate the immunomodu-
latory properties of the T. brucei-derived ketoacids, IP and HPP, in primary human immune
cells and further examine their potential as a therapy for inflammatory diseases.

2. Materials and Methods
2.1. Reagents and Chemicals

4-hydroxyphenylpyruvic acid (HPP) and indole-3-pyruvic acid (IP) were purchased
from Merck (Darmstadt, Germany) and dissolved in RPMI to a final concentration of 2 mM
before use. Ultrapure lipopolysaccharide (LPS) from E. Coli O111:B4 was purchased from
Enzo Life Sciences (Bruxelles, Belgium). Complete RPMI or complete IMDM were prepared
by supplementing with 10% foetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL
penicillin, and 100 µg/mL streptomycin, which were all purchased from Merck (Darmstadt,
Germany). Lymphoprep is manufactured by Axis-Shield poC (Dundee, Scotland). GM-
CSF and IL-4 were purchased from Miltenyi Biotec (Bergisch Gladbach, Germany). The
protease inhibitor cocktail and High-Pure RNA Isolation Kit were purchased from Roche
(Basel, Switzerland). The western blot antibodies for Nrf2, HK2, p-AMPK, t-AMPK, p62
and LC3 were all purchased from Cell Signalling Technology (Danvers, MA, USA), while
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the antibody for HO-1 was purchased from Enzo Life Sciences (Bruxelles, Belgium), and
the β-actin antibody and secondary anti-rabbit were purchased from Merck (Darmstadt,
Germany). The Fixable Viability Dye, antibodies for CD40, CD80, CD83, and CD86, and
Annexin V & PI staining kit were all purchased from eBioscience (San Diego, CA, USA). The
DQ-Ovalbumin, CD3 and IL-17 flow antibodies, FIX & PERM™ Cell Permeabilization Kit,
anti-CD3, and all ELISA kits used were purchased from Invitrogen (Waltham, MA, USA).
The High-Capacity cDNA reverse transcription kit was purchased from Applied Biosystems
(Beverly, MA, USA) and the iTaq Universal SYBR Green mastermix from Bio-Rad (Hercules,
CA, USA). The MagniSort Human CD14 Positive Selection kit and MagniSort Human CD4
T cell Positive Selection kit were purchased from Thermo Fisher Scientific (Waltham, MA,
USA). The Zombie NIRTM Fixable Viability kit was purchased from BioLegend (San Diego,
CA, USA). The antibodies for CD8, ki67 and IFNγ were purchased from BD biosciences
(East Rutherford, NJ, USA). The Complete XF assay medium was purchased from Agilent
(Santa Clara, CA, USA). The Corning™ Cell-Tak Cell and Tissue Adhesive was purchased
from Fisher Scientific (Waltham, MA, USA). Oligomycin was purchased from Cayman
Chemicals (Ann Arbor, MI, USA) and carbonyl cyanide-p trifluoromethoxyphenylhydra-
zone (FCCP) from Santa Cruz biotechnology (Dallas, TX, USA). The HEK-BlueTM hTLR4
assay system was purchased from InvivoGen (San Diego, CA, USA). Dulbecco’s phosphate
buffered saline (PBS), enhanced chemiluminescent substrate, phosphatase inhibitor cock-
tail, Antioxidant assay kit, Phorbol 12-myristate 13-acetate (PMA), ionomycin, brefeldin
A, rotenone, antimycin A, and 2-deoxy-D-glucose (2-DG) were all purchased from Merck
(Darmstadt, Germany).

2.2. Human Blood Samples

The Irish Blood Transfusion Service (IBTS) at St. James’s Hospital in Dublin supplied
leukocyte-enriched buffy coats for these studies, from donors who provided informed
written consent. Ethical approval was obtained from the research ethics committee of
the School of Biochemistry and Immunology at Trinity College Dublin, and all experi-
ments were carried out in accordance with the Declaration of Helsinki. Peripheral blood
mononuclear cells (PBMC) were isolated by a density gradient centrifugation. The cells
were cultured in complete RPMI medium and maintained in humidified incubators at
37 ◦C with 5% CO2.

2.3. Dendritic Cell Culture

The MagniSort Human CD14 Positive Selection kit was used according to the manu-
facturer’s protocol to positively select for CD14+ monocytes from PBMC. CD14+ monocytes
were then cultured at 1 × 106 cells/mL in complete RPMI and supplemented with GM-CSF
(50 ng/mL) and IL-4 (40 ng/mL) to generate monocyte-derived DC. On day three of culture,
half of the media was replaced with fresh media supplemented with cytokines at the same
starting concentration. On day six, non-adherent and loosely adherent cells were gently
removed for use. The purity of CD14loDC-SIGN+ DC was confirmed by flow cytometry
and was routinely >95%. DC were cultured at 1 × 106 cells/mL for all further assays.

2.4. Western Blot Experiments

For detection of HO-1 expression, DC were cultured in the presence of HPP or IP
(250–1000 µM) for 3, 6, and 24 h, or treated with the Nrf2 inhibitor ML385 (10 µM) for
1 h prior to treatment with HPP or IP at 1000 µM for 24 h. Cell lysates were prepared
by washing cells in PBS prior to lysis in RIPA buffer (Tris 50 mM; NaCl 150 mM; SDS
0.1%; Na.Deoxycholate 0.5%; Triton X 100). For detection of Nrf2 expression, DC were
cultured in the presence of HPP (1000 µM) or IP (1000 µM) for 6 or 24 h, then washed in
PBS and lysed in Laemmli loading buffer. For detection of hexokinase 2 (HK2) expression,
DC were cultured in the presence of HPP or IP at 1000 µM for 6 h prior to stimulation
with LPS (100 ng/mL) for 12 h, then washed in PBS and lysed in Laemmli loading buffer.
For detection of p-AMPK and t-AMPK expression, DC were cultured in the presence of
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HPP or IP (both 1000 µM) for 15 min, then washed in PBS and lysed in Laemmli loading
buffer. For the detection of p62 and LC3, DC were cultured in the presence of HPP or IP
(both 1000 µM) for 6, 12, or 24 h, then washed in PBS, lysed in Laemmli loading buffer,
and sonicated. All samples were lysed in the presence of a protease inhibitor cocktail
and phosphatase inhibitor cocktail set. Samples were electrophoresed and transferred
to PVDF. The membranes were incubated overnight at 4 ◦C with monoclonal antibodies
specific for HO-1, Nrf2, HK2, p-AMPK, t-AMPK, p62, and LC3. The membranes were
washed in TBS–Tween prior to incubation with an anti-rabbit streptavidin-conjugated
secondary antibody for 2 h at room temperature. A Bio-Rad ChemiDoc MP system was
used for developing the blots. The membranes were subsequently re-probed with a loading
control, β-actin, in order to normalise the protein of interest to the loading control for
densitometric analysis.

