
Review

Targeting the Epithelial-to-Mesenchymal
Transition in Cancer Stem Cells for a Better
Clinical Outcome of Glioma

Yu-bao Lu, MS1,* , Tian-Jiao Sun, MS1,*, Yu-tong Chen, MS1,
Zong-Yan Cai, MS1, Jia-Yu Zhao, MS1, Feng Miao, MS2,
Yong-na Yang, MS3, and Shi-Xin Wang, MS4

Abstract
Glioma is one of the most common malignant tumors of the central nervous system with a poor prognosis at present due to lack
of effective treatment options. Its initiation, migration, and multipotency are affected by cancer stem cell’s transition. Previous
studies imply that changes in the cancer stem cells can affect the malignant differentiation of the tumor. We found that the
epithelial-to-mesenchymal transition (EMT)-related regulatory pathway is an important target for tumor therapy. In this review,
we discuss the transition factor of EMT and 3 specific pathways that affect the EMT of cancer stem cells during tumor devel-
opment. We conclude that targeting the EMT process of cancer stem cells can be a feasible approach in the treatment of glioma.
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Introduction

Glioma is a type of primary brain cancer originating from

special non-nerve cells, glial cells, and is associated with poor

prognosis at present.1 It was classified into 4 grades by the

World Health Organization (WHO) in 2016.2 Among them,

glioma with clinical grade IV (glioblastoma multiforme, GBM)

is still one of the most common and fatal primary brain tumors

in neurosurgery. There are no effective treatment methods at

present, thereby resulting in poor prognosis. The median sur-

vival time is only 12.2 to 18.2 months.3 Low-grade glioma

(WHO grade 1-2) is a well-differentiated glioma; although this

type of tumor is not biologically a benign tumor, the patient’s

prognosis is relatively good. High-grade gliomas (WHO

grades3,4 are poorly differentiated gliomas; these tumors are

malignant tumors, and patients have a poor prognosis. The

symptoms and signs caused by gliomas mainly depend on their

space-occupying effects and the functions of the affected brain

regions. Glioma can cause headache, nausea and vomiting,

epilepsy, blurred vision, etc.4,5 Stem cells are the origin of the

cellular level of organization as they give rise to other cells. At
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present, it is generally accepted that stem cells are defined as

relatively rare, relatively static, and self-renewing cells. Gen-

erally, highly proliferative organs (intestinal tract, skin, etc.)

contain at least 2 stem cell pools: one is relatively static, while

the other is highly proliferative.6 At present, the view that

gliomas and other primary brain tumors contain self-

renewing tumor-causing cells has gradually been widely

accepted, suggesting that these tumors contain cancer stem

cells (CSCs).7-10 Studies indicate that tumor growth is fueled

by a small amount of CSCs that are hidden inside the cancer

cell pool. Although the subpopulation of CSCs constitute a

small minority of tumor cells, their ability enables them to

persist, resulting in relapses. Consequently, some anti-cancer

treatments focus on suppressing the metastasis and resistance

of CSCs.

Epithelial-to-mesenchymal transition (EMT) is an important

biological link in the process of tumor occurrence and devel-

opment, and plays a decisive role in the process of tumor

metastasis.11-15 The switching of cellular phenotype enables

cancer cells to spread more quickly and invade the secondary

sites to some extent.16 EMT progress occurs during various

stages of tumor development; we found some related impact

factors between EMT and stem cell reprogramming, which

influence the progress of glioma and can be used as targets for

the development of new treatment strategies. According to the

existing wealth of knowledge, some important EMT transcrip-

tion factor families, including Twist, Snail, and ZEB play a

regulatory role in tumor invasiveness and chemotherapy resis-

tance, which is an important reason for the poor prognosis of

cancer patients.

Our review is based on the molecular mechanism of GBM

tumorigenesis and aims to provide a theoretical basis for the

subsequent development of new therapies specific to glioma

tumor stem cells in GBM.

Biological Regulation of EMT

EMT is a biological process that can promote polarized epithe-

lial cells to undergo a variety of biochemical changes and infer

the phenotype of mesenchymal cells. Its biological character-

istics mainly include the enhancement of migration ability,

invasiveness, and anti-apoptosis ability.17 EMT is classified

into 3 types according to the 3 distinct biological settings

encountered.18

Several signals were proved to affect the initiate of EMT.

