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Traditionally, mitochondria have been regarded solely as energy generators for cells; 
however, accumulating data have demonstrated that these complex organelles play 
a variety of roles within the cardiomyocyte that extend beyond this classic function. 
Mitochondrial dynamics involves mitochondrial movements and morphologic alter-
ations by tethering, fusion, and fission, which depend on cellular energy requirements 
and metabolic status. Many studies have indicated that mitochondrial dynamics may 
be a fundamental component of the maintenance of normal cellular homeostasis and 
cardiac function. Mitochondrial dynamics is controlled by the protein machinery re-
sponsible for mitochondrial fusion and fission, but cardiomyocytes are densely packed 
as part of an intricate cytoarchitecture for efficient and imbalanced contraction; thus, 
mitochondrial dynamics in the adult heart are restricted and occur more slowly than 
in other organs. Cardiac mitochondrial dynamics is important for cardiac physiology 
in diseased conditions such as ischemia-reperfusion (IR) injury. Changes in mitochon-
drial morphology through modulation of the expression of proteins regulating mi-
tochondrial dynamics demonstrates the beneficial effects on cardiac performance after 
IR injury. Thus, accurately defining the roles of mitochondrial dynamics in the adult 
heart can guide the identification and development of novel therapeutic targets for 
cardioprotection. Further studies should be performed to establish the exact mecha-
nisms of mitochondrial dynamics.
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INTRODUCTION

　Mitochondria are typically regarded as energy gen-
erators, but the latest data demonstrate other divergent 
functions such as oxygen free radical production, control 
of cell ion homeostasis, and regulation of cell apoptosis and 
necrosis.1 Clearly, ATP generation is the most important 
role of mitochondria, especially in the heart. Because the 
heart requires a continuous supply of energy throughout 
life, cardiomyocytic mitochondria are densely packed to 
form a complex structure accounting for -35% of cardiac 
muscle cell volume.2 The cardiomyocytic mitochondria 
maintain the largest relative density of any organ in the 
body and build a highly organized and solid cytoarchi-
tecture with other organelles. Their regulatory pathway is 
not fully understood, but many studies have suggested that 

ADP/ATP/inorganic phosphorus and cytosolic calcium 
(Ca2+) are essential to regulate oxidative phosphorylation 
and energy generation.3-6 Most cytosolic Ca2+ is released 
from the sarcoplasmic reticulum (SR) and acts as a crucial 
element for contraction of myocytes. Thus, its harmonic im-
port and export via the T-tubules are essential for normal 
excitation-contraction coupling.7

　The term "mitochondrial dynamics" connotes the mi-
tochondrial movements, morphologic and distributional 
alterations, mitophagy, and tethering/fusion/fission that 
depend on energy requirements and metabolic status.8-10 

It is finely controlled by intricate protein machinery11 and 
exhibits high organ specificity. For example, mitochondria 
in neurons, fibroblasts, and other cells change their loca-
tions actively, whereas in adult cardiomyocytes, they are 
not able to move easily owing to the peculiar subcellular en-
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FIG. 1. The three subpopulations of mitochondria: interfibrillar 
mitochondria (IFM), perinuclear mitochondria (PNM), and sub-
sarcolemmal mitochondria (SSM). Reprinted with permission 
from Ong et al.84

vironment, i.e., rigid cytoskeleton and abundance of myo-
filaments.12 Accumulating data, however, suggest that the 
proteins involved in cardiac mitochondrial dynamics are 
important for cardiac physiology in normal and diseased 
conditions. Here, we review new concepts and evidence for 
cardiac mitochondrial dynamics.

MITOCHONDRIAL DYNAMICS IN THE HEART

　Many early experimental studies investigating mi-
tochondrial dynamics were carried out by use of noncardiac 
cells. In recent years, however, there have also been studies 
on mitochondrial dynamics in the heart. Because of their 
unfettered movement and the comparatively homoge-
neous reticular distribution pattern of mitochondria, the 
cells employed in the majority of studies were neonatal car-
diomyocytes, immortal cardiac cell lines, or vascular 
cells.13-23 Adult cardiomyocytes are organized by a complex 
cytoarchitecture for efficient and finely controlled con-
traction so that mitochondrial movements are significa-
ntly restricted. But more recent studies have proposed that 
regulation of mitochondrial dynamics is also present in 
adult cardiomyocytes, indicating that adult cardiac mi-
tochondria have preserved their fusion, fission, and mi-
tophagy abilities.