2.5. Antioxidant Assay

DC were cultured in the presence of IP or HPP (both 1000 µM) for 1 h. The cells were
lysed by sonication in ice-cold PBS and centrifuged at 14,000 rpm for 10 min to pellet any
debris. The total antioxidant capacity of the cells was analysed using an Antioxidant assay
kit according to the manufacturer’s protocol. The assay measures the reduction of Cu2+

by an antioxidant to Cu+, which can subsequently form a coloured complex with a dye
reagent in the kit. The absorbances of the samples were read at 570 nm and compared to the
absorbances of a range of known concentrations of Trolox standards. The data is displayed
as the total antioxidant capacity of the cells expressed as an equivalent concentration of
Trolox (µM).

2.6. DC Flow Cytometry Experiments

DC were collected upon completion of the experiment, washed in PBS, and stained
accordingly. DC were stained using an Annexin V & PI staining kit according to the manu-
facturer’s protocol for viability assays. For the maturation marker assay, DC were initially
stained with Fixable Viability Dye, for dead cells, and subsequently with fluorochrome-
conjugated antibodies for CD40, CD80, CD83, and CD86. In order to measure the phago-
cytic capacity, DC were incubated with RPMI-containing DQ-Ovalbumin (500 ng/mL) for
20 min at 37 ◦C, before transferring to 4 ◦C for a further 10 min incubation to stop the
uptake of the model antigen. DC were then washed in PBS and immediately acquired.
All of the above experiments were acquired on a BD FACS Canto II, and the analysis was
performed using FlowJo v.10 software (Tree Star Inc., Ashland, OR, USA).

2.7. Quantitative Real-Time PCR

DC were cultured in the presence of HPP or IP (both 1000 µM) for 6 or 24 h. Detection
of NAD(P)H dehydrogenase (quinone 1) (NQO1, accession number P15559) expression and
glutathione reductase (GSR, accession number P00390) expression were measured using
quantitative real-time PCR. RNA was first extracted using the High-Pure RNA Isolation
Kit, followed by cDNA synthesis using the High-Capacity cDNA reverse transcription
kit. iTaq Universal SYBR Green mastermix was used in the reaction along with relevant
primers—the sequences are listed in Table 1. A Bio-Rad CFX96 Real-Time System was used
to carry out the reaction. mRNA expression levels for genes of interest were quantified and
normalized to the housekeeping (β-actin) mRNA levels.

Table 1. Primer sequences. Table containing the forward and reverse primer sequences for NQO1,
GSR, and β-actin.

Gene Forward Primer Reverse Primer

NQO1 5′ TGAAGAAGAAAGGATGGGAG 3′ 5′ TTTACCTGTGATGTCCTTTC 3′

GSR 5′ GACCTATTCAACGAGCTTTAC 3′ 5′ CAACCACCTTTTCTTCCTTG 3′

β-actin 5′ GGACTTCGAGCAAGAGATGG 3′ 5′ AGCACTGTGTTGGCGTACAG 3′
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2.8. DC ELISA Experiments

For detection of cytokines, DC were cultured in the presence of HPP or IP
(500–1000 µM) for 6 h prior to stimulation with LPS (100 ng/mL) for 24 h. Concentrations
of IL-12p70, IL-23, TNF, IL-6, and IL-10 were quantified from supernatants by ELISA as per
the manufacturers’ protocols.

2.9. DC-CD4+ T Cell Co-Cultures

The MagniSort Human CD4 T cell Positive Selection kit was used according to the
manufacturer’s protocol to isolate CD4+ T cells from PBMC. CD4+ T cells were co-cultured
with allogeneic DC that had been pre-treated with IP or HPP and stimulated with LPS
as before. The cells were co-cultured at a ratio of 10:1 T cells to DC for five days with no
ketoacid present. The supernatants were removed for analysis of IL-10 by ELISA prior to
restimulation of the cells in complete RPMI in the presence of 50 ng/mL PMA, 500 ng/mL
ionomycin, and 5 µg/mL brefeldin A for 4 h. The cells were washed in PBS and stained for
viability (Zombie NIRTM Fixable Viability kit) for 15 min at room temperature. The cells
were then washed again in PBS and stained with fluorochrome-conjugated antibodies for
surface markers CD3 and CD8 for 15 min at room temperature. The cells were then washed
and fixed (FIX & PERM™ Cell Permeabilization Kit) for 15 min at room temperature.
Finally, the cells were washed and stained for intracellular markers Ki67 and IFNγ in
permeabilization buffer for 15 min at room temperature. A BD LSRFortessa flow cytometer
was used to acquire samples, and analysis was performed using FlowJo v.10 software.

2.10. Two-Photon Fluorescence Lifetime Imaging Microscopy (FLIM)

DC were cultured in the presence of HPP (1000 µM) for 6 h prior to stimulation with
LPS (100 ng/mL) for 12 h. Two-photon excited NAD(P)H- Fluorescence Lifetime Imaging
Microscopy (FLIM) was used to measure the levels of free and protein-bound NADH
within these cells, and was performed on a custom multiphoton system (further details
regarding experimental setup can be found at the following [15,16]). At least three images
for each model were acquired. Afterwards, regions of interest (ROI) were selected, and the
NAD(P)H fluorescence decay was analysed.