Local expression of TGF-b, EGF, IGF-II, or FGF-2 facilitates

EMT by binding epithelial receptors with ligand-inducible

intrinsic kinase activity.17 Autocrine TGFb requires integrin

b1 to induce EMT, and this effect is mediated by p38/MAPK

and RhoA. In a normal mouse mammary cell line, the induction

of the c-Fos oncogene induces EMT and is associated with

downregulation of E-cadherin expression the loss of

E-cadherin is pivotal to the further induction of EMT.15 The

effect of Ras mutants on EMT specifically activates either the

ERK/MAPK or the PI3K-Akt/PKB pathway.15

Classical EMT plays an important role in many stages of

embryonic development, including the transformation of

epithelial cells to cells with mesenchymal phenotype, with a

variety of typical molecular markers, including E-cadherin and

Vimentin.

However, partial activation of EMT transcription factors

(TFs) can increase the motility of cancer cells, which acts not

only on the collective migration process of the cell mass, but

even on the migration of individual cancer cells; so partial

EMT is conducive to the invasion and spread of cancer cells,

which further leads to the growth and metastasis of cancer.19

The main executors of EMT are EMT-activated transcription

factors (EMT-TF), which mainly include SNAIL, TWIST, and

ZEB family members.18 Some studies have shown that the

overexpression of EMT-promoting factor, TWIST is an impor-

tant factor contributing to the invasive ability of glioma cell

lines.20 Additionally, mesenchymal stem cell (MSC) surface

markers, including CD29, CD44, CD90, and CD105 were

highly expressed in GBM and its stem cell lines.21 The knock-

down of the chemokine receptor, CXCR4, which was regarded

as the specific surface marker for MSC, shows that it is a

promoter for the migration of glioma cells and the expression

of EMT markers.22 In addition, the EMT regulatory factor,

STAT3, is also important in promoting tumor invasion and

growth.23 Snail Homology-1 (SNAI-1), an EMT-promoting

factor, is expressed differently in gliomas with different differ-

entiation, such as high expression in high-grade gliomas and

low expression in low-grade gliomas; so SNAI-1 is considered

to be related to cell proliferation and infiltration.24,25 ZEB1 can

promote the transitivity of glioma by recruiting CDH1 promo-

ters and repressing the expression of E-cadherin.26 In the pro-

cess of xenotransplantation of human GBM cells in mice,

researchers found that SRY (sex determination region Y)-box

2 (Sox2) is the key molecule that maintains the plasticity

between tumor stem cells and glioma cells. In short, Sox2 is

the key molecule for GBM cells to maintain plasticity.27 Trans-

forming growth factor-b (TGF-b) is a powerful endoderm

transformation inducer, which can promote tumor progression

and metastasis.28,29 TGF-b 1 can activate a variety of down-

stream signal pathways, including PI3 K, Smads, and MAPK,

which are involved in TGF-b-induced EMT.30

A research shows that primary glioblastoma and its stem cell

lines have some of the cellular and molecular characteristics of

MSCs.31 On the other hand, EMT-TFs can maintain the stem

cell characteristics and increase the tumorigenicity of cells.28

This leads us to pay attention to the association between the

CSCs and EMT. Some findings are inconsistent with the spec-

ulation that EMT is necessary to maintain the phenotype of

CSCs, and they imply that EMT is uncoupled from stemness

in many contexts.31 However, these studies did not count on the

fact that the EMT in cancer cells is transient, depending mostly

on the environmental impact32; hence, cancer cells can adopt

intermediate mesenchymal states to access the more plastic

CSC phenotypes.

Moreover, Schmidt JM33 et al. explained the comprehensive

mechanism of the action of EMT-TF through experiments. This
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study found that EMT is contradictory to the induction and

inhibition of stem cell-like traits, because these traits can

appear as stable traits after the inactivation of Twist1 or Snail1.

This suggests that transient Twist1 or Snail1 activation may

leave an epigenetic footprint that is easy to deal with, thereby

suggesting a closed connection between CSC behavior and the

EMT process.