1. Mitochondrial distribution and subpopulations in adult 
cardiomyocytes

　Mitochondria are an indispensable part of the cardiac cy-
toarchitecture and are arranged in three distinct sub-
populations in the adult heart: intermyofibrillar mitochon-
dria, subsarcolemmal mitochondria, and perinuclear 
mitochondria.24 Intermyofibrillar mitochondria are aligned 
along the myofibrils and function as a main producer of 
ATP. They are actively in contact with the surrounding SR 
and myofibrils.12,25 Subsarcolemmal mitochondria are ar-
ranged just beneath the sarcolemma and are possibly in-
volved in ion homeostasis or signaling pathways.26,27 Last, 
perinuclear mitochondria are adjacent to the nucleus and 
probably participate in the nuclear transcription and 
translocation processes, but the exact mechanism has not 
yet been elucidated (Fig. 1).

2. Mitochondrial fusion
　Mitochondria have a double-membrane structure in-
cluding the outer mitochondrial membrane (OMM) and in-
ner mitochondrial membrane (IMM). The OMM encloses 
the entire organelle, isolating the contents from the cyto-
plasm, and contains numerous porins for passive and ac-
tive transport of molecules. The IMM divides the internal 
substance into a matrix core and an intermembranous 
space, which is compartmentalized into an abundance of 
cristae. This double-membrane structure is an essential 
part of distinguishing between the enzymes required for 
ATP generation, but hinders mitochondrial tethering and 
fusion.
　Mitochondrial fusion of the OMM and IMM occurs in-

dividually and sequentially and is mediated by distinct 
proteins containing GTPase and coiled-coil domains 
(heptad-repeat domains, HR1 and HR2). Fusion of the 
OMM is regulated by mitofusins (Mfn1, Mfn2) located in 
the outer membrane,28,29 whereas fusion of the IMM is arbi-
trated by optic atrophy 1 (Opa1) present in the inner 
membrane.30 Structurally, the proteins share an extra-
cellular amino terminal GTPase domain mediating GTP 
hydrolysis, a transmembrane (TM) domain allowing the 
anchorage of the proteins to the membranes, and HR do-
mains involved in homotypic (e.g., Mfn1-Mfn1, Mfn2-Mfn2, 
and Opa1-Opa1) and heterotypic (e.g., Mfn1-Mfn2) inter-
actions.23,31

　Human mitofusins were first discovered by the Santel 
group in 2001.28 Mitofusins reside in the OMM and act as 
a starter for the mitochondrial fusion process. The HR2 do-
mains of mitofusins on one mitochondrion are assumed to 
develop complexes with mitofusins on other mitochondria, 
and these complexes initiate tethering and fusion between 
neighboring mitochondria.32 Mfn1 has higher GTPase ac-
tivity than does Mfn2, so it is reported that Mfn1 tethers 
mitochondria more efficiently than does Mfn2.33 As men-
tioned, mitofusins can interact both homotypically and 
heterotypically; thus, the fusion process has adaptability. 
Mfn1 or Mfn2 single knockout cells or tissues do not prevent 
fusion, but Mfn1 and Mfn2 double knockout cells or tissues 
demonstrate marked mitochondrial fragmentation.34-36

　Opa1 is expressed throughout the body, and it mediates 
the IMM fusion process and modulates apoptotic cristae 
remodeling.37 Mutations in the Opa1 gene are related to au-
tosomal dominant optic atrophy.38 Opa1 has 8 human iso-
forms and is cleaved by mitochondrial protease. As a result, 
short forms of Opa1 (S-Opa1) and long forms of Opa1 
(L-Opa1) are generated. The former is water-soluble and 
is located in the intermembranous space, whereas the lat-
ter has a TM domain and is anchored in the IMM.11 Genetic 
ablation of Opa1 also prevents mitochondrial fusion and 
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produces mitochondrial fragmentation.39,40 

3. Mitochondrial fission
　Mitochondrial fusion mechanisms are thought to be rela-
tively well established, but mitochondrial fission processes 
have not been fully clarified. Fission processes are probably 
divided into several stages: mitochondrial constriction, dy-
namin-related peptide 1 (Drp1) recruitment, fission com-
plex assembly on the OMM, de facto mitochondrial fission, 
and fission complex dismantling.11

　Drp1, also called dynamin-like protein 1 (Dlp-1), is a cyto-
solic protein that has a GTPase domain and a GTPase effec-
tor (assembly) domain.41 Drp1 translocates to the fission site 
on the OMM of the mitochondria via cytosolic dynein or the 
actin network.42,43 After proper translocation, Drp1 oligo-
merizes to form a ring and constricts the mitochondrial fis-
sion site in a GTP-dependent manner. Drp1 has no TM do-
main for anchoring to the mitochondrial membrane, so it re-
quires a docking receptor on the OMM. Human mitochon-
drial fission protein 1 (Fis1) was the first protein regarded 
as a mitochondrial receptor for Drp1.44 It is a small protein 
(17 kDa) anchoring to the OMM, and its amino-terminus 
contains five α-helices that allow interaction with Drp1.45 
Fis1 is thought to conduct suborganelle localization of acti-
vated Drp1 oligomer to the constrictive site of mitochondria 
and facilitates the mitochondrial fission process.46

　Some studies have suggested that Fis1 deficiency does 
not influence the recruitment of Drp1.47,48 Some inves-
tigators found three other proteins involved in mitochon-
drial fission located on the OMM: mitochondrial fission fac-
tor (Mff) and mitochondrial dynamics proteins of 49 kDA 
or 51 kDA (MiD49 and MiD51). However, the exact mecha-
nisms underlying the fission process remain unclear.

4. Mitochondrial trafficking
　Mitochondrial trafficking is controlled by specific pro-
teins such as mitochondrial Miro1 and Miro2 and cytosolic 
Grif-1 and OIP106 in a calcium-dependent manner. Miro 
proteins are located on the OMM and comprise two 
Ras-GTPase domains, a TM domain, and calcium-sensitive 
EF motifs.49 Cytosolic Grif-1 and OIP106 bind Miro pro-
teins and motor molecules (dynein, kinesin), inducing mi-
tochondrial trafficking along microtubules.50 Miro pro-
teins are reported to influence mitochondrial morphology 
in immortalized cardiac cells (H9c2 cells). Their over-
expression leads to mitochondrial elongation; on the other 
hand, genetic ablation of Miro genes induces mitochondrial 
fragmentation.13 However, the roles of mitochondrial mo-
tility proteins are restricted in adult cardiomyocytes owing 
to the complex and dense cytoarchitecture. 

ALTERED MITOCHONDRIAL DYNAMICS IN 
HEART DISEASE

　Mitochondria modulate cardiomyocyte contractility by 
supplying ATP and participating in calcium homeostasis. 
Some studies have suggested that altered mitochondrial 

morphology is directly involved in the detriment to cardiac 
function under stress.51,52 However, the precise mecha-
nisms by which mitochondria interact with cardiac myofi-
brils are not fully understood.

1. Mitochondrial permeability transition pore (MPTP)
　The mitochondrial permeability transition pore (MPTP) 
is a nonselective channel located on the IMM. It is per-
meable to solutes up to 1.5 kDa and mediates the degree of 
mitochondrial permeability by alteration of mitochondrial 
membrane potential. Excessive production of reactive oxy-
gen species (ROS) and calcium overload in the mitochon-
drial matrix dissipate the proton electrochemical gradient 
(ΔΨm) and open the MPTP. This leads to uncoupling of oxi-
dative phosphorylation and further production of ROS, re-
sulting in ATP depletion and mitochondrial rupture.53,54 
This in turn releases proapoptotic proteins such as cyto-
chrome c, Smac/DIABLO, and endonuclease-G (endoG), 
which activate the caspase protease system and ultimately 
induce apoptosis or necrosis of the cell.1,54-56

　Numerous heart diseases are related to increases in 
MPTP activators such as calcium and oxidative stress and 
reductions in MPTP inhibitors such as ATP/ADP. Several 
studies have demonstrated that inhibition of the MPTP 
pore lessens the cardiomyocyte loss that underlies some 
cardiac pathologies including myocardial ischemia/re-
perfusion (IR) injury,57,58 calcium-induced cardiomyop-
athy,59 diabetic cardiomyopathy,60 and the cardiotoxicity 
of anti-cancer drugs.61

　There have been a few studies of the relationships be-
tween mitochondrial fusion proteins and the MPTP 
opening. In accordance with these studies, lack of Opa1 and 
Mfns was associated with delayed MPTP opening,18,51,52 

which suggested that mitochondrial fusion proteins ex-
pedite MPTP opening under normal conditions. However, 
Neuspiel et al.62 demonstrated that the overexpression of 
Mfn2 protects against MPTP opening. Further inves-
tigations are required to elucidate the exact mechanisms 
involved in these phenomena.

2. Mitochondrial dynamics and apoptosis in cardiac cells
　Studies on the relationships between mitochondrial dy-
namics and apoptosis are at an early stage even now. Mfn2 
is being highlighted as a regulator of the apoptotic process, 
but its primary actions remain controversial. Guo et al.63 and 
Shen et al.64 suggested that Mfn2 may function as a 
pro-apoptotic modulator by suppressing the phosophoinosi-
tide 3-kinase (PI3K)-Akt pathway under oxidative stress in 
vascular smooth muscle cells and H9c2 cells, respectively. On 
the other hand, Parra et al. reported that ablation of Mfn2 
exacerbated the ceramide-induced pro-apoptotic processes 
such as mitochondrial fragmentation, Drp1 localization, 
and release of cytochrome c in neonatal cardiomyocytes.21

3. Mitochondrial dynamics and myocardial ischemia-re-
perfusion injury

　In coronary artery disease, the most effective ther-
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apeutic option for reducing ischemic myocardial injury and 
infarct size is prompt and efficient myocardial reperfusion, 
but the myocardial reperfusion process can induce further 
myocardial cell death. This phenomenon is called my-
ocardial IR injury.65,66 The outcomes of IR injury are rever-
sible (arrhythmia, myocardial stunning) or irreversible 
(microvascular obstruction, cardiomyocytic death). Oxida-
tive stress, intracellular calcium overload, MTPT opening, 
and hypercontracture of myofibrils are important contrib-
utory factors in lethal myocardial IR injury.66

　Mitochondrial fission and fragmentation are commonly 
observed in cells with IR injury. Chen et al.67 found that the 
deficiency of OPA1 is closely associated with IR-induced 
mitochondrial fragmentation in H9c2 cells. Additionally, 
Ong et al.68 elucidated that mitochondrial fragmentation 
during myocardial ischemia turns on the actions of Drp1 
in HL-1 cell lines. The exact activation process of Drp1 un-
der ischemic conditions is not fully understood, but calci-
neurin-induced dephosphorylation of Drp1 by mitochon-
drial calcium overload has been observed in some studies.69,70

4. Mitochondrial dynamics and other heart diseases
　Until recently, mitochondrial fusion proteins were rela-
tively disregarded in studies on human heart disease, and 
in fact, Charcot-Marie-Tooth syndrome and autosomal 
dominant optic atrophy caused by functional loss of Mfn2 
and Opa1, respectively, show no cardiac manifestations.71 

However, there has been some evidence that cardiomyopa-
thies are the result of an imbalance in mitochondrial dy-
namics, and that heart failure is related to altered cardiac 
mitochondrial morphology.
　The integrity of the mitochondrial network is compro-
mised and the mitochondrial membrane is disrupted in 
chronically failed hearts. Additionally, reductions in the 
total mitochondrial number and size have also been 
observed.72,73 Sabba et al.74 and Di Lisa et al.75 suggested 
that these phenomena are positively correlated with the 
heart failure severity index and are capable of determining 
the destiny of cardiac cells. Furthermore, recent studies 
have suggested that Opa1 deficiency decreases the ex-
pression of nuclear antioxidant genes, induces fragmenta-
tion of cardiac mitochondria, and results in late-onset 
heart failure.67,76

　Changes in mitochondrial dynamics have also been ob-
served in dilated cardiomyopathy. A heterozygous Drp1 
gene mutation (C452F) gave rise to severe dilated car-
diomyopathy after 11 weeks in mice.77 Selective ablation 
of Mfn1 and Mfn2 also resulted in severe dilated cardiomy-
opathy in a mouse model, whereas combined Mfn1/Mfn2 
ablation was lethal.36 Both studies demonstrated defects 
in mitochondrial respiration and mitochondrial fragmen-
tation.

MITOCHONDRIAL DYNAMICS AS A NOVEL 
THERAPEUTIC TARGET

　Modification of mitochondrial dynamics has emerged as 

a novel pharmacological strategy for cardioprotection, es-
pecially in IR injury. Previous studies reported that trime-
tazidine reduced infarct size in animal ischemic heart 
models.78,79 The exact mechanism is not fully understood, 
but there has been some evidence that trimetazidine de-
creases ROS production and delays calcium-mediated 
MPTP opening via re-coupling of the mitochondrial respi-
ratory chain.80-82 Ranolazine also demonstrated similar ef-
fects on mitochondria and reduced additional IR injury.83 

The proteins modulating mitochondrial dynamics are re-
garded as an essential component of appropriate mitochon-
drial and cell survival, and ultimately, normal cardiac 
function, but their pharmacological use is still not realized.

1. Mitochondrial dynamics as a therapeutic target for car-
dioprotection

　Altering mitochondrial morphology by regulating the ex-
pression of the proteins involved in mitochondrial dynam-
ics has demonstrated beneficial effects on cardiac perform-
ance after IR injury in some studies. Mdiv-1, a Drp1-specific 
inhibitor, impeded mitochondrial fragmentation, as de-
termined by electron microscopy; delayed the opening of 
MPTP; and reduced myocardial infarct size significantly 
in in vivo murine hearts as well as in HL-1 cells.68 Wang 
et al.70 reported that microRNA-499 (miR-499), which in-
hibits the calcineurin-dependent activation of Drp-1, as 
mentioned above, could protect against IR injury. Thus, 
short-term inhibition of Drp1 during IR injury may be ad-
vantageous for effective cardioprotection. However, the 
adult hearts of Mfn2 knockout mice exhibit an enlarge-
ment of the subsarcolemmal mitochondria, depolarization 
of the mitochondrial membrane, delayed MPTP opening, 
and also improvement of cardiac function following ex vivo 
IR injury compared with mice from the control group.51 

These findings contrast with the results of other studies 
that demonstrated a beneficial role of Mfn2 in terms of 
MPTP opening in neurons62 and HL-1 cells.68 These find-
ings suggest that the effects of Mfn2 are cell-specific and 
may change with mitochondrial cell development but have 
not yet been fully elucidated.84

SUMMARY

　Numerous studies have described how mitochondrial 
dynamics may be essential in the maintenance of normal 
mitochondrial and cellular homeostasis and cardiac 
function. Mitochondrial dynamics is modulated by com-
plex protein machinery regulating the fusion and fission 
of mitochondria. In adult heart, cardiomyocytes are or-
ganized by an intricate cytoarchitecture for efficient and 
well-modulated contraction, and thus, mitochondrial 
movements are markedly restricted and morphological 
changes of the mitochondria are more slowly controlled 
than in other organs. 
　Mitochondrial dynamics is a crucial component for the 
adaptation of cardiomyocytes under stresses such as IR 
injury. Rats with genetically manipulated mitochondrial 
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dynamics genes are especially vulnerable to ischemia, and 
the proteins encoded by these genes act as key determi-
nants of cellular fates in such environments. 
　Accordingly, identifying the various roles of mitochon-
drial dynamics in the adult heart could result in the devel-
opment of novel therapeutic targets for cardioprotection. 
Further animal- and human-based studies should be per-
formed to establish the exact mechanisms underlying mi-
tochondrial dynamics.
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