For the NAD(P)H fluorescence decay analysis, an overall decay curve was generated
by the contribution of all pixels in the ROI area. Afterwards, it was fitted with a double
exponential decay curve (Equation (1)):

I(t) = α1e−
t

τ1 + α2e−
t

τ2 + c (1)

I(t) represents the fluorescence intensity at time (t) after laser excitation. α1 and
α2 represent the fraction of the overall signal comprised of a short and long lifetime
component, respectively. τ1 and τ2 are the long and short lifetime components, respectively.
C corresponds to background light. X2 is calculated to evaluate the goodness of multi-
exponential fit to the raw fluorescence decay data—the lowest χ2 values were considered
in this study.

For NAD(P)H, a two-component fit was used to differentiate between the free (τ1)
and protein-bound (τ2) NAD(P)H. The average lifetime (τavg) of NAD(P)H for each pixel
is calculated by a weighted average of both the free and bound lifetime contributions
(Equation (2)):

τavg =
(α1 × τ1) + (α2 × τ2)

(α1 + α2)
(2)

2.11. Metabolic Profiling Using Seahorse Analysis

DC were cultured in the presence of IP or HPP (both 1000 µM) for 6 h prior to
stimulation with LPS (100 ng/mL) for 12 h. The cell culture medium was replaced with
complete XF assay medium (pH of 7.4, supplemented with 10 mM glucose, 1 mM sodium
pyruvate, 2 mM L-glutamine) and DC were then transferred at a density of 2 × 105
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cells/well to a Seahorse 96-well microplate, which was coated with Corning™ Cell-Tak Cell
and Tissue Adhesive and incubated in a non-CO2 incubator. Blank wells were prepared
containing XF assay medium only to subtract the background oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) during analysis. Oligomycin (1 mM),
FCCP (1 mM), rotenone (500 nM), antimycin A (500 nM), and 2-DG (25 mM) were prepared
in XF assay medium. Inhibitors were loaded into the appropriate injection ports on the
cartridge plate and incubated for 10 min in a non-CO2 incubator at 37 ◦C. Oligomycin,
FCCP, rotenone and antimycin A, and 2-DG were sequentially injected while the OCR and
ECAR readings were simultaneously measured. Wave software (Agilent Technologies,
Santa Clara, CA, USA) was used to analyse the results. The rates of basal glycolysis,
max glycolysis, glycolytic reserve, basal respiration, max respiration, and respiratory
reserve were calculated as detailed in the manufacturer’s protocol and as supplied in
Supplementary Table S1.

2.12. IBD Patient PBMC Experiments

This study received ethical approval from St Vincent’s University Hospital Ethics and
Medical Research Committee to take blood samples from consenting patients (N = 14)
attending a specialist outpatient clinic for inflammatory bowel disease (IBD). PBMC were
isolated as above and frozen at −80 ◦C. PBMC were thawed and treated with either IP or
HPP (250–1000 µM) for 6 h prior to stimulation with anti-CD3 (1 µg/mL) for 12 h. The
media was then removed and replaced with fresh media to circumvent issues that occur as
the compounds become fluorescent after incubations over long periods of time, and cells
were maintained in the presence of anti-CD3 for a further four days. The supernatants were
then removed for analysis of IL-10, IFNγ, and IL-17A by ELISA. PBMC were restimulated
in complete IMDM medium in the presence of 50 ng/mL PMA, 500 ng/mL ionomycin,
and 5 µg/mL brefeldin A for 4 h. The cells were washed in PBS and stained for viability
(Zombie NIRTM Fixable Viability kit) for 15 min at room temperature. The cells were then
washed in PBS and stained with fluorochrome-conjugated antibodies for surface markers
CD3 and CD8 for 15 min at room temperature. After this, the cells were then washed
and fixed (FIX & PERM™ Cell Permeabilization Kit) for 15 min at room temperature.
Finally, the cells were washed and stained for intracellular markers Ki67, IFNγ and IL-17 in
permeabilization buffer for 15 min at room temperature. The cells were then washed and
acquired on a BD LSRFortessa flow cytometer. The analysis was performed with FlowJo
v.10. All antibodies used in this experiment were chosen carefully to avoid channels which
still had some fluorescence issues, despite the steps taken to overcome this.

2.13. Assessment of Endotoxin Contamination

The HEK-BlueTM hTLR4 assay system was used to test IP and HPP for LPS contam-
ination. HEK-blue cells (5 × 105 cells/mL) expressing TLR4 were stimulated with LPS
(0.1–100 ng/mL; positive control), or HPP or IP (both 1000 µM) for 24 h. Supernatants from
the HEK-blue cells were incubated with HEK-blue detection medium, to measure SEAP
expression, for 30 min at 37 ◦C and absorbance was read at 650 nm.

2.14. Statistical Analysis

Prism 9 software (GraphPad Software Inc., San Diego, CA, USA) was used to perform
the statistical analysis on all datasets. A repeated measures one-way ANOVA, with either
Dunnett’s or Šídák’s post hoc test, as appropriate, was used for analysis of three or more
datasets. A Paired Student’s t-test was used for the analysis of only two datasets. The
analysis of datasets with more than one variable were performed using a two-way ANOVA
with Šídák’s multiple comparisons post hoc test. Asterisks are used in the figures to denote
p values < 0.05, which were considered significant.
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3. Results
3.1. HPP and IP Upregulate HO-1 in Primary Human DC