According to the previously reported findings, hypoxia is

one of the features of tumors, and the degree of hypoxia

increases with the severity of the tumor.34 It is well known that

the hypoxia zone is the hidden area of one of the subsets of

CSCs.35 A recent study shows that a drug combination target-

ing hypoxia can induce chemoresistance and stemness in

glioma cells. The combination of COX-2 inhibitor (NS-398)

and BCNU was demonstrated to be an effective therapy,

reflected by the decreased production of the inflammatory reg-

ulatory factor, PGE2, which is the expression product of

COX-2. At the same time, the migration rate of nuclear cells

expressing the EMT markers was also significantly inhibited.

More importantly, the combination of drugs not only inhibited

the formation of glial non-globulin, but also decreased the

expression of CD133.36

To some extent, COX-2 can be regarded as a regulator of

CSC proliferation, and the hypoxic environment promotes the

expression of COX-2, thus affecting the proliferative ability of

CSCs.36 It is now well-established that the inflammation trig-

gered by COX-2 is critical in enabling the characteristic of

tumorigenesis.37,38 In addition, the biological functions of

COX-2 include angiogenesis, EMT, and spheroid formation

that help in tumor progression.39-42

The main cause of tumor hypoxia is the abnormal structure

and distribution of neovascularization in the tumor and the

abnormal activation of intravascular coagulation cascade.43

Recruiting myeloid cells and MSCs that secrete TGF-b is the

main way through which hypoxia promotes EMT. Additionally,

another important mode by which hypoxia promotes the occur-

rence of EMT in the tumor microenvironment is by the activa-

tion of Notch1 by transcription factors, such as mixed-lineage

leukemia 1 (HIF-1) induced by hypoxia,44 which is known to be

very important for the induction and maintenance of hypoxia-

induced stem cell phenotype.45 TGF-b family is also considered

to be another important factor for the induction and maintenance

of pluripotent stem cells and tumor stem cells.46 They can up-

regulate the transcription factors, TWIST or Snail, which are

necessary for the EMT process.47,48 Notch has already been

shown to have the ability of regulating the EMT process. As one

of the most important regulatory factors of the EMT process,

studies have shown that the expression of ZEB1 is up-regulated

in glioma neurospheres under hypoxia; hence, its inhibition can

reduce the cell invasion induced by hypoxia.49 Therefore, the

characteristics of stem cells induced by hypoxia through the

EMT process promote the destructive and refractory character-

istics of GBM to a great extent,50 and the characteristics of stem

cells in turn are the regulatory factors of stem cell characteris-

tics, so they are the main contributors to drug resistance.51

Based on the above conclusions, we speculated that COX-2 /

TGF-b / HIF-1 a / Zeb1 / GSC axis might be the potential target

of glioma treatment.

g–Secretase Signaling Pathway

Recent studies have shown that the Notch signaling pathway

plays an important role in regulating the activity of GSCs.52-54

In some preclinical models, the inhibition of Notch signal by g-

secretase signaling pathways was found to reduce the number

and / or tumorigenicity of tumor stem cells, suggesting that

Notch inhibitors may be used to target tumor stem cells as well

as reverse or prevent chemoresistance or radiation resistance.55

The Notch family proteins are transmembrane receptor pro-

teins. Their intracellular domains are released from the mem-

brane into the nucleus through the enzymatic hydrolysis of the

g-secretase complex, thereby activating the transcriptional CSL

family (CBF1, Suppressor of Hairless, and Lag-1).56 In many

cellular processes, including cell-fate decision, differentiation,

proliferation, survival, angiogenesis, and migration, the Notch

signaling pathway is known to play an important role.57-59

In GSCs, the Notch signaling pathway plays a key role in the

development of tumorigenesis and maintaining the balance

between stem cell characteristics and cell differentiation.60-63

Notch can enable the CSCs to become resistant to radiation.60

Some drugs under clinical trial, such as the g-secretase

signaling pathways to suppress Notch signaling and an oral

hedgehog antagonist are awaiting review and approval. The

g-secretase signaling pathways enhance the efficacy of temo-

zolomide in the treatment of human gliomas in vivo and in

vitro. CD133, Notch-1, and VEGF positive glioma cells were

highly expressed in recurrent glioblastoma after radiotherapy

and chemotherapy, and Notch was found to regulate the activ-

ity of VEGF pathway in GSCs.64-65 Research also found that

the overall survival was significantly longer in cases with

Notch-1 negativity than in those with Notch-1 positivity.

