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Abstract

Protein-protein interaction network data provides valuable information that infers direct links

between genes and their biological roles. This information brings a fundamental hypothesis

for protein function prediction that interacting proteins tend to have similar functions. With

the help of recently-developed network embedding feature generation methods and deep

maxout neural networks, it is possible to extract functional representations that encode

direct links between protein-protein interactions information and protein function. Our novel

method, STRING2GO, successfully adopts deep maxout neural networks to learn functional

representations simultaneously encoding both protein-protein interactions and functional

predictive information. The experimental results show that STRING2GO outperforms other

protein-protein interaction network-based prediction methods and one benchmark method

adopted in a recent large scale protein function prediction competition.

Introduction

The realisation of the complex relationships between genotypes and phenotypes has been fos-

tering the collection and analysis of genome-wide datasets of molecular interactions detected

from patterns of physical binding, transcript co-expression, mutant phenotypes, etc. Many

specialised databases exist to store and integrate such heterogeneous data at different levels of

biological complexity. At one end of the scale, the International Molecular Exchange (IMEx)

consortium gathers non-redundant protein-protein interactions (PPIs) from peer-reviewed

scientific publications, and provides manually curated details about the experimental condi-

tions [1]. At the opposite end, several resources extend these primary data with indirect or pre-

dicted associations to paint a more complete picture for whole organisms [2–5]. For instance,

STRING [5] considers experimentally detected PPIs, conserved mRNA co-expression, co-

mention in abstracts and papers, interactions from curated databases, conserved gene proxim-

ity, gene co-occurrence/co-absence and gene fusion events. Interactions in such databases

are typically assigned confidence scores, which can be used for integration purposes [2, 6, 7].

Not only these data provide valuable direct links between genes and their biological roles, but

also form the basis for protein function prediction methods that do not rely on traditional
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annotation transfers from sequence. Omics data have long offered a suitable opportunity by

lending themselves to network representations, where genes or protein products are nodes

and edges represent molecular interactions. This modelling approach can be easily exploited

using the “guilt-by-association” principle: if the edges reflect biological facts reliably, adjacent

nodes have more similar functions than those further away in the network—e.g. because they

form a macromolecular complex, or their activities are coordinated in a specific biological

process.

The earliest methods therefore transfer annotations from nodes that are either adjacent or

within close distance, possibly taking into account the enrichment of the functional labels [8].

Because the network topology is far from uniform and different functions arise from unevenly

sized gene sets, using one particular distance or number of neighbours inevitably affects pre-

diction accuracy. More sophisticated algorithms therefore try to group the nodes into func-

tional modules or communities—each associated with a given function—and then make

annotation transfers within them [9–14]. The preliminary identification of functionally coher-

ent subgraphs, however, poses additional challenges, which can make module-assisted predic-

tors less accurate than those based on neighbour counting [15]. Alternatively, the functional

annotations can be transferred via PPI parters’ homologous proteins. For example, Zhang

et al. (2018) [16] proposed a method, namely PPI-homolog, to transfer the functional annota-

tions of multiple homologs of the target protein’s interaction partners to make the function

prediction. More recently, network propagation methods have become increasingly popular to

address a wide range of problems [17]. They broadcast annotations from labelled proteins to

others by running random walks, which visit the nodes in the network randomly until stop-

ping criteria are met [18–20]. If the edges are weighted, this information controls the probabil-

ity of traversing them; otherwise equal probabilities are used. Because the propagation is

affected by node degree and edge weights, this approach reduces the chance of erroneous pre-

dictions from highly multifunctional hub proteins to adjacent nodes, which perform fewer

functions. Alternatively, the transition probabilities can be used to encode directly the nodes

as multi-dimensional features, and thus to make functional annotations with nearest neigh-

bour strategies [21, 22]. Cho et al. (2016) [23] and Gligorijević et al. (2018) [24] have instead

used them to embed the STRING networks jointly—that is to map nodes to continuous fea-

tures, which best explain the transition probabilities and the graph topology. The usefulness of

the resulting features has been demonstrated for the task of protein function prediction.

This study proposed a novel PPI network-based protein function predicting method,

STRING2GO. It adopts deep maxout neural networks to learn a novel type of functional bio-

logical network feature representations simultaneously encapsulating both node neighbor-

hoods and co-occurrence functions information. These higher-level representations are learnt

in a supervised way by training deep maxout neural networks to output all the terms in biolog-

ical process domain associated with an input protein—an approach that has led to higher

predictive accuracy in the past [25, 26]. The experimental results show that STRING2GO

significantly outperforms other PPI network embedding-based protein function prediction

methods.

Materials and methods

Data collection

Firstly, human proteins were retrieved from the UniProtKB/SwissProt release 2017_05 [27],

while the corresponding protein-protein interactions information was retrieved from STRING

v10.0 [28] that includes seven component networks from heterogeneous data sources and one
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integrated network. The mapping between UniProtKB/SwissProt accession numbers and

Ensembl protein identifiers adopted in STRING was obtained by using the Biomart tool [29].