We have previously shown that HPP and IP are capable of inducing HO-1, as well as
having immunomodulatory effects, in murine macrophages and glia [5]. Therefore, we
sought to investigate if T. brucei-derived ketoacids have similar effects in primary human
DC, as these are crucial immune cells linking the innate and adaptive immune system.
DC were treated with HPP or IP (500–1000 µM) for 24 h (these concentrations are similar
to the levels of aromatic ketoacids in circulation close to the peak of parasitaemia during
trypanosomiasis and have been used in previously published studies [4,5,8,17]). Both HPP
and IP were found to be non-toxic to human DC, having no effect on cell viability at these
concentrations, and were confirmed to be endotoxin free (Supplementary Figures S1 and
S2). HO-1 expression in HPP- and IP-treated DC was next examined by western blot at
a range of timepoints (3, 6, and 24 h) and concentrations (250–1000 µM). Immature DC
constitutively expressed HO-1 in line with previous reports [18–20], however, treatment
with either HPP or IP resulted in a trend towards increased expression of HO-1 at all
concentrations tested with a significance observed at 1000 µM in each case (Figure 1A). At
this concentration, significant upregulation of HO-1 occurred within 3 h of HPP treatment,
while significant induction of HO-1 occurred following 24 h treatment with IP (Figure 1B).
Both IP and HPP also increased the total antioxidant capacity of DC and this was observed
within 1 h of incubation with either compound (Figure 1C). The ketoacids also appear to
be more potent antioxidants than the established HO-1 inducers, carnosol and curcumin
(Figure 1C). These results indicate that IP and HPP rapidly enhance the total antioxidant
capacity of human DC, while also upregulating the stress-response protein, HO-1.

3.2. HPP and IP Induce HO-1 through Nrf2 Activation

We have previously reported that HPP and IP activate Nrf2 in murine immune cells,
and this is likely the mechanism through which they upregulate HO-1 [5]. We therefore
sought to investigate if they have a similar mechanism of action in human DC. To test this,
DC were treated with HPP or IP (1000 µM) for 6 and 24 h, and Nrf2 protein expression
was measured by western blot. An increase in Nrf2 protein was observed in HPP-treated
DC at 6 h (Figure 2A), while IP-treated DC showed increased Nrf2 protein expression
(and therefore accumulation) at 24 h (Figure 2A). Both HPP and IP were also found to
drive mRNA expression of the additional Nrf2-regulated genes, NQO1 and GSR, further
confirming their ability to activate this transcription factor (Figure 2B). Finally, treatment of
DC with the Nrf2 inhibitor ML385 (10 µM, a non-toxic dose, Supplementary Figure S3) for
1 h, prior to treatment with either HPP or IP (1000 µM) for 24 h, resulted in a significant
decrease in the expression of HO-1 (Figure 2C), further confirming that ketoacid driven
HO-1 expression is regulated by Nrf2.
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Figure 1. Hydroxyphenylpyruvate (HPP) and indole pyruvate (IP) upregulate HO-1 in primary
human dendritic cells (DC). (A) Primary human DC were left untreated (UT) or incubated with HPP
or IP (250–1000 µM) for 24 h. HO-1 expression was detected by western blot. Densitometry results
shown are mean ± SEM of the relative expression of HO-1: β-actin from five healthy donors. (B) DC
were left UT or incubated with HPP or IP at 1000 µM for 3, 6, or 24 h. HO-1 expression was detected
by western blot. Densitometry results shown are mean ± SEM of the relative expression of HO-1:
β-actin from seven healthy donors. (C) Primary human DC were left UT or incubated with HPP or
IP at 1000 µM, or carnosol or curcumin (both 10 µM), for 1 h. Total antioxidant capacity of the cells
was determined and expressed as an equivalent concentration of Trolox (µM). Pooled data showing
the mean (±SEM) from five healthy donors. Repeated measures one-way ANOVA, with Dunnett’s
multiple comparisons post hoc test, was used to determine statistical significance by comparing
means of treatment groups against the mean of the control group (** p < 0.01, * p < 0.05). ImageLab
(Bio-Rad) software was used to perform densitometric analysis.
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Figure 2. HPP and IP induce HO-1 through Nrf2 activation. (A) Primary human DC were left
untreated (UT) or incubated with HPP or IP at 1000 µM for 6 or 24 h. Nrf2 expression was measured
by western blot. Densitometry results shown are mean ± SEM of the relative expression of Nrf2:
β-actin from five healthy donors. (B) Primary human DC were left UT or incubated with HPP or
IP at 1000 µM for 24 h. mRNA expression of the Nrf2-dependent genes, NQO-1 and GSR, were
measured by RT-PCR. Results show mean (±SEM) for six healthy donors. (C) Primary human DC
were pre-treated either with or without the Nrf2 inhibitor ML385 (10 µM) for 1 h, prior to incubation
with HPP or IP at 1000 µM for 24 h. HO-1 expression was measured by western blot. Densitometry
results shown are mean ± SEM of the relative expression of HO-1: β-actin from five healthy donors.
(A) One-way ANOVA, with Dunnett’s multiple comparisons post hoc test, was used to determine
statistical significance. (B) Two-way ANOVA, with Šídák’s multiple comparisons post hoc test, was
used to determine statistical significance. (C) One-way ANOVA, with Šídák’s multiple comparisons
post hoc test, was used to determine statistical significance (**** p < 0.0001, *** p < 0.001, ** p < 0.01,
* p < 0.05). ImageLab (Bio-Rad) software was used to perform densitometric analysis.
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3.3. HPP and IP Reduce the Production of Pro-Inflammatory Cytokines in LPS-Stimulated
Human DC

We recently demonstrated that HPP and IP are capable of reducing the production
of pro-inflammatory cytokines in murine glia and macrophages [5]. We next sought to
determine if they have similar immune modulating activity in human DC. To test this,
DC were treated with either HPP or IP (500–1000 µM) for 6 h prior to stimulation with
LPS (100 ng/mL) for 24 h. Cytokine concentrations were measured in cell supernatants
by ELISA. Both HPP and IP treatment dose-dependently reduced production of the pro-
inflammatory cytokines TNF, IL-6, IL-12p70, and IL-23, and this effect was most potent
at the 1000 µM concentration (Figure 3A–H). As well as driving the production of pro-
inflammatory cytokines, LPS treatment over time is usually accompanied by production
of the anti-inflammatory cytokine IL-10 as a means of regulating inflammatory responses.
Interestingly, IP treatment resulted in a significant enhancement of IL-10, while HPP
treatment showed a similar, albeit non-significant, trend (Figure 3I,J). These results suggest
that both IP and HPP are capable of reducing the production of pro-inflammatory cytokines
in LPS-stimulated DC, whilst also promoting a more anti-inflammatory phenotype.