Besides regulating the cell cycle66-68 and senescence,67

Notch also regulates EMT.69-71 The experimental data shows

that TGF-b plays a role as a key positive effector of Notch1 and

EMT in the tumor microenvironment.72 In the TGF-b-mediated

EMT, the expression of Notch ligand, JAG1, is induced by

ZEB1, and more and more evidence supports Notch1 as a

positive effector of EMT.67,69-71,73-75 However, Notch3 was

found to limit the expansion of EMT in esophageal keratino-

cytes.76 Previous studies have shown that Notch1 activation

and EMT coupling promote tumor initiation and tumor hetero-

geneity in CSCs, while the transcription factor, ZEB1 inhibits

Notch3.

We infer that the TGF-b–ZEB1–Notch1-g-secretare-

inhibitor axis could be a potential target for CSC therapy.

Sonic Hedgehog

Sonic Hedgehog (Shh) signaling pathway is a very important

signal pathway in the process of embryonic development and

proliferation, especially in the migration, differentiation, and
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survival of neural stem cells.77 It has been shown that the

ectopic expression of Shh can induce the occurrence of basal

cell carcinoma in mice.78-79 Most of the solid tumors are char-

acterized by hyperactivation of the Shh pathway.80,81 Aberrant

Shh signaling accounts for up to 25% of human cancer-related

deaths.82 Shh pathway also plays an important role in the reg-

ulation of CSC differentiation and maintenance of stemness.

Studies have found that Shh signal is very important for the

maintenance of CSCs, and inhibition of Shh pathway leads to

stem cell proliferation and reduced renewal.81,83,84

Shh pathway functions by inactivating the 12-

transmembrane protein, Patched1 (PTCH1), and suppresses its

ability to inhibit the 7-transmembrane protein, Smoothened

(SMO) signal transmission elements, resulting in the nuclear

localization of glioma-associated oncogene (GLI) downstream

transcription factors.85 It has been proved that Gli transcription

factors are positively regulated by many molecules, including

PI3K-AKT, TGF-b, PKC-a, and K-RAS.86-89 In vertebrates,

GLI transcription factors mainly have 3 members: GLI1,

GLI12, and GLI3, of which GLI1 is the only full-length tran-

scriptional activator, while the positive and negative regulation

of GLI2 and GLI3 is determined by different processes.90

Activated GLI1 and GLI2 can physically bind the promoter

regions of a group of genes, including oncogenes and genes

involved in the EMT process, and directly promote their tran-

scriptional expression. These genes are mainly Bmi1, NANOG,

and SNAIL1.91-95 The TGF-b/SMAD/GLI2 axis has been sug-

gested to be essential for cancer metastasis.96 Therefore, the

crosstalk between SHH signal pathway and TGF-b signal path-

way is the molecular mechanism of endothelial cell

transformation.

Recently, there have been some medical treatments target-

ing the shh pathway. Blocking the SHH receptor or interfering

with its downstream molecules is the most basic strategy of

drug intervention based on SHH signal pathway.97 In view of

the important role of GLI1/2 in promoting EMT and tumor

metastasis in the SHH pathway, blocking GLI1/2 is considered

to be a promising strategy in cancer treatment. Compared with

blocking the upstream regulatory factors in the SHH pathway,

the advantage of targeting GLI protein is that GLI protein is the

molecular intersection of multiple signal pathways activated in

tumor cells, including TGF- b, Wnt, and SHH pathways.98

Treatments using small chemical molecules, GANT58 and/

or GANT61, which block GLI1/2 function, have been shown to

arrest prostate tumor growth.99 The combination of cyclopa-

mine, gemcitabine with vismodegib, and other SMO inhibitors

were widely used in clinical therapy for various types of can-

cers.100-102 However, this kind of research has not been widely

carried out in gliomas, so it has great limitations. Erismodegib

has been proved to induce cell cycle arrest and apoptosis in

many tumor cell lines.103 It has been shown to effectively

inhibit the EMT and invasiveness of a variety of cancers,

including glioblastoma, prostate cancer, and renal cell carci-

noma, which means that it can act on both tumor epithelial cells

and tumor stem cells.104-106 Arsenic trioxide (ATO) is an inhi-

bitor of GLI1 and GLI2 transcription factors approved by the

FDA. Studies have shown that ATO also shows good therapeu-

tic activity against pancreatic and prostate cancer, emphasizing

its effectiveness in killing tumor epithelial cells and tumor

initiator cells.107-109

We infer that Shh SMO/ptc—GLI—Norch/TGF-b—snail/

EMT-TFs can be a potential pathway that can be targeted in

glioma therapy.

