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This study investigated the effects of dietary supplementation with Gracilaria lemaneiformis polysaccharides (GLPs) on 
the growth performance, antioxidant capacity, immune function, and meat quality of broiler chickens. A total of 320 one-day-
old Arbor Acres broiler chicks were individually weighed and randomly assigned to four groups of eight replicate cages (10 
broilers per cage). Birds were fed a basal diet supplemented with 0 (control), 1,000, 2,000, or 4,000 mg/kg GLPs. Compared 
to that of the control group, dietary supplementation with 2,000 mg/kg GLPs linearly increased the average daily weight gain 
during days 0-42 (P < 0.05) and linearly decreased the feed to gain ratio during days 1–21 and 22–42 (P < 0.05). Broilers 
fed GLP-supplemented diets showed linear (P < 0.05) and quadratic (P < 0.05) increases in serum superoxide dismutase (P 
< 0.05), glutathione peroxidase, and catalase activities in the liver, whereas GLP supplementation decreased serum and liver 
malondialdehyde concentrations (P < 0.05). A linear increase in serum catalase activity was observed following supplementa-
tion with 2,000 or 4,000 mg/kg GLPs (P < 0.05). Broilers fed GLP-supplemented diets showed linear (P < 0.05) and quadratic 
(P < 0.05) increases in serum immunoglobulin (Ig) A, IgG, interleukin (IL)-6, IL-1β, IL-10, and interferon-γ concentrations 
(P < 0.05), and a trend towards linear improvement in IL-4 levels (P = 0.089). Dietary GLP supplementation increased the 
Lactobacillus spp. population compared to that of the control group (P < 0.05) and 2,000 and 4,000 mg/kg of GLPs nearly 
decreased the population of E. coli in the cecum (P = 0.056). Therefore, dietary GLP supplementation may improve broiler 
growth performance by altering antioxidant capacity, immune function, and the gut microbiota composition. Considering the 
effects of different doses of GLP on the above parameters, 2,000 mg/kg of GLPs was identified as the best dose.
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Introduction

In recent years, challenges in the poultry industry have be-
come increasingly apparent. Long-term growth in an enclosed, 
high-density, and stressful environment results in a low state 
of broiler immunity, making them susceptible to infectious dis-
eases (Dong et al., 2021). Although antibiotic growth promoters 
(AGPs) are widely used in broiler diets to improve growth per-
formance and health (Baurhoo et al., 2009), concerns associated 

with the development of antibiotic-resistant bacteria and food 
safety have limited their use in animal feed (brega et al., 2008). 
AGPs were banned in poultry feed in the European Union and in 
other countries in 2006. Additionally, the Chinese government 
banned AGP use in animal feed in July 2020.

Plant extracts, polysaccharides, essential oils, and polyphenols 
increase nutrient absorption, and improve immune responses and 
antioxidant activities in broilers (Hashemipour et al., 2013; Ao 
and Kim, 2020; Zhang et al., 2021). Gracilaria lemaneiformis is 
a red marine macroalga that is widely distributed along various 
Chinese coasts. It has also been used in traditional Chinese medi-
cine. The primary constituents of dried G. lemaneiformis extract 
are carbohydrates, amino acids, minerals, vitamins, and polysac-
charides (Lu et al., 2022). Polysaccharides are one of the major 
functional components of G. lemaneiformis and mainly comprise 
3,6-anhydro-L-galactose and D-galactose (Long et al., 2021a). 
G. lemaneiformis polysaccharides (GLPs) possess various bio-
logical activities, including hypoglycemic (Sun et al., 2018), 
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antioxidant (Wu et al., 2017), antiviral (Fan et al., 2012), anti-
inflammatory (Gong et al., 2021), gut microbiota-modulating 
(Zhang et al., 2020), and immunomodulatory (Ren et al., 2017) 
activities. Xuan et al. (2013) report that dietary supplementation 
with G. lemaneiformis enhances the growth performance and 
health of juvenile black sea bream. Yu et al. (2016) have demon-
strated that supplementation with a moderate GLP concentration 
improves growth performance and resistance to salinity stress, 
increases the length and integrity of intestinal microvilli, and 
enhances the immunity of juvenile Pacific white shrimp (Lito-
penaeus vannamei). To the best of our knowledge, no study has 
reported the effects of GLPs in broiler chickens. GLPs may exert 
antioxidant activity, stimulate the immune system, and improve 
broiler growth performance. Therefore, this study investigated 
the effects of dietary GLP supplementation on the growth per-
formance, immunity, antioxidant activity, cecal microflora, and 
meat quality of broiler chickens.