3.4. HPP Treatment Inhibits the Maturation of LPS-Stimulated Human DC, Resulting in Reduced
Activation of CD4+ T Cells

In order to determine if the ketoacids impact DC maturation (and in turn T cell
activation), human DC were treated with HPP (500–1000 µM) for 6 h prior to stimulation
with LPS (100 ng/mL) for 24 h. Surface expression of maturation and co-stimulatory
markers (CD40, CD80, CD83 and CD86) were measured by flow cytometry (due to the
fluorescent nature of IP it is unsuitable for this flow cytometric analysis and hence was
not included in these experiments). As expected, the expression of co-stimulatory markers
was increased in LPS-stimulated DC. The average Median Fluorescent Intensity (MFI) of
these cells was set to 100% and used as a control for comparison to the HPP-treated cells.
There was a significant decrease in MFI at both HPP concentrations when compared to the
LPS-stimulated control (Figure 4A). The phagocytic capacity of DC was next measured
upon incubation of DC with FITC-conjugated DQ-Ovalbumin (DQ-Ova; 500 ng/mL) and
uptake of the model antigen was assessed by flow cytometry. Compared to untreated
cells, the ability of LPS-treated DC to phagocytose DQ-OVA was significantly impaired,
signifying a heightened maturation status, however, pre-incubation with HPP prior to LPS
treatment attenuated this effect and maintained the DC in an immature state (Figure 4B).
Finally, and in order to determine if the reduced DC activation status that occurs in the
presence of HPP has an impact on T cell activation, DC were treated with HPP (1000 µM)
for 6 h prior to stimulation with LPS (100 ng/mL) for 24 h. The cells were then incubated
with CD4+ T cells at a ratio of 10:1 (CD4+ T cells:DC) for five days. The supernatants were
removed for cytokine analysis by ELISA and cells were stimulated with PMA (50 ng/mL),
ionomycin (500 ng/mL) and brefeldin A (5 µg/mL) for 4 h. Expression of ki67, which is a
measure of cell proliferation, was assessed by flow cytometry in CD3+CD8− cells (gating
strategy shown in Supplementary Figure S4), as was production of the pathogenic Th1
cytokine, IFNγ. T cells co-cultured with HPP-treated, LPS-stimulated DC showed a trend
towards reduced ki67 and IFNγ expression when compared to T cells co-cultured with
LPS-stimulated DC alone (Figure 4C). Interestingly, the T cells exhibited a trend towards
enhanced production of the anti-inflammatory cytokine IL-10, when compared to T cells
co-cultured with LPS-stimulated DC alone (Figure 4D). Overall, these results indicate that
HPP reduces the maturation of innate DC, which in turn impacts adaptive T cell responses
and may skew them towards a more anti-inflammatory phenotype.
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Figure 3. HPP and IP reduce the production of pro-inflammatory cytokines in LPS-stimulated human
DC. Primary human DC were left untreated (UT) or incubated with IP (A,C,E,G,I) or HPP (B,D,F,H,J)
(500–1000 µM) for 6 h prior to stimulation with LPS (100 ng/mL) for 24 h. Cell supernatants were
assessed for TNF, IL-6, IL-23, IL-12p70, and IL-10 secretion by ELISA. Pooled data depict mean
(±SEM) cytokine concentrations for four to seven healthy donors (means of three technical replicates
per donor). Repeated measures one-way ANOVA, with Dunnett’s multiple comparisons post hoc
test, was used to determine statistical significance, by comparing means of treatment groups against
the mean of the control group (** p < 0.01, * p < 0.05).
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Figure 4. HPP treatment reduces DC maturation and subsequent CD4+ T cell activation. Primary
human DC were left untreated (UT) or incubated with HPP (500–1000 µM) for 6 h prior to stimulation
with LPS (100 ng/mL) for 24 h. (A) Cells were stained for CD40, CD80, CD86, and CD83 and analysed
by flow cytometry. Histograms showing the expression of maturation markers for HPP-treated,
LPS-stimulated DC compared to unstimulated cells or LPS stimulation alone from one representative
experiment. Pooled data showing the mean (±SEM) MFI for each marker expressed as a percentage
of control (LPS stimulation alone) from six to seven healthy donors. (B) DC were incubated with
FITC-conjugated DQ-Ovalbumin (DQ-Ova; 500 ng/mL) for 20 min and were immediately acquired
by flow cytometry. Dot plots depicting DQ-Ova uptake from one representative experiment. Pooled
data showing the mean (±SEM) DQ-Ova uptake as a percentage of total cells from nine healthy
donors. (C) DC were pre-treated with HPP prior to stimulation with LPS, and subsequently cultured
with CD4+ T cells for five days. Dot plots depicting ki67 expression (as a measure of proliferation)
and IFNγ expression from one representative experiment. Pooled data showing the mean (±SEM)
of ki67+ and IFNγ+ cells as a percentage of CD3+CD8− cells from four healthy donors. (D) Cell
supernatants were assessed for IL-10 secretion by ELISA. Pooled data depict mean (±SEM) cytokine
concentrations for four healthy donors (means of three technical replicates per donor). Repeated mea-
sures one-way ANOVA, with Dunnett’s multiple comparisons post hoc test, was used to determine
statistical significance by comparing means of treatment groups against the mean of the control group
(*** p < 0.001, ** p < 0.01, * p < 0.05).