Cross Talk of the 2 Pathway

Notch Signaling Contributes to Medulloblastoma Growth and

Survival. It was proved to be elevated Notch and Shh activity in

most medulloblastomas. Notch inhibition with soluble Delta

ligand or g-secretase inhibitors resulted in decreased prolifera-

tion and increased apoptosis. Former study pharmacologically

inhibited Notch cleavage with the g-secretase inhibitor, DAPT.

The combination of Shh antagonism with cyclopamine and

Notch antagonism resulted in a significantly greater response

than the use of either agent alone. The effect of combined Shh

and Notch pathway inhibition appeared to be additive in these

primary tumors.110

Comparing these 2 pathways, It’s not hard to find that both

pathways involves Norch signal. We deduce that Norch signal

can be the crosstalk connect nodes of the 2 pathways.

Discussion

There are already some drugs against GSCs, targeting hypoxia

initiators, suppressing the activity of Notch pathway, and reg-

ulating the Shh transcription factors. Many drugs are effective

in targeting certain molecules, affecting the transcription and

expression process in cells. Many of the targeted molecules are

related to the EMT process, thereby adjusting the CSC pheno-

type and changing the CSC process. Although the current med-

ian survival time of glioblastoma (grade 4 glioma) remains

relatively short and easy to recur, it is undeniable that these

drugs or regulatory mechanisms have great therapeutic poten-

tial to be discovered.

1. The regulation of EMT is not a separate process, it is a

regulatory network regulated by a variety of molecules,

and plays an important role in the initial process of

tumor development. Therefore, controlling the progres-

sion of tumors by controlling the EMT should simulta-

neously control multiple factors rather than relying on a

single pathway. Therefore, we believe that further

improving our understanding of the integrated regula-

tory network and feedback mechanism of the signal

pathways in EMT will help bring more reliable evi-

dence for the development of high-precision targeted

therapy against glioma. At the same time, the establish-

ment of signal regulatory network can better identify

more key hub targets for the research and development

of targeted drugs, so as to achieve the purpose of using a

single drug to block multiple biological processes.
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2. Considering the complexity of the EMT signal regula-

tory network and the strong adaptability of cancer cells,

we, like other researchers, believe that targeting one

protein or pathway may not be enough to completely

block the EMT.107 Therefore, anti-EMT therapy should

be combined with multi-molecular targeted therapy to

combat the EMT transformation. However, we are still

skeptical about the prospect of this multi-target and multi-

level molecular targeted therapy. Therefore, we believe

that the support of stem cell therapy is still needed to

facilitate the full use of its advantages (Table 1).

3. At the same time, the factors that play a role in tumor

development and progression are complex and diverse.

Further studies need to be undertaken to unravel the

mechanisms involved in these processes and find more

phenotypes that can be suitable prognostic markers or

therapeutic targets. We demonstrate some of the cur-

rently existing targeted therapies for some of the targets

mentioned above. They also aimed at different targets

and at different stages of clinical research. (Table 2)It is

hoped that in the following research, the comprehensive

application of some single-target drugs can be empha-

sized. Hopefully, in the future, we can identify CSCs

and combine the already-tested therapies with newly-

discovered drug therapy to control the development of

CSCs. We believe that the combination treatment of

stem cell therapy with anti-EMT therapy will be one

of the effective development directions for future can-

cer treatment.

In conclusion, further research is needed to reveal the reg-

ulatory mechanism of EMT in these nonepithelial tumors and

establish a deeper understanding of its molecular regulatory

network. On this basis, using signal network analysis and iden-

tifying prognostic markers or treatment targets to develop

multi-target therapeutic drugs, and combining them with stem

cell therapy to improve the clinical outcome of glioma will

bring greater improvement in the prognosis of patients with

glioma.
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