Experimentally supported Gene Ontology (GO) term annotations—identified with evi-

dence code EXP, IDA, IPI, IMP, IGI or IEP—were collated from the UniProtKB/SwissProt

release 2017_05 and UniProt-GOA release 168 [30], and propagated over “is a” relationships

in the Gene Ontology database [31]—GO OBO file release 2017-04-28. To assure the feasibility

of the following machine-learning experiments, only biological process (BP) annotating at

least 100 proteins were initially considered. To guarantee that the predictions are sufficiently

specific and informative, this list was subsequently filtered so that only the deepest terms in

the ontology were retained—i.e. the terms a and b were kept if and only if there are no “is_a”

paths from a to b and from b to a. These steps yielded a vocabulary consisting of 204 BP terms

(detailed information is included in S1 Table).

The set of human proteins was split into a large subset for GO term-specific classifier train-

ing and a small subset for hold-out evaluation. 10,667 proteins with at least one cellular com-

ponent term were initially selected from the whole set. Out of these, 1,000 proteins were

randomly selected for hold-out evaluation from the subset of well-annotated entries—i.e.

those with at least 28, 5 and 14 experimental or electronic biological process, molecular func-

tion and cellular component terms respectively. After removing electronic annotations, the

hold-out set for BP terms contains 982 proteins, while the large set contains 5,000 proteins.

We also create a separated protein-set for a temporal validation by selecting 428 proteins who

had no experimental annotation by any 204 BP terms but received at least one after 6 months.

The source files were collected from UniProtKB/SwissProt release 2017_11, UniProt-GOA

release 174 and GO OBO file 2017-10-30. In order to further evaluate the performance of our

methods on predicting homology-independent proteins, we further removed the homologous

proteins in the hold-out and temporal validation protein-sets respectively by using BLAST

searches against the training protein-set with different E-value thresholds, i.e. 10−5, 10−4, 10−3

and 10−2, leading to different degrees of homolog-removal subsets of the original hold-out and

temporal validation protein-sets. The higher value of the E-value threshold denotes the wider

definition of protein homology, leading to a more stringent condition on the evaluation of the

homology-independent prediction. The hold-out protein-sets with different E-value thresh-

olds range from 255 to 192 proteins, while the temporal validation protein-sets with different

E-value thresholds range from 198 to 182 proteins. The detailed information is included in the

S2 Table.

Predictive performance evaluation

Predictive performance was evaluated on the ability to annotate both individual labels (GO

term-centric) and protein function (protein-centric), following the methodology adopted in

[32]. For the GO term-centric evaluation, we calculate the F1, Matthews Correlation Coeffi-

cient (MCC), and Area Under Precision Recall Curve (AUPRC) scores for evaluating the pre-

dictive performance of the GO term-specific classifier on the hold-out protein-set. In details,

the GO term-centric F1 (i.e. F1_GO) score is used for evaluating the performance of methods

when predicting protein annotations for individual GO terms. As shown in Eq 1, the F1 score

is obtained by calculating the harmonic mean of precision and recall values. The precision

value (Eq 2) is calculated by dividing the number of true positive (TP) predictions over the

summation of true positive and false positive (FP) predictions, while the recall value (Eq 3) is

calculated by dividing the number of true positive (TP) predictions over the summation of

true positive and false negative (FN) predictions. The MCC score that is calculated by Eq 4

is widely used for evaluating the performance of prediction methods on data, where the
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proportion of binary class labels is highly imbalanced. Analogously, the AUPRC score is also a

well-known metric for evaluating the performance of prediction methods on imbalanced class

prediction tasks.

F1 ¼ 2�
Precision� Recall
Precisionþ Recall

ð1Þ

Precision ¼
TP

TPþ FP
ð2Þ

Recall ¼
TP

TPþ FN
ð3Þ

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ð4Þ

For the protein-centric evaluation, we calculate the Fmax score by predicting the GO term

annotations for the hold-out and different degrees of homolog-removal hold-out evaluation

using the trained GO term-specific classifiers. The Fmax score is used by CAFA experiments

[32] for evaluating the performance of methods when predicting GO term annotations for all

protein samples. As shown in Eq 5, the Fmax score is obtained by choosing the maximum aver-

aged F1 score over all protein samples’ GO term annotation prediction, according to the varied

decision threshold. The averaged F1 score for threshold τ is calculated by the averaged preci-

sion Precisiont (Eq 6) and recall Recallt (Eq 7) values. The Precisiont value is calculated by

the total amount of precision values for the GO term annotation predictions of all protein

sequences S, over the number of protein sequence m with at least one GO term annotation pre-

dictive posterior probability being equal or greater than the value of threshold τ. Analogously,

the Recallt value is calculated by the total amount of recall values for the GO term annotation

predictions of all protein sequences S, over the total number of protein sequences n. Then

the corresponding τ to Fmax score is used as the prior knowledge to calculate the other type of

protein-centric averaged F1 score, i.e. Fτ, for the temporal and different degrees of homolog-

removal temporal validation. Note that we mainly discuss the Fmax and Fτ scores obtained

by the homolog-removal protein-sets generated by applying the E-value threshold of 10−2,

whereas the results for all other different degrees of homolog-removal protein-sets are also

reported in the S3 and S4 Tables.

Fmax ¼ maxtf2�
Precisiont � Recallt
Precisiont þ Recallt

g ð5Þ

Precisiont ¼
1

m

X

s

TPs;t

TPs;t þ FPs;t
ð6Þ

Recallt ¼
1

n

X

s

TPs;t

TPs;t þ FNs;t
ð7Þ

Deep maxout neural networks improve protein function prediction accuracy based on protein interaction networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0209958 July 23, 2019 4 / 21

https://doi.org/10.1371/journal.pone.0209958


STRING2GO—A novel protein function prediction method based on

learning representations simultaneously encoding the protein-protein

interaction and functional annotation information

In general, the STRING2GO method is composed of a three-stage machine learning proce-

dure. As shown in the flow-chart of Fig 1, at the first stage, it adopts the network embedding

representation generation methods (e.g. Mashup and Node2vec discussed in this work) to

generate the vector representations for individual proteins based on the protein-protein inter-

action network. Then the Deep Maxout Neural Networks (DMNNs) feed-forward those gener-

ated representations as the inputs to a set of GO term annotations of individual proteins as the

outputs. The new type of functional representations (denoted as STRING2GOEmbedding) that

simultaneously encode the PPI and protein functional annotation information are extracted

from the outputs of the 3rd hidden layer of DMNNs after finishing the backward propagation

optimisation. Finally, STRING2GO trains a library of Support Vector Machines (SVMs) to

predict the posterior probability of annotating individual GO terms to the target proteins.

Here, we denote this type of STRING2GO method as STRING2GOEmbedding+SVM for clarity.

In addition, due to the natural functionality of DMNNs, we also propose another type of

STRING2GO method, denoted as STRING2GOEmbedding+Sigmoid, which directly adopts the sig-

moid function in the last layer of DMNNs to make predictions.

In this work, we evaluate the predictive performance of our two types of STRING2GO

method on predicting the BP terms located in the deep positions in the GO-DAG, benchmark-

ing with the conventional raw network embedding representations-based method, i.e. Embed-

ding+SVM, that merely adopts the raw network embedding representations to train the SVMs

for making predictions.

Network embedding representation generation

In this work, we adopt two types of network embedding representation generation methods,

i.e. Mashup [23] and Node2vec [33], to derive representations from STRING networks.

Mashup firstly evaluates the diffusion states of nodes in the network by random walks with a

Fig 1. Flow-chart of STRING2GO-based protein function prediction method.

https://doi.org/10.1371/journal.pone.0209958.g001
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restart approach. Then the truncated singular value decomposition is applied to the diffusion

state matrix in order to learn a lower dimensional representation space that optimally approxi-

mates the original diffusion states information. The usefulness of the resulting network

embedding representations has been demonstrated for a range of functional classification

tasks, including function and genetic interaction prediction. As suggested, the best-performing

Mashup-derived representations are 800 dimensional and generated by the random-walk sam-

pling strategy with the restart probability of 0.5.

Analogously, Node2vec firstly obtains the node neighborhood information by truncated

random walks. Then a Skip-gram [34, 35] shallow neural network is used to generate a repre-

sentation space, where the nodes contain the maximum likelihood of preserving correspond-

ing node neighborhood information. In this work, the neighborhood information was

sampled through random walks of length ten, which were biased towards close neighbors

by setting the parameter q to 2. We also evaluate the performance of representations in differ-

ent dimensions, i.e. 32, 64, 128, 256 and 512, generated from all different STRING networks

[21, 22].

Deep maxout neural networks training

Deep Maxout Neural Networks (DMNNs) are used for learning the more abstract representa-

tions simultaneously encoding the PPI network information and the patterns of term co-

occurrence in the biological process functional domain. The network architecture was imple-

mented using the Keras package with Theano backend and consisted of three fully connected

hidden layers, followed by an output layer with as many neurons as the numbers of terms

selected for the biological process functional domain. Each hidden layer had batch-normalized

inputs [36], which were combined through maxout units [37], and were subject to dropout

[38] in the course of training. A sigmoid function was used to activate the output neurons.

To limit the computational requirements for model optimization, the initial 10-fold cross

validation (with random split of instances) experiments were run in order to identify the

best combination of optimizer (AdaGrad), number of maxout units (3), learning rate (0.05),

batch size (100 elements), and number of epochs (150), keeping fixed the weight initialisation

(Glorot uniform method) and the number of units in all hidden layers, by considering the

highest F1_GO scores for predicting all 204 BP terms. Subsequent training stages were aimed at

selecting the optimal dimensions of hidden layers that lead to the highest median F1_GO scores

(here rounded to two decimal places), from a limited set of options (300, 500, 700 and 1,000).

In addition, we also evaluate the predictive performance when using the same dimensions for

both input features and the 3rd hidden layer outputs. Note that, due to the well-known curse of

dimensionality issue [39], if more than two different dimensions of the 3rd hidden layer out-

puts obtain the same median F1_GO scores, we only choose the lowest ones as the optimal

dimensions.

Support vector machine training

Scikit-learn [40] was used to train a set of GO term-specific Support Vector Machines (SVMs)

with a radial basis function (RBF) kernel, the parameters of which were identified through a

grid search as those maximising the F1_GO score across the stratified 10-fold cross validation

experiments. To train each classifier, the set of positive instances consisted of the proteins

annotated with the target GO term t or its descendants, while the set of negative instances are

all remaining proteins not annotated with the target GO term or its descendants. Finally, the

well-known Platt scaling method [41] was used to transform the predictive scores of individual

Deep maxout neural networks improve protein function prediction accuracy based on protein interaction networks
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SVMs into a probability distribution of binary classes. The data and code can be accessed via

https://github.com/psipred/STRING2GO.

Results

We firstly report the experimental results about evaluating the predictive information included

in different STRING networks that are used for generating the raw network embedding repre-

sentations by two different methods, i.e. Mashup and Node2vec. Then we evaluate the predic-

tive performance of the STRING2GO-learnt functional representation (i.e. STRING2GOMashup

and STRING2GONode2vec) by comparing with their corresponding raw network embedding

representations. We also compare the performance of Mashup and Node2vec methods when

they are used to generate the raw network embedding representations or be the component

methods of STRING2GO to learn the functional representations. Finally, we further compare

all prediction methods involved in this work, also comparing with the PPI-homolog [16] and

Naïve methods [32].

Predictive power included in different STRING networks

To begin with, we compare the predictive power of different STRING networks by adopting

the Mashup or Node2vec-generated network embedding representations as the inputs

of DMNNs for predicting protein function (i.e. STRING2GOMashup+Sigmoid and STRING2-

GONode2vec+Sigmoid). Overall, the Combinedscore network-derived embedding representa-

tions show the best predictive performance among all different STRING networks-derived

ones when using either Mashup or Node2vec methods, while the Textmining network-

derived representations also obtain the competitive predictive accuracy. As shown in the 4th

and 7th columns of Table 1, the Combinedscore network-derived representations obtain

the highest median F1_GO (hereafter, denoted by ~F1 GO) scores (0.23 and 0.17) using Mashup

and Node2vec respectively. The Combinedscore network also contains the largest number

of proteins, interactions and the highest coverage (as shown in the columns 8-10 of Table 1),

when mapping the STRING network-included proteins to the training protein-set. The

Textmining network-derived representations obtain the second highest ~F1 GO score (0.22)

using the Mashup method, while also obtain the same highest ~F1 GO score (0.17) using the

Node2vec method. Moreover, in terms of the predictive information included in other com-

ponent networks, the Experimental network-derived embedding representations show the

Table 1. The optimal dimensions of raw network embedding representations and the corresponding 3rd hidden layer outputs (a.k.a. the STRING2GO-learnt func-

tional representations) with their corresponding predictive power for biological process terms prediction, and the main characteristics of different STRING

networks.

STRING

Networks

Mashup Node2vec No. Proteins No. Interactions Coverage on Training set

Input 3rd Hidden ~F1 GO Input 3rd Hidden ~F1 GO

Combinedscore 800 800 0.23 128 500 0.17 19247 8548002 93.4%

Textmining 800 700 0.22 128 1000 0.17 19088 7632934 93.3%

Experimental 800 700 0.19 128 1000 0.13 16858 3473862 90.4%

Coexpression 800 700 0.14 256 700 0.09 12774 1537924 72.0%

Database 800 700 0.11 128 700 0.04 7937 424860 56.9%

Neighborhood� 800 300 0.00 32 32 0.00 3514 152248 20.9%

Cooccurrence� 800 300 0.00 32 32 0.00 2754 47478 16.6%

Fusion� 800 300 0.00 32 32 0.00 1495 4120 9.7%

�: Note that those STRING networks obtain 0.00 of ~F1 GO scores with all different dimensions, only the lowest dimensions are reported.

https://doi.org/10.1371/journal.pone.0209958.t001
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third highest predictive accuracy, since they obtain sequentially higher ~F1 GO scores than

the ones derived by the Database and Coexpression networks respectively. Note that, the

embedding representations derived from Neighbourhood, Cooccurrence and Fusion net-

works show poor predictive performance, since their ~F1 GO scores are all equal to zero, and

the mapping coverages are all lower than 21.0%. Hereafter, we consider learning the func-

tional representations by STRING2GO only from those 5 networks including relatively rich

PPI information and high coverage.

We then report the optimal dimensions of network embedding representations derived by

Mashup and Node2vec methods from those 5 STRING networks. According to the suggestion

in [23], we define 800 as the optimal dimensions for the input network embedding representa-

tions derived by Mashup. In terms of the Node2vec-derived network embedding representa-

tions, as shown in the 5th column of Table 1, 128 are the overall optimal dimensions, since 4

out of 5 network-derived embedding representations in 128 dimensions obtain the highest

~F1 GO scores for predicting 204 biological process terms. We then report the optimal dimen-

sions of the STRING2GO-learnt functional representations (a.k.a. the 3rd hidden layer outputs

of DMNNs) w.r.t. the corresponding optimal dimensions of raw network embedding repre-

sentation inputs. Generally, STRING2GO encodes the functional predictive information in a

high dimensional representation space (ranging from 500–1000 dimensions), when using

either Mashup or Node2vec as the raw network embedding representation generation method.

As shown in the 3rd and 6th columns of Table 1, the optimal dimensions of the 3rd hidden layer

outputs vary between 500 to 1000. Recall that we also evaluate the cases when the dimensions

of the 3rd hidden layer outputs are the same to the dimensions of raw network embedding

representation inputs. None of the functional representations based on Node2vec-derived net-

work embedding representations obtain higher ~F1 GO scores when using the same dimensions

of inputs as the dimensions of 3rd hidden layer outputs, e.g. using 128 as the dimensions of

both representation inputs and the 3rd hidden layer outputs.

The functional representations learnt by STRING2GO encode higher

predictive power than the corresponding raw network embedding

representations

We evaluate the predictive performance of STRING2GO-learnt functional representations by

conducting pairwise comparisons with the corresponding raw network embedding representa-

tions respectively. Generally, in terms of GO term and protein-centric metrics, both STRING2-

GOMashup and STRING2GONode2vec functional representations obtain higher predictive

accuracy than Mashup and Node2vec-derived raw network embedding representations. In

detail, during the GO term-specific classifier training stage, as shown in Fig 2a–2e, both orange

and green bars are lower than other ones. This fact indicates better classifier training quality by

using STRING2GOMashup+SVM, STRING2GONode2vec+SVM, STRING2GOMashup+Sigmoid and

STRING2GONode2vec+Sigmoid than the ones obtained by Mashup+SVM and Node2vec+SVM,

when using all five different STRING networks to generate embedding representations.

The hold-out evaluation results further confirm that the STRING2GO-learnt functional

representations contain higher predictive information. As shown in Table 2, the ~F1 GO scores

obtained by STRING2GOMashup+SVM and STRING2GONode2vec+SVM reach to 0.270 and 0.182

respectively, whereas the ~F1 GO scores obtained by Mashup+SVM and Node2vec+SVM are

both equal to 0.000. Analogously, the ~MCCGO scores obtained by STRING2GOMashup+SVM

and STRING2GONode2vec+SVM reach 0.277 and 0.215 respectively. Both of them are higher

than the zero ~MCCGO scores obtained by Mashup+SVM and Node2vec+SVM. This pattern is
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consistent when adopting all other types of STRING component networks, except STRING2-

GONode2vec+SVM and Node2vec+SVM both obtain zero ~F1 GO and ~MCCGO scores when using

the Coexpression network to generate the raw embedding representations (as shown in

Table 2). In addition, both STRING2GOMashup+SVM and STRING2GONode2vec+SVM obtained

higher ~AUPRCGO scores than Mashup+SVM and Node2vec+SVM methods based on all five

different STRING networks. STRING2GOMashup+Sigmoid and STRING2GONode2vec+Sigmoid

also respectively obtain higher ~F1 GO, ~MCCGO and ~AUPRCGO scores than Mashup+SVM and

Node2vec+SVM based on all five different STRING networks. The scatter-plots in Fig 3 show

the pairwise comparisons of F1_GO scores obtained by different methods, and the dashed-lines

indicate the median values of difference between pairs of F1_GO scores. In detail, Fig 3a–3d

show that almost all dots (in blue) drop in the area above the diagonal, indicating higher F1_GO

scores for predicting the majority of BP terms by using the functional representations learnt by

STRING2GO based on the Combinedscore network by using either SVM or Sigmoid function

as the classification algorithm. As shown in Fig 3e–3t, this pattern is consistently observed

when applying on almost all other four different STRING networks, except the Coexpression

network that leads to competitive performance between STRING2GONode2vec and Node2vec,

since the dashed-lines in Fig 3s and 3t are almost overlapping on the diagonal. The Wilcoxon

signed-rank test results in S5–S7 Tables further confirm that the STRING2GO-learnt func-

tional representations obtain significantly higher GO term-centric F1_GO, MCCGO and

AUPRCGO scores than the raw network embedding representations.

From the perspective of protein-centric evaluation (i.e. considering the Fmax and Fτ

metrics), the STRING2GO-learnt functional representations also obtain higher predictive

accuracy based on the Combinedscore network. As shown in Table 3, the functional represen-

tations STRING2GOMashup and STRING2GONode2vec both obtain higher Fmax scores (i.e. 0.497

and 0.458 obtained by using SVM, 0.495 and 0.471 obtained by using Sigmoid function) than

the network embedding representations generated by Mashup and Node2vec (i.e. 0.470 and

Fig 2. ~F1 GO scores obtained by network embedding representations and the corresponding STRING2GO-learnt functional representations based

on (a) Combinedscore, (b) Textmining, (c) Experimental, (d) Database and (e) Coexpression networks by using SVM or Sigmoid function over

the 10-fold cross validation during the GO term-specific classifiers training stage.

https://doi.org/10.1371/journal.pone.0209958.g002
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Fig 3. F1_GO scores obtained by different network embedding representations and the corresponding STRING2GO-learnt functional

representations based on (a-d) Combinedscore, (e-h) Textmining, (i-l) Experimental, (m-p) Database and (q-t) Coexpression networks by using

SVM or Sigmoid function for classification.

https://doi.org/10.1371/journal.pone.0209958.g003
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0.444 obtained by using SVM). The precision-recall curves in Fig 4a also show that the

STRING2GO-learnt functional representations obtain higher precision and recall values

simultaneously, since the middle parts of red and blue curves locate in higher position than

the orange one, while the middle parts of grey and black curves also locate in higher position

than the green one. As shown in Table 3 and Fig 4b–4e, this pattern is consistent when adopt-

ing the other four types of STRING component networks to generate representations, except

Fig 4. Precision-recall curves of different methods and the Fmax scores obtained by the best-performing methods based on (a) Combinedscore, (b)

Textmining, (c) Experimental, (d) Database and (e) Coexpression networks.

https://doi.org/10.1371/journal.pone.0209958.g004
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STRING2GONode2vec+SVM obtaining lower Fmax scores than Node2vec+SVM based on the

Database and Coexpression networks. In terms of the predictive performance on the homo-

log-removal hold-out sets with the E-value threshold of 10−2, STRING2GOMashup+SVM and

STRING2GOMashup+Sigmoid both obtain higher Fmax scores than Mashup+SVM over all

STRING networks except the Coexpression network, while STRING2GONode2vec+Sigmoid also

outperforms Node2vec+SVM over five STRING networks and STRING2GONode2vec+SVM

obtains higher Fmax score than Node2vec+SVM based on the Combinedscore network. In

addition, all methods also obtain similar Fmax scores over the evaluations on different degrees

of homolog-removal hold-out sets, as reported in the S3 Table.

Analogously, the functional representations STRING2GOMashup and STRING2GONode2vec

obtain higher Fτ scores based on the Combinedscroe network (0.309 and 0.319 obtained by

SVM, while 0.312 obtained by Sigmoid function) than the raw network embedding representa-

tions generated by Mashup and Node2vec (0.290 and 0.293 by using SVM). This pattern is

consistent when using all other STRING networks, except the Database network which only

leads to higher Fτ score obtained by STRING2GONode2vec+Sigmoid than the one obtained by

Node2vec+SVM. In terms of the predictive performance on the homolog-removal temporal

validation protein-sets with an E-value threshold of 10−2, STRING2GOMashup+SVM and

STRING2GOMashup+Sigmoid outperform Mashup+SVM based on the Combinedscore, Text-

mining and Experimental networks. Analogously, STRING2GONode2vec+Sigmoid obtains the

same Fτ score to the Node2vec+SVM method based on the Combinedscore network and

higher Fτ scores over all other four STRING networks. STRING2GONode2vec+SVM also outper-

forms Node2vec+SVM based on the Textmining, Database and Coexpression networks. The

results obtained by all methods over the evaluations of different degrees of homolog-removal

temporal validation sets are also similar.

The raw network embedding representations derived by Mashup show

higher predictive power

We also compare the predictive performance of Mashup and Node2vec-derived network

embedding representations and the corresponding STRING2GO-learnt functional representa-

tions respectively. Generally, the raw network embedding representations derived by Mashup

and Node2vec methods obtain competitive predictive accuracy by using SVM as the classifica-

tion algorithm. To begin with, during the training stage, the ~F1 GO score obtained by Mashup

+SVM is higher than the one obtained by Node2vec+SVM based on the Combinedscore net-

work, since the orange bar is higher than the green one in Fig 2a. However, both Mashup

+SVM and Node2vec+SVM obtain poor predictive performance on the hold-out evaluation,

due to the zero ~F1 GO and ~MCCGO scores. But the statistical significance test results (see S5

and S6 Tables) show that the former still outperforms the latter. Those patterns are consistent

when using all other 4 types of STRING networks to generate the raw embedding representa-

tions, except the fact that there is no significant difference on the MCCGO scores obtained by

the above two methods based on the Coexpression network, as reported in Fig 2b–2e, Table 2,

S5 and S6 Tables. The Mashup+SVM method also obtains higher ~AUPRCGO scores and signifi-

cantly higher AUPRCGO scores over all 204 terms than Node2vec+SVM method based on four

STRING networks, as reported in Table 2 and S7 Table. In terms of the protein-centric evalua-

tion, Mashup+SVM obtains a higher Fmax score (0.470) than Node2vec+SVM (0.444). The

Combinedscore network-based precision-recall curves in Fig 4a confirm that the orange curve

locates in higher position than the green one. Those patterns are also consistent in cases when

using other four different STRING component networks to generate representations, as

shown in Fig 4b–4e. Mashup+SVM also obtains higher Fmax scores on the homolog-removal
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hold-out protein-sets based on the Combinedscore, Textmining and Coexpression networks.

However, Node2vec+SVM outperforms Mashup+SVM on the temporal validation. As

reported in Table 3, although the latter obtains higher Fτ score based on three STRING com-

ponent networks (i.e. Textmining, Database and Coexpression), the former obtains the highest

Fτ score (0.293) based on the Combinedscore network. Node2vec+SVM also obtains higher Fτ

scores than Mashup+SVM on the homolog-removal temporal validation protein-sets based on

the Combinedscore, Textmining and Experimental networks.

We then further conduct comparisons on predictive performance of two different

STRING2GO-learnt functional representations respectively based on Mashup and Node2vec-

derived raw network embedding representations. During the GO term-specific classifiers

training stage, STRING2GOMashup obtains higher ~F1 GO scores than STRING2GONode2vec

by using either SVM or Sigmoid function as the classification algorithm, based on the Combi-

nedscore and Coexpression networks. As shown in Fig 2a and 2e, where red and blue bars

are higher than the black and grey ones respectively. When using the other 3 STRING compo-

nent networks, STRING2GONode2vec obtains higher ~F1GO scores by using SVMs, whereas

STRING2GOMashup still outperforms the former by using Sigmoid function as the classifica-

tion algorithm.

The hold-out evaluation results in Tables 2 and 3 show a consistent pattern that

STRING2GOMashup obtains higher ~F1 GO, ~MCCGO and ~AUPRCGO scores (statistically signifi-

cant according to S5, S6 and S7 Tables) and Fmax scores than STRING2GONode2vec based

on the Combinedscore network by using either SVM or Sigmoid function, respectively. As

shown in Fig 4a, the majority parts of the red and blue curves clearly locate in higher position

than the black and grey ones. Those patterns are consistent when using the other 4 STRING

networks, as shown in Table 3 and Fig 4b–4e. Analogously, STRING2GOMashup also obtains

higher Fmax scores than STRING2GONode2vec on the homolog-removal hold-out sets based

on the Combinedscore, Experimental and Database networks by using either SVM or Sig-

moid function, respectively. However, STRING2GONode2vec obtains better predictive perfor-

mance during the temporal annotation validation, since the former obtains the highest Fτ

score (0.319) by using SVM (based on the Combinedscore network) among all methods

when adopting all different STRING networks. STRING2GONode2vec also obtains the overall

highest Fτ score (0.298) on the homolog-removal temporal validation based on the Textmin-

ing network.

The STRING2GO-learnt functional representations with support vector

machines obtain the highest accuracy on predicting 204 BP terms

We then compare all prediction methods discussed in previous sections, i.e. two types of

STRING2GO methods (i.e. STRING2GOEmbedding+SVM and STRING2GOEmbedding+Sigmoid)

adopting two types of raw network embedding representations (i.e. the ones generated by

Mashup and Node2vec respectively), and the methods that only exploit the raw network

embedding representations to make predictions by using SVM as the classification algorithm.

We also compare those methods with the PPI-homolog [16] and Naïve prediction method

[32]. The former makes predictions of target proteins’ GO term annotations by transferring

corresponding annotations of PPI partners’ homologs defined by the BLAST search. The latter

makes predictions by considering the annotation frequency in the database as the prior knowl-

edge. Overall, STRING2GOEmbedding+SVM is the best-performing method according to both

the GO term and protein-centric metrics. During the GO term-specific classifiers training

stage, STRING2GOMashup+SVM and STRING2GONode2vec+SVM obtain almost the same highest

~F1 GO scores among all prediction methods by using all different STRING networks. As shown
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in Fig 2, the latter obtains the highest ~F1 GO score (0.824) based on the Textmining network,

while the former obtained almost the same highest ~F1 GO score (0.822) based on the Combi-

nedscore network. The hold-out evaluation results also confirm that STRING2GOMashup+SVM

obtains the highest ~F1 GO score (0.275) by using the Textmining network, while also obtains

the significantly higher F1_GO scores than other methods basing on the Combinescore

network (see the Friedman test with Holm post-hoc correction results in S8 Table). STRING2-

GOMashup+SVM also obtains the overall highest MCCGO score (0.277) based on the Combined-

score network and significantly higher MCCGO scores over all 204 GO terms than all other

methods based on the Textmining network (see the Friedman test with Holm post-hoc
correction results in S9 Table). In terms of the protein-centric evaluation metrics, STRING2-

GOMashup+SVM obtains the highest Fmax score (0.497) based on the Combinedscore network

and higher Fmax scores than all other methods based on all other STRING networks except

the Database network. It also obtains the second highest Fmax score on the homolog-removal

hold-out evaluation protein-set based on the Combinedscore network. In terms of the Fτ score

metric, STRING2GONode2vec+SVM obtains the highest Fτ score (0.319) by using the Combined-

score network among all network embedding-based prediction methods based on all different

STRING networks.

The second best performing method is STRING2GOEmbedding+Sigmoid. STRING2-

GOMashup+Sigmoid obtains higher ~F1 GO scores than either Mashup+SVM or Node2vec

+SVM during the classifier training stage. It also obtains the second highest ~F1 GO scores

during the hold-out evaluation based on 2 out of 5 networks (except the case when

STRING2GOMashup+Sigmoid obtains the highest ~F1 GO score based on the Experimental,

Database and Coexpression networks). It also obtains the overall second highest ~MCCGO

score (0.273) based on the Textmining network. In terms of the AUPRC metric, STRING2-

GOMashup+Sigmoid obtains the overall highest ~AUPRCGO score (0.235) based on the Textmin-

ing network, and significantly higher AUPRC scores over all 204 BP terms than other

methods based on the Combinedscore, Textmining and Experimental networks (see the

Friedman test with Holm post-hoc correction results in S10 Table). From the perspective

of protein-centric metrics, STRING2GOMashup+Sigmoid obtains the second highest Fmax

based on 3 out of 5 STRING networks, and the highest Fmax score (0.464) based on the

homolog-removal hold-out set with the Combinedscore network. Analogously, STRING2-

GONode2vec+Sigmoid also obtains the overall highest Fτ score (0.298) over all prediction meth-

ods based on the homolog-removal temporal validation protein-set with the Textmining

network.

In addition, all of those methods discussed above obtains higher Fmax scores than the PPI-

homolog and Naïve prediction methods based on the Combinedscore and Textmining net-

works. All those methods also obtain higher Fτ scores than the Naïve prediction method based

on the Combinedscore and Textmining networks, whereas the PPI-homolog method obtains

the overall highest Fτ score (0.363).

Discussion

Overall, as discussed in previous sections, the functional representations learnt by

STRING2GO show substantial improvement on the predictive power of the raw network

embedding representations. We further investigate the improvement of predictive power of

the STRING2GO-learnt functional representations by evaluating the enlarged distances

between two classes of training protein samples. We firstly calculate the Euclidean distance

between the centroids of two classes by using the Mashup-based representations’ values
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standardized into the range of (0,1) in the same dimensional space, i.e. 800 dimensions for

both Mashup and STRING2GOMashup. Then we calculate the correlation coefficient between

the distances and F1_GO scores obtained by hold-out evaluation. As shown in Fig 5a, the x axis

denotes the distance between two classes calculated by using either the raw Mashup-derived

network embedding representations (blue), or the corresponding functional representations

(red) STRING2GOMashup, based on the Combinedscore network, while the y axis denotes the

corresponding F1_GO score obtained by adopting those different representations working with

SVMs to predict individual BP terms. It is obvious that the distances between two classes of

proteins for individual GO terms are all enlarged by STRING2GO, while the correlation coeffi-

cient values between distances and F1_GO scores for both types of representations are positive,

indicating that the larger distances lead to higher predictive accuracy.

We also display an example of the increased distance between two classes of proteins when

predicting the term GO:0090150, which shows the highest improvement on the classifier train-

ing quality obtained by using STRING2GOMashup+SVM, compared by using Mashup+SVM. Fig

5b and 5c respectively show the 2-D visualization of raw Mashup-derived network embedding

representations and the corresponding STRING2GO-learnt functional representations after

transforming by t-SNE [42]. The red dots denote the protein samples belonging to class

“Annotated”, while the green dots denote the protein samples belonging to class “Not-anno-

tated”. The red dots are distributed in the similar scale of green dots in Fig 5b, whereas the

most of red dots are clustered in the right side in Fig 5c. This fact indicates that the functional

representations successfully encode higher discriminating power against two classes of protein

samples.

Conclusion

In this work, we present a novel deep learning-based protein function prediction method

STRING2GO, which successfully learns a novel type of functional representations to train

the down-stream classifiers for making predictions. STRING2GO shows the highest accuracy

when predicting biological process protein functions, compared with other state-of-the-art

network embedding representation-based protein function prediction methods. Based on

this STRING2GO learning framework, there is potential for further improving the predictive

Fig 5. (a) Linear relationship between distances of two classes protein samples and F1_GO scores obtained by Mashup-derived Combinedscore

network embedding representations and the corresponding functional representations on Hold-out set testing (b) The 2D space visualization of

distribution of protein samples belonging to GO:0090150 using the Mashup-derived network embedding representations and (c) the

STRING2GOMashup functional representations transformed by t-SNE.

https://doi.org/10.1371/journal.pone.0209958.g005
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accuracy by integrating representations from other data sources with the current PPI network

embedding representations in a future study.
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