3.5. HPP and IP Modulate Metabolic Reprogramming in LPS-Stimulated Human DC

Metabolic reprogramming has been observed in immune cells and numerous recent
studies have demonstrated that their activation/maturation is accompanied by a metabolic
switch favouring glycolysis over oxidative phosphorylation [21]. In order to determine if T.
brucei–derived ketoacids have an effect on immune cell metabolism, DC were pre-treated
with IP or HPP (1000 µM) for 6 h prior to stimulation with LPS (100 ng/mL) for 12 h. These
cells were then analysed in a Seahorse XFe96 analyser following the addition of oligomycin
(1 mM), an inhibitor of mitochondrial complex V, FCCP (1 mM), a mitochondrial uncoupler,
rotenone (500 nM) and antimycin A (500 nM), which are inhibitors of the mitochondrial
complexes I & III, respectively, and 2-DG (25 mM), an inhibitor of glycolysis. The metabolic
activity of the cells was then determined by measuring the ECAR, which is a measure
of glycolysis, and the OCR, which is a measure of oxidative phosphorylation. IP- and
HPP-treated DC showed no change in basal glycolysis when compared to LPS stimulation
alone (Figure 5B). LPS-treated cells showed a trend towards increased max glycolysis, and
this was significantly decreased in the presence of either HPP or IP (Figure 5C). Both IP and
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HPP were also capable of significantly decreasing the glycolytic reserve in LPS-stimulated
cells (Figure 5C). There were no significant changes in the basal respiration (Figure 5F),
max respiration (Figure 5G), and respiratory reserve (Figure 5H) in IP- or HPP-treated
DC when compared to LPS stimulation alone, suggesting that they have no impact on
oxidative phosphorylation.
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Figure 5. HPP and IP modulate metabolic reprogramming in LPS-stimulated DC. Primary human DC
were pre-treated with either HPP or IP at 1000 µM for 6 h before stimulation with LPS (100 ng/mL)
for 12 h. The extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) were
measured using a Seahorse XFe96 analyser before and after the injections of oligomycin (1 mM), FCCP
(1 mM), antimycin A (500 nM) and rotenone (500 nM), and 2-DG (25 mM). Bioenergetic profiles from
one representative experiment depicting (A) ECAR and (E) OCR measurements over time. Pooled
data (N = 6) depicts the calculated mean (±SEM) of (B) basal glycolytic rate, (C) max glycolytic rate,
(D) glycolytic reserve, (F) basal respiratory rate, (G) max respiratory rate, and (H) respiratory reserve
for each treatment group. (I) HK2 expression was measured by western blot. Densitometry results
shown are mean ± SEM of the relative expression of HK2: β-actin from five to seven healthy donors.
(J) FLIM images of DC measuring intracellular NADH. Pooled data (N = 4) depicts the mean (±SEM)
of the ratio of bound:free NADH, represented by the τ average. Repeated measures one-way ANOVA,
with Dunnett’s multiple comparisons post hoc test, was used to determine statistical significance by
comparing means of treatment groups against the mean of the control group (** p < 0.01, * p < 0.05).
ImageLab (Bio-Rad) software was used to perform densitometric analysis.

Expression of HK2, the rate limiting enzyme in the glycolytic pathway, was next
assessed by western blotting. HK2 is known to be induced by inflammatory stimuli and, as
expected, LPS stimulation induced the upregulation of HK2 in DC. However, there was re-
duced expression of the enzyme in IP-treated DC, and a trend towards reduced expression
(albeit not significant) in HPP-treated DC when compared to LPS-stimulated DC (Figure 5I).
The effects of HPP treatment on the metabolism of DC was further investigated using FLIM,
which measures the intracellular levels of NADH. Bound NADH, which is associated with
oxidative phosphorylation, or free NADH, which is associated with glycolysis, can be
distinguished based on their distinct lifetimes upon fluorescence excitation. The ratio of
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bound to free NADH can be used to measure whether a cell is favouring the engagement of
glycolysis (a decrease in the ratio due to increased free NADH) or oxidative phosphoryla-
tion (an increase in the ratio due to increased bound NADH). Similar to the Seahorse results
reported above, LPS-stimulated DC ramped up glycolysis, as represented by a decrease in
the τ average compared to untreated DC (Figure 5J). Cells pre-treated with HPP exhibited
a significant increase in the τ average compared to the LPS-stimulated controls, indicating
they are favouring oxidative phosphorylation to generate their energy (Figure 5J). Overall,
these results indicate that T. brucei-derived ketoacids modulate DC metabolism, reducing
engagement of glycolysis, which is associated with rapid inflammatory responses.

3.6. HPP and IP Activate Autophagy-Related Proteins

We have previously demonstrated that the HO-1 inducers carnosol and curcumin acti-
vate the autophagy regulator AMPK, which incidentally is also known to downmodulate
glycolysis in immune activated cells [22]. Furthermore, the key autophagy-related protein,
p62, is linked to Nrf2 activation [23–25]. In order to determine if T. brucei-derived ketoacids
have any impact on autophagy-related proteins, DC were treated with IP or HPP (both
1000 µM) for 15 min and phosphorylation (and therefore activation) of AMPK was assessed
by western blotting. IP treatment resulted in a significant increase in AMPK phosphory-
lation while there was a trend towards increased activation with HPP (Figure 6A). DC
treated with IP also showed an increase in both p62 and LC3-II (which is converted from
LC3-I during autophagy) over time, and this was most potent after 24 h (Figure 6B,C). HPP
treatment significantly increased p62 expression after 6 h and significantly increased LC3-II
expression after 24 h (Figure 6B,C). These results indicate both ketoacids are activating
autophagy-related proteins in human DC.