Materials and Methods

GLP Preparation
G. lemaneiformis was collected from Nan’ao Island, Guang-

dong, China. GLP powder was purchased from Shanxi Sinu-
ote Biotechnology Co., Ltd. (Xi’an, China). The GLP powder 
was incubated overnight in a methanol/dichloromethane/water 
(4:2:1; v/v/v) solution at a ratio of 10:1 (v/w, mL/g) with shak-
ing to remove low molecular weight compounds. The polysac-
charide content isolated from G. lemaneiformis was ≥ 50%, as 
determined using the phenol-sulfuric acid method (Zhang et al., 
2020).
Birds, experimental design, and management

All experimental procedures were approved by the Biomedi-
cal Research Ethics Committee of Hunan Agricultural Univer-
sity (No. 20220039). A total of 320 1-day-old male Arbor Acres 
broiler chicks were purchased from a commercial hatchery 
(Changsha, China). All broilers were individually weighed and 
randomly assigned to four groups with eight replicate cages (10 
broilers per cage), according to their initial body weight. Birds 
in the four groups were fed a basal diet supplemented with 0 
(control group), 1,000, 2,000, or 4,000 mg/kg GLPs. According 
to the recommendations of the National Research Council (NRC, 
1994), a basal diet was formulated to meet or exceed the nutrient 
requirements of broilers during the starter (1–21 days) and grow-
er (22–42 days) phases (Table 1). During the trial period, all birds 
were housed in temperature-controlled rooms with steel cages 
(120 × 60 × 50 cm), feeders, and nipple drinkers. The tempera-
ture was maintained at 34 °C during the first week and was re-
duced by 2 °C–3 °C each week until a final temperature of 24 °C 
was obtained. Continuous lighting was provided throughout the 
experiments. All birds had ad libitum access to food and water.
Growth performance

On days 21 and 42, all birds were weighed after a 12-h fast, 
and feed intake was recorded simultaneously. These values were 
used to determine the average daily gain (ADG), average daily 
feed intake (ADFI), and feed conversion ratio (FCR: feed intake/

body weight gain). In addition, mortality was recorded through-
out the experiment.
Sample collection

At the end of the experiment, one bird was randomly selected 
from each cage and euthanized by cutting the jugular vein. Blood 
samples were collected (5 mL) in 10 mL anticoagulant-free vacu-
tainer tubes and immediately centrifuged at 3,000 ×g for 10 min 
at 4 °C to obtain serum. Serum samples were stored at −20 °C 
until further analysis. After blood collection, liver tissue samples 
were harvested, washed in normal saline, and stored in liquid ni-
trogen for the assessment of antioxidant enzymes. In addition, 
pectoralis major muscle samples were collected and stored at 4 
°C for the assessment of meat color, pH, and drip loss.
Assessment of antioxidant enzymes in the serum and liver

Liver homogenates were prepared by homogenizing liquid 
nitrogen-frozen tissues with an ice-cold homogenate medium 
(physiological saline solution) at a ratio of 1:9 (liver, wt/vol) 
until no tissue particles were visible (approximately 35 s) using 
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Table 1. Composition and nutrient content of experimental diets

Items
Age (days)

Starter Grower
(0 to 21 days) (22 to 42 days)

Ingredient (%)
Corn 57.20 62.70
Soybean meal (43% CP) 34.70 29.30
Soy oil 2.70 2.80
Fish meal (60.2% CP) 1.50 1.50
Dicalcium phosphate 1.65 1.41
Limestone 1.30 1.30
Salt 0.25 0.21
DL-Methionine 0.20 0.20
HCl- Lysine - 0.08
Vitamin-mineral premix1 0.50 0.50
Total 100 100
Analytical composition2

ME, kcal/kg3 3087 3212
Crude protein,% 21.49 19.58
Calcium,% 1.04 0.95
Total phosphorus,% 0.67 0.65
Lysine,% 1.21 1.08
Methionine,% 0.51 0.43

1Supplied per kilogram of diet: vitamin A (trans-retinyl acetate), 10,050 
IU; vitamin D3,2,800 IU; vitamin E (DL-α-tocopheryl acetate), 50 mg; 
vitamin K3, 3.5 mg; thiamine, 2.5 mg; riboflavin, 7.5 mg; pantothenic 
acid, 15.3 mg; pyridoxine, 4.3 mg; vitamin B12(cyanocobalamin), 0.02 
mg; niacin, 35 mg; choline chloride, 1,000 mg; biotin, 0.20 mg; folic 
acid, 1.2 mg; Mn, 100 mg; Fe, 85 mg; Zn, 60 mg; Cu, 9.6 mg; I, 0.30 mg; 
Co, 0.20 mg; and Se, 0.20 mg.
2All nutrient levels except metabolizable energy were analyzed and val-
ues are the mean of two determinations.
3ME = metabolizable energy, ME values have been calculated using 
NRC (1994) values.
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a motor-driven homogenizer (JXFSTPRP-24, Shanghai Jingxin 
Industrial Development Co., Ltd., Shanghai, China). After cen-
trifugation at 4,500×g for 15 min, the homogenate supernatant 
was then separated, aliquoted, and stored at -80 °C for antioxi-
dant enzyme analysis.

The activities of superoxide dismutase (SOD), glutathione 
peroxidase (GSH-Px), and catalase (CAT), and the concentration 
of malondialdehyde (MDA) in the serum and liver were mea-
sured using commercially available colorimetric diagnostic kits 
according to the manufacturer’s protocol (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China).
Assessment of serum immunoglobulins and inflammatory fac-
tors

Serum levels of immunoglobulin A (IgA), IgM, IgG, inter-
leukin (IL)-1β, IL-2, IL-4, IL-10, tumor necrosis factor alpha 
(TNF-α), and interferon gamma (IFN-γ) were determined using 
enzyme-linked immunosorbent assay (ELISA) kits, according 
to the manufacturer’s instructions (Nanjing Jiancheng Bioengi-
neering Institute, Nanjing, China). All samples were assessed in 
triplicate.
Assessment of meat quality

Meat quality was assessed in eight birds selected from each 
group (one bird per replicate). A portable pH meter (H199163, 
Hanna Instruments, Woonsocket, RI, USA) was used to deter-
mine the pH of breast muscle samples 45 min and 24 h after 
the birds were sacrificed. The 3nh NR200 Precision Colorim-
eter (Nanshan District, Shenzhen, China) was used to determine 
the trichromatic coordinates (L* = lightness; a* = redness; b* = 
yellowness) of breast muscle samples at 45 min and 24 h after 
the birds were sacrificed. A method described by Hiscock et al. 
(2022) was used to determine the cooking loss of the pectoralis 
major muscle after 24 h of storage of harvested samples at 4 °C. 
The 48 h drip loss of the pectoralis major muscle was determined 
using the method described by Wu et al. (2020). The water-hold-
ing capacity (WHC) of breast meat was determined using the 
method described by Kauffman et al. (1986).
Assessment of cecal microflora

At the end of the experiment, cecal digesta samples were col-
lected from eight birds from each treatment group. Briefly, 1 g 
of fresh digesta was collected from the middle portion of the ce-
cum, stored in bottles with a CO2 current, and transported to the 
laboratory to estimate bacterial counts, as described by Long et 
al. (2021b). Digesta samples were suspended in 99 mL sterile 
0.9% saline and homogenized in a stomacher for 5 min. Each 
homogenate was diluted 10-fold (10% w/v) in sterile ice-cold 
normal saline. Diluted samples (0.1 mL) were inoculated onto 
selective agar for bacterial enumeration. E. coli was incubated on 
MacConkey agar at 37 °C for 24 h. Lactobacillus spp. were incu-
bated on Luria-Bertani agar and Briggs liver agar in an anaerobic 
incubator at 37 °C for 48 h. Agars were purchased from Beijing 
Ruizekang Technology Co., Ltd. (Beijing, China).
Statistical analysis

Data have been analyzed with analysis of variance using the 
general linear model procedure in SAS (SAS Institute Inc., Cary, 

NC, USA). The linear and quadratic effects of different GLP con-
centrations were assessed using orthogonal polynomials. Cages 
were used as experimental units to analyze performance data. For 
analysis of other data, each broiler per replicate was treated as 
an experimental unit. Data are expressed as the mean ± standard 
error of the mean (SEM). A P-value < 0.05 indicated statistical 
significance.

Results

Effects of GLPs on Growth Performance in Broilers
Data regarding the effects of dietary supplementation with 

2,000 mg/kg GLPs on the growth performance of broilers dur-
ing different phases are presented in Table 2. During days 1–21, 
GLP supplementation decreased the FCR in broilers (P < 0.05). 
During days 22–42, GLP supplementation increased ADG and 
decreased FCR (P < 0.05). Compared to that of the control diet, 
supplementation with GLPs linearly increased (P < 0.05) ADG 
over the entire study period (days 1–42).
Effects of GLPs on antioxidant capacity in broilers

Data on the effects of dietary GLP supplementation on the lev-
els of antioxidant enzymes in the serum and liver on day 42 are 
presented in Table 3. Serum SOD activity was higher in broilers 
fed a diet supplemented with 2,000 mg/kg GLPs than in those fed 
the control diet (linear, P = 0.028; quadratic, P = 0.013). Supple-
mentation with 1,000–4,000 mg/kg GLPs linearly increased CAT 
activity (P = 0.024), but decreased MDA concentration (linear, P 
= 0.005; quadratic, P = 0.043) in the serum. In addition, dietary 
supplementation with 2,000 and 4,000 mg/kg GLPs increased the 
activity of GSH-Px (linear, P = 0.024; quadratic, P = 0.089) and 
CAT (linear, P = 0.019; quadratic, P = 0.038), but significantly 
decreased the MDA concentration (linear, P = 0.035; quadratic, 
P = 0.011) in the liver.
Effects of GLPs on serum immunoglobulins and inflammatory 
factors in broilers

The effects of dietary GLP supplementation on serum immu-
noglobulins and inflammatory factor levels in broilers are pre-
sented in Table 4. The levels of serum IgA (linear, P = 0.026; 
quadratic, P = 0.011) and IgG (linear, P = 0.015; quadratic, P = 
0.031) were higher in broilers fed diets supplemented with 2,000 
or 4,000 mg/kg GLPs than in those fed the control diet. The lev-
els of serum IL-6 (linear, P = 0.021; quadratic, P = 0.036), IL-1β 
(linear, P = 0.014; quadratic, P = 0.028), and IL-10 (linear, P = 
0.029; quadratic, P = 0.012) were significantly increased in broil-
ers fed GLP supplemented diets. In addition, dietary supplemen-
tation with 2,000 and 4,000 mg/kg GLPs increased the levels of 
serum TNF-α (linear, P = 0.042; quadratic, P = 0.033) and IFN-γ 
(linear, P = 0.034; quadratic, P = 0.046).
Effects of GLPs on meat quality of broilers

Descriptive statistics for meat quality traits are presented in 
Table 5. Dietary GLP supplementation exerted neither linear nor 
quadratic effects (P > 0.05) on breast meat quality parameters 
(meat pH, color, WHC, drip loss, and cooking loss).
Effects of GLPs on the cecal microflora of broilers

The composition of broiler chicken cecal microflora is shown 
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in Figure 1. The abundance of Lactobacillus spp. was higher in 
broilers fed diets supplemented with 1,000–4,000 mg/kg GLPs 
than in those fed the control diet (P < 0.05). However, broil-
ers fed diets supplemented with 2,000 and 4,000 mg/kg GLPs 
showed a trend towards a reduction in the abundance of E. coli 
compared to broilers fed the control diet (P = 0.056).

Discussion

Dietary supplementation with seaweed or seaweed extracts 
improves the growth performance and feed efficiency of pigs 
(Gahan et al., 2009; Walsh et al., 2013), fish (Xuan et al., 2019), 

and chickens (Abudabos et al., 2013). To the best of our knowl-
edge, no previous study has reported the effects of dietary GLPs 
on broiler chickens. In this study, dietary supplementation with 
2,000 mg/kg GLPs improved ADG and decreased FCR in broil-
ers. