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RegEnrich gene regulator enrichment analysis
reveals a key role of the ETS transcription factor
family in interferon signaling
Weiyang Tao 1,2✉, Timothy R. D. J. Radstake1,2 & Aridaman Pandit 1,2✉

Changes in a few key transcriptional regulators can lead to different biological states.

Extracting the key gene regulators governing a biological state allows us to gain mechanistic

insights. Most current tools perform pathway/GO enrichment analysis to identify key genes

and regulators but tend to overlook the gene/protein regulatory interactions. Here we pre-

sent RegEnrich, an open-source Bioconductor R package, which combines differential

expression analysis, data-driven gene regulatory network inference, enrichment analysis, and

gene regulator ranking to identify key regulators using gene/protein expression profiling data.

By benchmarking using multiple gene expression datasets of gene silencing studies, we found

that RegEnrich using the GSEA method to rank the regulators performed the best. Further,

RegEnrich was applied to 21 publicly available datasets on in vitro interferon-stimulation of

different cell types. Collectively, RegEnrich can accurately identify key gene regulators from

the cells under different biological states, which can be valuable in mechanistically studying

cell differentiation, cell response to drug stimulation, disease development, and ultimately

drug development.
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The advances in high throughput technologies such as
genomics, transcriptomics, and proteomics have provided
unprecedented opportunities to mechanistically under-

stand the genetic and epigenetic alterations in diseases, cellular
development, cell stimulation, and immune activation1,2. Typi-
cally, alterations in the expression of key genes and proteins play
a central role in many of these biological states. Thus, to
understand the differences between these states, one of the fun-
damental steps is to identify a set of genes or proteins that are
differentially expressed3. To understand the underlying biological
process and functions of these molecules, annotation enrichment
methods, such as pathway and gene ontology (GO) term
enrichment, have been used widely4. Although the enrichment
analysis provides crucial clues about the underlying biological
processes and pathways, the lack of information about the
underlying regulation hinders us to mechanistically understand
how these biological states can be achieved.

To study the function, regulation, and dynamics of individual
genes (or proteins) in a complex biological system, network
biology is emerging as an important tool5. Several studies have
demonstrated that constructing gene/protein interaction net-
works allows us to gain important insights into the regulatory
mechanisms that govern different biological states, including
disease, cellular activation, and differentiation6,7. In a gene/pro-
tein interaction network, densely connected genes (or hub genes)
are crucial for the network’s integrity and the corresponding
biological state6,7. However, considering only topological para-
meters (such as hubness or degree) of a network may overlook
key regulators5. So, to gain regulatory insights, we should con-
sider both network topology and the corresponding alterations in
gene or protein expression.

Transcription factors and co-factors (TFs) can directly (and/or
indirectly) regulate the expression of multiple target (and/or
downstream) genes and proteins8–10. Some studies took advan-
tage of curated TF–target networks11–13, or predicted network
based on ChIP-seq data14,15 and used Fisher’s exact test and other
enrichment algorithms to identify key/master regulators of the
genes of interest16–18. However, current curated networks are
incomplete, and increasing studies have shown that regulatory
interactions may differ over time, upon different conditions and
cellular states in the same organism8,19,20. So, analyses based on
these incomplete static networks might not be sufficient to unveil
functional regulatory patterns in complex biological processes.

State/cell/condition-specific gene regulatory network can
directly be inferred from the gene or protein expression data
(data-driven network)8,21. Using these data-driven networks and
results from differential expression analyses, one can deduce key
regulators. For example, ARACNE and ARACNe-AP, two
packages based on ARACNe algorithm, have been used in the
reverse engineering field, reconstruct a gene regulatory network
from gene expression profile datasets based on mutual
information22,23. NeTFactor algorithm uses this type of network
and applies topological, statistical, and optimization methods to
identify key regulators24. An R package called VIPER takes
advantage of this network and uses t-statistics (or other mea-
surements) by comparing gene expression of different conditions
to compute the final enrichment p values for TFs based on ana-
lytic rank-based enrichment analysis (aREA) algorithm and a null
model generated by sample bootstrapping25. VIPER has been
successful in identifying master regulators in many studies26–30.
However, it currently utilizes the network reverse-engineered by
ARACNe that typically requires a large number of samples, which
may not always be fulfilled, to successfully build a robust network,
thus hampering VIPER’s broader application.

Here, we developed “RegEnrich”, an open-source R package for
gene regulator enrichment analysis (Fig. 1). The RegEnrich

pipeline aims to identify the key regulators based on their dif-
ferential expression and enrichment of their potential down-
stream targets from a given gene set. Because the gene regulators
do not act alone but function as part of a complex network, by
using RegEnrich, one can refine a key gene regulatory network to
study the biological process and visualize the derived network.

Results
Time consumption and memory usage by RegEnrich. The most
time- and memory-consuming procedure of the RegEnrich
pipeline is inferencing a regulator-target network from the gene
expression data. Here, we benchmarked the time consumption
and memory usage of different methods in the RegEnrich package
using Intel® Xeon® Processors with 1, 4, 8, and 16 cores on
CentOS Linux 7 operating system on high-performance com-
puting facility at University Medical Center Utrecht (Fig. 2 and
Supplementary Fig. 1). And the gene expression data were
simulated with different numbers of samples (10, 20, 50, 100 for
the COEN method and 50, 100, 200 for the random forest
method (GRN)) and different numbers of genes (from 2000 to
40,000). Overall, the speed of both methods decreased with the
increase of the number of genes, and the speed was also depen-
dent on the sample size for only the GRN method (Fig. 2a). More
specifically, the consumed time of the COEN method increased
quadratically with the number of genes, while independent of the
sample size. The COEN method was around 1 ~ 100 times faster,
compared to the GRN method, when the number of genes was
below 20,000, and the number of samples was over 50. However,
since the GRN method is linearly, rather than quadratically,
dependent on the number of genes, The COEN method spent
more time when the number of genes was above 25,000 and the
sample size was below 100. Network construction using the GRN
method running on 4, 8, and 16 CPU cores was on average about
2, 4, and 8 times faster than the single-threading implementation,
respectively (Supplementary Data 1 and Supplementary Fig. 1).

The maximum memory usage of the COEN method again
increased quadratically with the increase of the number of genes
and independent with the number of samples (Fig. 2b). Given the
same size of the simulated expression data, the memory used by
the COEN method was more than that by the GRN method in
almost all circumstances. In general, using a dataset of 50 samples
based on 1 CPU core, when constructing a protein-coding
network, which comprises about 2 × 104 genes, it costs ~3.4 h
(38.5 Gb) and ~4.1 h (8.2 Gb) by the COEN and by the GRN
method, respectively. And it costs 1.6 h (7.8 Gb) by the GRN
method using 4 CPU cores. The figure may be different
depending on the computing power of the processors, but the
order of magnitude will less likely change. So, the users can
roughly expect the time and memory usage when performing the
RegEnrich analysis according to Fig. 2 and Supplementary Fig. 1
and Supplementary Data 1.

Comparisons of key regulators obtained by different methods.
Increasing studies predict key gene regulators by the hubs in a
network, which is defined by topological features, such as degree
and closeness centrality31,32. The degree of a node is the total
number of nodes connected to this node in a network. The out-
degree of a node is the number of nodes pointed by this node in a
directed network. The closeness of a node is defined as the
reciprocal of the sum of the shortest path length between this
node and all other nodes in the network33. And the out-closeness
of a node is defined as the reciprocal of the sum of the shortest
path length from this node to all other nodes in a directed
network.
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We first checked how many key/master regulators identified by
the RegEnrich package are hubs defined by the network
topological properties. We downloaded a publicly available
RNA-sequencing transcriptomic dataset, a total of 97 samples,
from the Gene Expression Omnibus (GEO) database34. In that
study, peripheral blood mononuclear cell (PBMC) samples from
29 patients with acute Lyme disease and 13 healthy controls were
used to investigate longitudinal changes of the transcriptomes
from the time of diagnosis (V1) to immediately after the

completion of a 3-week course of doxycycline treatment (V2),
and to 6 months after the completion of treatment (V5)34. Here,
our interest is to investigate which regulators played the
important role in regulating the transcriptomic changes of
patients between V1 and V2. Thus, we retained 26 paired
RNA-seq samples (three are removed because of quality control
according to34) on V1 and V2 for RegEnrich analysis. And the
network hubs are identified by ranking out-degree and out-
closeness of the network generated by RegEnrich. As a result, we
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Fig. 1 The analytic workflow of RegEnrich package. RegEnrich consists of four major steps: differential expression analysis, regulator-target network
construction, enrichment analysis, and regulator ranking and visualization.
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Fig. 2 Time consumption and memory usage by RegEnrich. With one CPU core, (a) the time consumed and (b) maximum memory used by RegEnrich
when analyzing a gene expression dataset with different numbers of genes (ranging from 2000 to 40,000) and different numbers of samples (ranging
from 10 to 100 and from 50 to 200 for COEN and GRN network, respectively).
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obtained three sets of hubs defined by 50 regulators with the
highest out-degree (degree hubs), out-closeness (closeness hubs),
or RegEnrich ranking score (RegEnrich key regulators). We found
that 20% (10) of regulators were overlapping between degree hubs
and closeness hubs, while RegEnrich key regulators were barely
overlapping with degree hubs or closeness hubs (Fig. 3a).

Given the successful applications of the VIPER package in
identifying master regulators in studying many biological
questions26–30, we subsequently checked how many master
regulators identified by the VIPER package are network hubs.

A gene regulatory network is built based on those 26 paired
RNAseq samples by the ARACNE-AP package and we applied
out-degree, out-closeness, and the VIPER package to identify
hubs (and master regulators) in this network. Similarly, a little
more overlapping regulators were observed between degree hubs
and closeness hubs in the network constructed using the
ARACNE-AP package, and these hubs are also barely the key
regulators identified by the VIPER package (Fig. 3b). Different
network-inferencing methods and enrichment methods within
RegEnrich showed consistent top-ranked regulators (Fig. 3c, d), in
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which ~40% were also identified by VIPER (Fig. 3c). Altogether,
both RegEnrich and VIPER tend to rank the nonhub regulators to
be the key regulators. Using the network reverse-engineered from
the full dataset of all 97 samples in34 did not show the exactly the
same results but still ranked the nonhub regulators to be the key
regulators (Supplementary Fig. 2). These results suggest that
looking for a gene/regulator with a high degree or other centrality
parameters may not be ideal for identifying key gene regulators in
every biological process.

Although ~40% of regulators were commonly ranked in the
top 50 regulators by both RegEnrich and VIPER, most of the top
10 regulators identified by these two packages are unique
(Fig. 3d). Clearly, the expression of the three topmost-ranked
regulators (CREG1, DEK, and E2F2) identified by RegEnrich was
differential between V1 and V2 and showed a very similar pattern
to that of corresponding targets (Fig. 3e and Supplementary
Fig. 3). Although the expression of three topmost-ranked
regulators identified by VIPER was also differential, only the
expression of the targets of ZFP36L1 and CNOT7 was modestly
correlated with that of the regulators themselves (Fig. 3f). One
may argue that it is inevitable that the expression of a regulator
and its targets are highly correlated in COEN networks and this
correlation may not hold for the network that was built by
ARACNE-AP using mutual information. However, such correla-
tions between the regulator and its targets were still observed
when the network is built using random forest, which is also a
nonlinear method (Supplementary Figs. 3 and 4). Thus,
RegEnrich can successfully, as intended, identify the key
regulators that both their expression and their targets’ expression
associate with the biological process of interest.

RegEnrich can identify the key regulators in gene-silencing
studies. RNA interference (RNAi)-mediated gene-silencing has
been widely used to study the biological function of the silenced
gene. In a gene regulator silencing experiment, the successfully
silenced gene is typically the key regulator that has been mal-
functioned. The performance metrics of RegEnrich and VIPER
were compared by the ability to rank the silenced gene as one of
the top key regulators. Here nine gene-silencing experiments
from four independent datasets16,17,35,36 were used to benchmark
RegEnrich using COEN network with either FET or GSEA
enrichment methods, and VIPER using the network built by the
ARACNE-AP package. Multiple cell lines/types, different silenced
genes, and varied numbers of samples were deliberately included
in these datasets to evaluate the bias induced by these variables

(Table 1). RegEnrich with either FET or GSEA enrichment
method outperformed VIPER in all these datasets, and within
RegEnrich, GSEA outperformed FET in most cases. For example,
using the GSEA method, STAT3 and FOXM1 were ranked as the
top key regulators when STAT3 and FOXM1 were silenced in the
BTIC and ST486 cell lines, respectively (Table 1). STAT3 and
FOXM1 were also ranked high (the second key regulators) in
these experiments when we applied RegEnrich with the FET
method. Interestingly, in the GSE17172 dataset, although FOXM1
was not ranked as the first regulator using RegEnrich FET
method, other two genes (FOXN3 and FOXG1) from the same
FOX transcription factor family were ranked as the first and
fourth regulator, respectively (Supplementary Table 1). This
implies that at least several members of the FOX family were
perturbed by FOXM1 silencing due to either off-targeting or
downstream transcriptional signaling and can be inferred by
RegEnrich. It may also attribute to the “pleiotropy of regulators”25

or “shadow effect”17, meaning that some of the transcriptional
targets of FOXM1 are also part of the regulons of other FOX
family members. By applying VIPER to this dataset, STAT3 was
ranked as the 7th regulator. However, FOXM1 was failed to be
identified by using VIPER maybe because the sample size is small
(Table 1).

Similarly, STAT3 and CEBPB in SNB19 cell line, CHAF1A in
IMR32 cell line, and BCL6 in Burkitt lymphoma cell line were
identified by RegEnrich, with the GSEA method, as one of the top
20 key regulators in each corresponding dataset. The rankings of
these regulators were considered high because these were
regulators popping up from a total list of 1712 regulators in
these RegEnrich analyses. Meanwhile, we also assessed the
RegEnrich using two datasets, where STAT3 and CEBPB were
tried to be simultaneously silenced in either BTIC or SNB19 cell
lines. Even though these two genes were intended to be silenced,
only one gene was successfully silenced. More specifically, STAT3
but not CEBPB was successfully silenced in the BTIC cell line, and
CEBPB but not STAT3 was successfully silenced in the SNB19 cell
line. Thus, only STAT3 and CEBPB were expected to be top-
ranked as key regulators in the BTIC cell line and SNB19 cell line,
respectively, which were the results returned by RegEnrich
(Table 1). To evaluate RegEnrich’s ability to filter the false-
positive results, we included a dataset where CEBPB was not
successfully silenced in the BTIC cell line. All three approaches
did not rank CEBPB as one of the top regulators (Table 1).

Since the ARACNe algorithm needs a large sample size to
reverse-engineer a robust gene regulation network, and the
sample sizes of the datasets here are small, we then used the

Table 1 The transcription regulators identified by RegEnrich and VIPER in gene-silencing studies*.

GEO accession Silencing
technology

No. of
samples

Cell line Silenced gene(s) Ranking

RegEnrich (FET) RegEnrich (GSEA) ARACNE + VIPER

GSE1911416 shRNA 44 BTIC STAT3 2 1 7
GSE1717217 shRNA 9 ST486 FOXM1 2 1 –
GSE1911416 shRNA 12 SNB19 STAT3 14 5 n/a
GSE235065 siRNA 8 Burkitt lymphoma

cell line
BCL6 32 11 –

GSE1911416 shRNA 12 SNB19 CEBPB 50 24 n/a
GSE1911416 shRNA 44 BTIC STAT3 & CEBPB 2 & 285 1 & 957 6 & n/a
GSE1911416 shRNA 12 SNB19 STAT3 & CEBPB 365 & 6 38 & 11 n/a & n/a
GSE5197835 shRNA 9 IMR32 CHAF1A 10 & 29# 15 & 46# –
GSE1911416 shRNA 44 BTIC CEBPB 913 793 n/a

* “n/a” means no result for the regulators of interest obtained after ranking procedure. “–” indicates that ARACNE failed to construct a network based on the dataset. “#”means the ranking on day 5 and
day 10 according to the experimental setting.
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publicly available network to perform master regulator inference
with the viper package (see supplementary methods). RegEnrich
(GSEA) out-performed the VIPER algorithm except in one of the
experiments (Table 1 and Supplementary Table 2). Altogether,
RegEnrich with COEN network and GSEA method is robust to
identify the key regulators in well-controlled in vitro experiments
even when the sample size is small.

RegEnrich retrieves interferon related regulators. In human,
there are three types of interferons (IFN): type I IFNs (IFNα, β, ε,
κ, and ω); type II IFN (only IFNγ); and type III IFNs (IFNλ1, λ2,
λ3, and λ4)37,38. Due to the great therapeutic value of IFNs
against virus infection and cancer, multiple studies have been
performed to study the regulatory mechanisms of IFNs and
interferon-stimulated genes (ISGs). For example, it has been
revealed that extracellular IFNs activate cells by a signal trans-
duction cascade, including activating transcription factors STATs
and/or IRFs, leading to the induction of hundreds of ISGs, and
forming a frontline of defense against virus infections37,38.
However, the mechanisms underlying the regulation of most of
these ISGs may vary between different cell types and tissues and
remain incompletely understood.

Given the potential of identification of key regulators by
RegEnrich in a biological process, we sought to identify the key
regulators by which IFNs stimulated cells to express ISGs. We
retrieved and analyzed 11 microarray or RNAseq datasets from
the GEO database, comprising 21 in vitro experiments, in which
different cells were stimulated by either type I or type II IFN
(Table 2). We found that RegEnrich identified STAT transcription
factor family members, including STAT1 and STAT2, in most
IFN stimulation experiments, which is supported by the well-
known IFN signaling pathway38. In addition, IRF (interferon
regulatory factors) transcription factor family members, such as
IRF9 and/or IRF7, were also identified as key regulators in a
majority of the type I IFN stimulation experiments (Table 2).
These IRFs have been reported to play important roles in
producing type I IFN downstream receptors that detect viral RNA
and DNA, and in regulating interferon-driven gene expression39.

Recent work has shown that ELF1 (a member of the ETS
transcription factor family) is induced by IFN, but does not feed-
forward to induce interferons, and transcriptionally programs
cells with potent antiviral activity40. Interestingly, ELF1 was
identified by RegEnrich as one of the key regulators in most of the
type I IFN stimulation experiments (Table 2). We further
investigated whether any other members of the ETS transcription
factor family were also identified by RegEnrich. Interestingly, we
found another ETS transcription factor family member, ETV7, in
the lists of top regulators from more than half of type I IFN
stimulation experiments and from almost all type II IFN
stimulation experiments. A more recent study showed that
ETV7 preferentially targeted a subset of antiviral ISGs crucial for
IFN-mediated control of viruses, such as influenza and SARS-
CoV-241.

Different cells may respond differently to IFN stimulation with
different durations. We further investigated the common
regulators involved in IFN stimulation among different cells.
Thus, we summarized the most common regulators within type I
and type II IFN stimulation experiments. It showed that the ISGs
of type I IFNs were strongly regulated by STAT family, TRIM
family, IRF family, ETS family, SP100/SP140 family (transcrip-
tional coactivator of ETS family TFs). Similarly, type II IFN ISGs
were largely regulated by STAT family, IRF family, ETS family,
MCM family, SP100/SP140 family (Table 2 and Fig. 4). One of
the most commonly identified regulators of type II IFN ISGs was
the MHC class II transactivator (CIITA), which has been very

recently shown with the potential to induce cell resistance to the
Ebola virus and SARS-CoV-242. Altogether, these results suggest
that RegEnrich successfully identified key regulators related to
IFN signaling in IFN stimulation experiments.

Discussion
High throughput technologies like microarray, RNA-seq, and
protein mass spectrometry offer easy, fast, and affordable profil-
ing of the gene/protein expression. These technologies generate
massive data facilitating us to study the alterations in gene/pro-
tein expression, thereby helping us identify the biomarkers for
diseases and biological states. However, it is still challenging to
predict which genes play major roles in these biological contexts.
To address this problem, we developed RegEnrich, an open-
source R/Bioconductor package integrating differential gene
expression analysis, network inference, enrichment analysis, and
regulator ranking. RegEnrich is able to identify the key regulators
by providing gene/protein expression data from multiple high
throughput technologies. We benchmarked the speed and max-
imum memory usage of network inference methods in the
RegEnrich, which shows that the COEN method runs much faster
than the random forest method does when the number of genes is
below 20,000, and the speed of the multithreaded random forest
version is significantly improved. Traditionally, COEN is con-
sidered a method for depicting linear relations between genes,
while the random forest for nonlinear relations. Strikingly, in the
Lyme disease transcriptomics dataset, the results from the COEN
and GRN methods were consistent. This might be because the
COEN methods re-evaluate the edge weights by considering the
information of neighbor nodes; as a result, such a network was
constructed not only based on a linear relationship.

Since hub nodes have been found to be important in many
networks, hub genes that are defined by gene regulatory network
properties are also expected to be crucial in biology and have
drawn much attention over the last decades43. We compared the
hubs identified by the network properties, i.e., degree and close-
ness, with the key regulators by RegEnrich. Interestingly, only a
very small number of the key regulators from either RegEnrich or
VIPER were hubs (Fig. 3a, b and Supplementary Fig. 2). One
possible reason is that these hub genes are so important in
maintaining the major functions of cells that too strong pertur-
bations of these hubs could be fatal for cells44. Therefore, these
hub genes are not necessarily the key gene expression regulators
in a specific context. For example, Gaiteri et al. showed that
differentially expressed genes primarily reside on the periphery of
co-expression networks for neuropsychiatric disorders such as
depression, schizophrenia, and bipolar disorder45.

As one easy-to-use software/package whose functionality was
similar to RegEnrich’s, the VIPER R package was used to compare
with RegEnrich to find the final key regulators. According to the
VIPER package instruction on Bioconductor, VIPER needs an
ARACNE network to perform the analysis. Such network is
generated by an independent package, such as minet46, GPU-
ARACNE47, and ARACNe-AP23. These packages either are not R
packages or fail to construct the network when the sample size is
small. In contrast, RegEnrich is an all-in-one package, and a
detailed tutorial document is provided along with RegEnrich,
which facilitates users to use it more easily. More importantly,
RegEnrich can identify the key regulators whose expression and
targets’ expression correlate with the experimental phenotypes. In
addition, RegEnrich is able to find key regulators not only between
two conditions but also in a time series experimental setting. Since
RegEnrich is modular and is intended to be a flexible pipeline, we
allow users to provide custom regulator lists and to have options
for multiple methods at different steps in case needed.
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Since the datasets in the benchmarking analyses were of a small
sample size. We asked whether the sample size influences the
performance of the RegEnrich pipeline and the VIPER algorithm.
To answer this question, we generated a dataset comprising of N
samples (N= 100), simulating the gene expression of two cell
states. These samples were evenly assigned into two groups. We
first assumed that all samples had m common gene regulators
(m= 500), of which k were bona fide key regulators (k= 20). The
expression of each bona fide key regulator followed a Gaussian
distribution in each group and was on purpose simulated to be
differential between two groups. While the expression of the other
regulators followed a Gaussian distribution with the same mean
and standard deviation in each group, thus not necessarily dif-
ferential between the two groups. Then we assumed that each
regulator had t targets (t is a random number ranging from 3 to
50). The expression of the targets of a certain regulator was
dependent on the expression of this regulator (the expression of
this regulator plus Gaussian-distributed values). This resulted in
an expression dataset with M genes (M= 13,789) and N samples
(N= 100). Subsequently, we reduced the sample size by a down-
sampling strategy, resulting in datasets of 50, 20, 10, and 6 sam-
ples. Based on these datasets, we checked whether those bona fide
key regulators that we predefined were top-ranked by the
RegEnrich pipeline. The results showed that with the decrease of
the sample size, less bona fide key regulators were top-ranked
(Supplementary Fig. 5), meaning that the performance of the
RegEnrich pipeline could be improved by increasing the sample
size. As expected, the random forest (GRN) method in RegEnrich
and ARACNe failed to build a network when the sample size was
smaller than 20. Next, we checked whether the performance
would be increased when we used the network that was built
based on the complete dataset (all 100 samples) (Supplementary
Fig. 6). Indeed, all methods showed a higher performance.
Although we observed that the ARACNe + VIPER packages
showed a slightly better performance when the sample size was
smaller than 20, the network was built based on the full dataset of
100 samples, which is an ideal scenario and hard to achieve in

reality. Thus, we believe that RegEnrich is important especially in
the area where not so much gene expression data are available.

The regulation of genes is a very complex process, in which
many aspects affect the expression of a gene, such as the acces-
sibility of chromatin, single nucleotide polymorphisms, DNA
modifications, histone modifications, the expression of its
upstream regulators, RNA degradation, and post-translational
modifications. Thus, as one of the major steps of the RegEnrich
pipeline, assuming the key regulators to be differentially expres-
sed between different biological states may not hold in all cir-
cumstances. RegEnrich would be failed to predict those regulators
whose post-translational modifications but not gene expression
changes regulate their downstream gene expression. In addition,
an accurate gene regulatory network is very important in iden-
tifying the key regulators25. RegEnrich inferred the data-driven
network by only gene/protein expression data by default. Glass
et al. have shown that integration of protein-protein interaction,
protein-gene interaction, and gene expression can increase the
accuracy of regulatory network inference48. Currently, we provide
an option for the users to provide their gene regulatory network,
which can be derived from other epigenetic datasets such as
ChIP-seq, ATAC-seq data, protein-protein interactions, etc., thus,
granting RegEnrich an ability to integrate multi-omic data.

By analyzing the datasets of dozens of IFN-stimulation
experiments, RegEnrich identified STAT and IRF transcription
factor family members, including STAT1, STAT2, IRF9, and IRF7,
which have been extensively shown to play important roles in
IFN signaling pathways38,39. Meanwhile, RegEnrich also identified
several ETS transcription factor family members, such as ELF1
and ETV7, as key regulators in IFN signaling. Interestingly, ELF1
transcriptionally program cells with potent antiviral activity and
ETV7 targeted antiviral ISGs crucial for IFN-mediated control of
viruses, including influenza and SARS-CoV-240,41. These antiviral
activities are typically the fundamental role of IFN in innate
immunity. By analyzing the most commonly top-ranked reg-
ulators, RegEnrich predicted a list of candidate key regulators,
such as CIITA and SP100/SP140 family members. Given that
CIITA has been recently reported with antivirus ability42, further
study may be carried out to investigate the antivirus potential of
SP100/SP140 family members, such as SP100 and SP110, which
might facilitate the mechanistic studies of IFN-ISG signaling and
ultimately drug development.

Recently, using the RegEnrich pipeline, we predicted a network
of key regulators that leads monocyte-derived dendritic cells
(moDCs) to differentiate into a different trajectory upon
CXCL4 stimulation compared to the moDCs without
CXCL4 stimulation. We also experimentally validated the
RegEnrich pipeline’s prediction by silencing one of the top-ranked
regulators in the predicted network, i.e., CIITA49. More recently,
we studied the mechanism of human T regulatory (Treg) cell
programming under inflammatory conditions. Using RegEnrich,
we predicted a network of key regulators important for effector
Treg differentiation, including the vitamin D receptor (VDR),
which is further validated by H3K27ac and H3K4me1 ChIP-seq
experiments50. These two independent experimental studies
support that RegEnrich is able to accurately rank the key gene
regulators that are mechanistically involved in immune cell
development and functions.

Understanding the key regulators between different biological
states is essential for gaining mechanistic insights, designing
functional experiments, and rational drug development. To this
end, here, we presented RegEnrich, a Bioconductor R package for
inference of key regulators in biological conditions. There are four
major steps to obtain the list of key regulators in RegEnrich, i.e.,
differential expression analysis, regulator-target network infer-
ence, enrichment analysis, and regulator ranking. For differential
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Fig. 4 The genes consistently identified as key regulators. Key regulators
in (a) type I interferon stimulation and (b) type II interferon stimulation
datasets. The full list has been shown in Table 2. The top 35 regulators in
each dataset were included as key regulators, and only the regulators
identified in more than 25% of datasets were shown.
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expression analysis, the methods in DESeq2 and limma packages
are provided, which grants RegEnrich the ability to predict the key
regulators not only for gene expression data of two conditions but
also for time series data. Meanwhile, two regulator-target network
inference methods (WGCNA and random forest) are provided,
which allows the network to not only contain the linear infor-
mation but also include a nonlinear relationship between genes.
FET and GSEA algorithms are optional for users to perform
enrichment analysis. RegEnrich can identify the key regulators
whose expression and their targets’ expression correlate with the
experimental phenotypes. Using datasets from gene-silencing
studies, RegEnrich using the GSEA method performed the best to
retrieve the key regulators and outperformed the VIPER package.
Further, by analyzing dozens of in vitro interferon-stimulation
gene expression datasets, RegEnrich revealed that not only IRF
and STAT transcription factor families played an important role
in cells responding to IFN but also several ETS transcription
factor family members, such as ELF1 and ETV7, were highly
associated with IFN stimulations. Above all, RegEnrich can
accurately identify, in a data-driven manner, key gene regulators
from the cells under different biological states, which can be
valuable in mechanistic studies of cell differentiation, cell
response on drug stimulation, and disease development, ulti-
mately in drug development.

Methods
The RegEnrich is a modular pipeline and consists of four major steps: (a) differ-
ential expression analysis; (b) regulator-target network construction; (c) enrich-
ment analysis; and (d) regulator ranking and visualization.

Differential expression analysis. RegEnrich pipeline can be applied to multiple
gene expression datasets, including RNA sequencing (RNAseq), microarray, and
proteomic data. The first step of finding the key regulators is to obtain differentially
expressed genes or proteins (DEs), corresponding differential significance p values
(PD), and fold changes between conditions. Concerning two-group comparison,
here, RegEnrich incorporates the Wald significance test from the DESeq2 package
and the empirical Bayes method-based linear modeling from limma package to
perform the differential expression analysis on RNAseq data and microarray/
proteomic data, respectively51,52. Regarding the comparisons in experiments with
multiple groups or more complex scenarios such as time-series study, the negative
binomial generalized linear model-based likelihood ratio test from DESeq2
package51 and linear model-based likelihood ratio test are implemented for
RNAseq data and microarray/proteomic data, respectively.

Regulator-target network inference. There are two major types of gene reg-
ulatory networks (or regulator-target networks) proposed: static network and
dynamic network53–55. In a static network, genes are expressed in a steady state
thus cannot describe the dynamics of an evolving process, while genes are dyna-
mical in a dynamic network56. These networks can be constructed by many dif-
ferent computational approaches21,22,57–60. Here, the regulator-target network
inference is based on four assumptions: (1) the gene regulatory network is a
snapshot of a dynamic network within the users’ experiments; (2) It is a directed
network, where the edges are from a regulator to its targets, or from a regulator to
its targeted regulators; (3) the potential regulators are transcription factors and co-
factors (this can be changed in RegEnrich by users); and (4) the expression change
of a regulator can lead to the expression change of its downstream targets. Here, the
targets are not only direct targets that the regulator binds to but also the down-
stream genes whose expression can be perturbed by the regulator. Presently,
RegEnrich provides users two basic options to infer regulator-target network, i.e.,
COEN (co-expression network) and GRN (based on the random forest algorithm).

For COEN, here, the co-expression network is constructed using WGCNA
(weighted gene co-expression network analysis) algorithm58. And it can be
summarized as three major procedures. First, a similarity matrix is calculated using
correlations in expression data to measure the relationship strength between each
pair of genes (nodes). Second, by applying the approximate scale-free topology
criterion, raising the co-expression similarity to a power to define the weighted
network adjacency matrix. Third, this adjacency matrix is then used to calculate the
topological overlap measure (TOM), which reflects not only the similarity of each
pair of nodes but also their neighbors’ similarity6. The TOM defines the final co-
expression network58.

For GRN, this ensemble regression tree-based method was initially described in
GENIE3, which was the best performer in the DREAM4 In Silico Multifactorial
challenge21. The basic idea of GENIE3 is that each gene is regressed in turn against

all other genes to obtain network weights (edge weights), which quantify the
strength of the dependence of each pair of genes. The edge weight (Wij) is the
importance of gene i in the tree model predicting gene j, which can be interpreted
as the fraction of variance of the expression of gene j that can be explained by gene
i60. However, the GENIE3 package is slow especially when it is deployed on
genome-wide studies with a large number of experiments. So, to facilitate usage
and improve speed, we implemented this algorithm by allowing users to define
their regulators and by supporting parallel computing (Supplementary Fig. 7). In
addition, in this random forest-based method we found the expressions of some
genes were hardly predicted by other genes. So, we modified this algorithm by
adding a filtering procedure to remove the poor random forest models
(Supplementary Fig. 7). In other words, this procedure removed the genes and
corresponding edges from the final network, whose expression was hardly
predicted by the expression of the predefined regulators.

We provide users with an option to either supply a list of regulators of their
interest or use the default list of regulators provided in RegEnrich, which were
retrieved from three studies61–63. Using either COEN or GRN network, we then
extract the regulator-target network by retaining the top-ranked edges
(default= top 5% edges) between the regulators and their targets and subsequently
filtering out nonconnected nodes. Apart from the data-driven network, RegEnrich
also allows users to provide their regulator-target network, which can be derived
from the literature, databases, or defined by the user using their data of other types.

Enrichment analysis. The regulators are considered key regulators if they are
differentially expressed along with their targets in a differentially expressed gene
set. In other words, not only these regulator genes but also their target genes are
differentially expressed upon different conditions. Finding these key regulators is
an enrichment task, which is similar to retrieving the most overrepresented
(enriched) biological annotations, such as gene ontology and pathways terms, of a
list of interesting genes. Presently, RegEnrich provides users two options: Fisher’s
exact test (FET) and gene set enrichment analysis (GSEA).

Fisher’s exact test (FET), also known as the hypergeometric test, calculates
probability using the hypergeometric distribution (Eq. 1). This distribution
describes the probability of the number of draws being successful (k) within a
sequence of draws (M), without replacement, from a finite population (N)
consisting of two types of elements (the total number of successful types is s).

p k;s;M;Nð Þ ¼

M

k

� �
N �M

s� k

� �

N

s

� � ð1Þ

Then the p value, depicting the probability of observing K (and more)
differential targets by chance, of regulator i being overrepresented, is calculated by

Pi ¼ ∑
Si

k¼K
pi k;si;M;N
� � ¼ ∑

Si

k¼K

M

k

� �
N �M

si � k

� �

N

si

� � ð2Þ

where N is the total number of genes in the previously constructed regulator-target
network; M is the number of genes in the list of users’ interests (the genes not in
the network are excluded), which is typically the differential genes between
conditions; si is the number of target genes of regulator i in the network; K is the
number of target genes that are also in the list of users’ interests. This process
repeats for all regulators that are predefined by users.

Gene set enrichment analysis (GSEA) is one of the most widely used methods to
study the biological function of groups of genes and to interpret gene expression
data64. GSEA takes into account all of the genes in an experiment, unlike FET that
takes into account only those genes above a fold-change or significance cutoff.
Here, RegEnrich takes two basic inputs, the TF-target network and a named vector
of decreasingly sorted ranking metrics (r, z-score scaled negative logarithm of
differential significance p-values) of all genes. Briefly, there are three major steps in
this analysis:

1. Calculation of an Enrichment Score (ES) by:

ES ¼ max ΔPð Þ;max ΔPð Þ≥max �ΔPð Þ
min ΔPð Þ;max ΔPð Þ<max �ΔPð Þ

�
; ð3Þ

where

ΔPi ¼ Phit ðS; iÞ � PmissðS; iÞ; ð4Þ
where

Phit S; ið Þ ¼ ∑
gj2S;j ≤ i

rj

��� ���
∑
gj2S

rj

��� ��� ; PmissðS; iÞ ¼ ∑
gj=2S;j ≤ i

1
ðN � NH Þ ð5Þ

Here, i is the index of decreasingly sorted ranking metrics r, S is the set of
target genes of one particular regulator, NH is the number of genes in S, and
N is the total number of valid genes in the regulator-target network.
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2. Randomly shuffle the ranking metrics of genes and re-compute ES. And
repeat this process for 1000 permutations to generate ESNULL that
establishes an empirical distribution. Estimate empirical p value for S from
ESNULL by only the positive portion of the distribution corresponding to the
sign of the observed ES.

3. Perform steps 1 and 2 for each regulator, generating a numeric vector (PE)
in which each value is an enrichment p value for each regulator.

Regulator ranking and visualization. After the enrichment analysis by either FET
or GSEA, the overall ranking scores of regulators were calculated by:

score ¼ f ð�logðPEÞÞ þ f ð�logðPDÞÞ ð6Þ
where f ðxÞ ¼ x�min xð Þ

max xð Þ�min xð Þ, and PD is the vector of p values of regulators obtained
from differential expression analysis, PE is the vector of p-values of regulators
obtained from the enrichment analysis.

In the RegEnrich package, we have implemented several functions for visualizing
the information of a regulator and its targets (Fig. 1). For example, “plotRegTarExpr”
function is to plot the expression pattern of a regulator and its targets.

Master regulator inference analysis based on ARACNe + viper algorithm.
According to the official tutorial on GitHub (https://github.com/califano-lab/
ARACNe-AP), we reverse-engineered the regulatory networks using the gene
expression datasets obtained from either GEO database or the simulated dataset,
based on the ARACNe-AP package with default parameters except the TF list. To
make the results comparable between viper and RegEnrich, here, the TF list is set as
the same as the default regulators in RegEnirch. The regulon object is generated
from the ARACNe network file and the corresponding expression dataset using the
aracne2regulon function from the viper package with default parameters. Either the
paired t-test or t-test was applied to compare the gene expression change between
groups, depending on whether the experiment is a paired study. Meanwhile the
sample permutation and paired t-test or t-test were used to generate a null model.
The t-statistics and corresponding p-values, and the null model were used to
perform master regulator inference analysis with msviper function from viper
package. To confirm the results by using the network that we built, we reanalyzed
the gene-silencing datasets using the public network of corresponding cancer type
from the aracne.networks package (version 1.16.0).

Statistics and reproducibility. T-test was used to compare the gene expression
changes between groups to obtain master regulon by VIPER when the samples
between groups are not paired, while paired T-test was used when the samples
between groups are paired. To perform the enrichment analysis in the third step of
RegEnrich pipeline, either GSEA method or Fisher’s exact test was used. To com-
pare the performance of RegEnrich and the VIPER package, the ranks of key/master
regulators identified by both methods using the simulated gene expression data were
compared using the GSEA method. To evaluate the influence of the sample size on
the performance of RegEnrich and VIPER package, the maximum sample size is set
to 100 and the sample size is reduced to 50, 20, 10, and 6 by down-sampling
strategy. The datasets of gene knock-down experiments and IFN stimulation
experiments with sample sizes in each condition ≥ 3 were used for evaluation. All of
the statistical analyses were performed using the R software (version 4.01).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the gene expression data were downloaded from GEO database according to the
GEO accession ID listed in the Tables 1 and 2. The source data underlying Fig. 2 are
provided in Supplementary Data 1. The source data underlying Figs. 3 and 4 are provided
as Supplementary Data 2. Any other relevant data are available upon reasonable request.

Code availability
The source codes of RegEnrich package are publicly available on Bioconductor (https://
www.bioconductor.org/packages/release/bioc/html/RegEnrich.html). The source codes
used for analyzing the public data and the simulated data are available on GitHub
(https://github.com/paodan/RegEnrich_CustomCode).
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