3.7. HPP and IP Reduce Proliferation and Cytokine Expression in PBMC Isolated from
IBD Patients

It has previously been reported that IP has powerful immune suppressive effects in
a murine experimental colitis model [7]. In order to determine if these results translate
to a more clinical setting, PBMC were isolated from IBD patients and treated with IP or
HPP (250–1000 µM) for 6 h prior to stimulation with anti-CD3 (1 µg/mL) for a further
four days. Furthermore, the culture media was replaced with fresh media after 18 h of
incubation with the compounds to circumvent issues surrounding the fluorescence of IP
over long periods of time. The supernatants were removed for cytokine analysis by ELISA
and cells were stimulated with PMA (50 ng/mL), ionomycin (500 ng/mL), and brefeldin A
(5 µg/mL) for 4 h. Expression of ki67, and the cytokines IFNγ and IL-17 (both of which are
known to play a pathogenic role in IBD), were measured by flow cytometry in CD3+CD8−

cells (gating strategy shown in Supplementary Figure S5). IP was non-toxic to PBMC at
all concentrations tested, however there was some toxicity seen when using the higher
concentrations of HPP (Supplementary Figure S6). Despite this being significant, it is
unlikely to account for the effects seen, as flow markers were examined in live cells only.
Both IP- and HPP-treated cells were capable of dose-dependently reducing the proliferation
and expression of IFNγ when compared to anti-CD3 stimulation alone (Figure 7A,B), while
having no effect on the intracellular levels of IL-17. However, when cell supernatants were
assessed by ELISA, there was a significant reduction in both IFNγ and IL-17 production in
IP- and HPP-treated cells (Figure 7C,D). Unlike purified DC, the ketoacids did not enhance
the production of IL-10 from PBMC, suggesting a cell-type specific effect (Figure 7C,D).
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Figure 6. HPP and IP modulate autophagy-related proteins. (A) Primary human DC were left
untreated (UT) or incubated with IP or HPP at 1000 µM for 15 min. Phosphorylation of AMPK was
measured by western blot. Densitometry results shown are mean ± SEM of the relative expression of
p-AMPK: β-actin from four healthy donors. (B,C) Primary human DC were left UT or incubated with
IP or HPP at 1000 µM for 6, 12, or 24 h. Expression of (B) p62 and (C) LC3 were measured by western
blot. Densitometry results shown are mean ± SEM of the relative expression of (B) p62: β-actin from
five healthy donors and (C) LC3 II: β-actin from six healthy donors. (A) Statistical significance was
determined using a Paired t-test. (B,C) Statistical significance was determined by repeated measures
one-way ANOVA with Dunnett’s multiple comparisons post hoc test to compare means of treatment
groups to the control group (*** p < 0.001, ** p < 0.01, * p < 0.05). ImageLab (Bio-Rad) software was
used to perform densitometric analysis.
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Figure 7. HPP and IP reduce proliferation and cytokine expression in ex vivo stimulated PBMC from
patients with Inflammatory Bowel Disease. PBMC isolated from IBD patients were treated with (A,C)
HPP or (B,D) IP (250 µM–1000 µM) for 6 h prior to stimulation with anti-CD3 for 12 h. After 18 h,
culture media was replaced with fresh media and cells were incubated for a further 4 days with
anti-CD3 stimulation. Supernatants were removed for analysis of cytokine concentration by ELISA.
(A,B) Proliferation and cytokine production by CD3+CD8− cells was analysed by flow cytometry.
Pooled data (N = 14) depicting the mean ± SEM of ki67 (as a measure of proliferation), IFNγ, and
IL-17 in CD3+CD8− T cells. (C,D) Cell supernatants were assessed for concentrations of IL-10, IFNγ,
and IL-17 by ELISA. Pooled data depicts mean (±SEM) cytokine concentrations for six IBD patients
(means of three technical replicates per donor). Statistical significance was determined by repeated
measures one-way ANOVA with Dunnett’s multiple comparisons post hoc test to compare means of
treatment groups to the control group (*** p < 0.001, ** p < 0.01, * p < 0.05).

4. Discussion

The production of large amounts of immunomodulatory aromatic ketoacids during T.
brucei infection likely serves to benefit the parasite by prolonging infection, proliferation,
and, ultimately, survival in the host. While the secretome of T. brucei has been shown to
reduce the secretion of IL-12, IL-10, IL-6, and TNF in both murine and human DC [26,27],
the ketoacids, IP and HPP, have been shown to directly ameliorate inflammatory cytokine
production in murine macrophages and glia [4,5]. This is further supported by studies
demonstrating their therapeutic efficacy in murine models of disease [4,6,7]. Given the key
role played by DC in shaping both innate and adaptive immune cell responses, we sought
to determine if these effects translate to this vital human immune cell population, which not
only serves to present antigens during infection, but also plays a key role in determining
pathogenic T cell responses during disease. We demonstrate that both IP and HPP are
capable of significantly reducing the secretion of a number of pro-inflammatory cytokines,
including TNF, IL-6, IL-12, and IL-23 in LPS-stimulated DC. Furthermore, the ketoacids
upregulate HO-1 in an Nrf2 dependant manner, which is in line with studies demonstrating
that HO-1 induction can promote a more tolerogenic DC phenotype [18,19,28]. In support
of this, we also demonstrate that ketoacid-treated DC have a reduced capacity to activate T
cells, which in turn limits the production of the pathogenic T cell cytokine IFNγ, which is
known to play a deleterious role in a number of inflammatory/autoimmune conditions
including IBD [29].

In comparison to the previous data from murine macrophages and glia, a larger
repertoire of cytokines is inhibited by the ketoacids in human DC. For example, IP and HPP
had no effect on TNF secretion in murine glia and no effect on either TNF or IL-6 secretion
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in bone marrow derived macrophages [4,5], however, these cytokines were significantly
reduced in LPS-activated human DC. Furthermore, IP directly induced the production of
the anti-inflammatory cytokine IL-10 in DC. The maturation status of DC is also impacted
by ketoacid treatment, with the HPP-treated cells exhibiting a reduction in co-stimulatory
and maturation markers, which, in turn, prevents their ability to participate in T cell
activation. The upregulation of HO-1 was also accompanied by the expression of additional
Nrf2-regulated genes and both IP and HPP appeared to exhibit direct antioxidant activity,
which may explain their ability to activate Nrf2, given its well documented capacity to
rapidly respond to oxidative stress.

Further analysis of these novel HO-1 inducers also revealed that they can modulate im-
mune cell metabolism. Indeed, recent studies have highlighted an important link between
immune cell activation and metabolism. It is now well recognised that, not only do different
immune cells engage different metabolic pathways, but that the activation/maturation state
of the immune cells is accompanied by metabolic switches. For example, innate immune
cells, including macrophages and DC, ramp up glycolysis in order to rapidly generate suffi-
cient energy and the building blocks required to fight infection [21]. This phenomenon is
also a feature of pathogenic immune cells, and a significant effort is underway to determine
if controlling/preventing dysregulated metabolic reprogramming can serve to ameliorate
detrimental immune cell activation during disease. Here we demonstrate that both IP and
HPP can decrease the max glycolysis observed in LPS-treated DC while also downregulat-
ing the expression of hexokinase 2, the rate-limiting enzyme in glycolysis. These results are
similar to our recent observations with the HO-1 inducers, carnosol and curcumin, sug-
gesting that HO-1 may be an important regulator of immune cell metabolism [30]. Further
study is required to determine if additional features of metabolism are affected by ketoacids
and whether metabolic reprogramming occurs during T. brucei infection, but these in vitro
results are in line with the notion that metabolism is intricately linked with immune cell
activation, and that the downmodulation of glycolysis in immune cells promotes a more
tolerogenic phenotype.

From a therapeutic stance, IP in particular has shown potential in a murine model of
colitis where administration of the ketoacid not only improved disease outcome, but also
decreased expression of pro-inflammatory cytokines, including IL-12, IFNγ, and TNF [7].
We observed similar results in PBMC from IBD patients where both HPP and IP reduced the
proliferation of anti-CD3 stimulated T cells, as well as the secretion of both IL-17 and IFNγ.
Indeed, induction of HO-1 is being explored as a therapy for IBD and has shown promise
in a number of murine models of disease [31–35]. Patients are currently treated largely with
anti-inflammatories including 5-aminosalicylic acid (5-ASA), corticosteroids, methotrexate,
and anti-TNF therapies [36]. However, many patients are/become refractory to these
treatments and will require surgery in their lifetime. While further in vivo study is required
to fully elucidate their efficacy and provide further information regarding treatment route,
dosing, and long-term effects, these findings provide further impetus to explore aromatic
ketoacids as a treatment for IBD (and indeed other inflammatory diseases), either alone or
in combination with existing therapies.

Finally, a particularly interesting finding of this study is the observation that IP and
HPP can activate key autophagic proteins. Autophagy itself is carried out by a number
of autophagy-related (Atg) proteins and initiation is under the control of the protein
kinases mTOR and AMPK, which are both intrinsically linked to immune cell metabolism
(AMPK inhibits glycolysis while mTOR activation is linked to induction of glycolysis).
The autophagic process is complicated and involves many different proteins and has
been reviewed in detail elsewhere [37–39]. Briefly, a complex of Atg proteins lipidates
LC3-I converting it to LC3-II [37,38]. LC3-II binds to the autophagosome membrane and
facilitates the docking of cargos and proteins for degradation through their binding to
p62 [40]. Following maturation, the autophagosome fuses with the lysosome to form
the autolysosome, the contents of which are then degraded and recycled. In this study,
we show that IP and HPP activate AMPK and increase expression of p62 and LC3-II.
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Autophagy is of particular importance for DC, as many of their key functions, including
antigen uptake and presentation, are strongly associated with autophagy [41]. Despite some
conflicting reports, generally it appears that activation of autophagy gives rise to a more
tolerogenic DC phenotype, exhibiting reduced antigen presentation and maturation [41],
which is similar to the results seen in this study. Furthermore, AMPK activation has been
shown to attenuate pro-inflammatory cytokine production and DC maturation [22,42].
Therefore, ketoacid-induced AMPK and subsequent autophagy activation may serve to
downmodulate DC maturation, antigen presentation, and glycolysis.

Notably, p62 is not only an important autophagy-related protein, it also plays a crucial
role in the activation of Nrf2 [23–25]. Nrf2 is activated upon release from KEAP1, which
can occur when p62 sequesters KEAP1, targeting it for degradation and allowing Nrf2 to
translocate to the nucleus [23–25]. Therefore, the activation of p62 by both ketoacids, but in
particular IP, may be responsible for the subsequent activation of Nrf2, and therefore HO-1,
by these ketoacids. While HPP induces HO-1 at an earlier time than IP, the latter appears to
have more potent effects overall. In most cases, the in vitro effects of IP are most apparent
at 24 h, and we cannot rule out the possibility that it is converting to another form over time.
Further study is undoubtedly required to delineate the true impact of aromatic ketoacids
(and their potential derivatives) and HO-1 induction on autophagy-related processes, in
addition to the noted effects on DC metabolic reprogramming.

5. Conclusions

In conclusion, the data presented here expands our understanding of the mechanism
of action of T. brucei-derived ketoacids in human immune cells and suggests that HO-1
induction may be useful to regulate the metabolism and, therefore, function of immune
cells in inflammatory disease. We firmly believe that these compounds represent novel and
exciting HO-1 inducers worthy of further exploration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11010164/s1, Figure S1: HPP and IP are non-toxic to
human DC; Figure S2: IP and HPP are not contaminated with endotoxin; Figure S3: ML385 is
non-toxic to human DC; Figure S4: Gating strategy used to generate data shown in Figure 4; Figure
S5: Gating strategy used to generate data shown in Figure 6; Figure S6: IP is non-toxic to PBMC,
while higher concentrations of HPP shows significant, albeit mild, reductions in viability; Table S1:
Seahorse calculations.
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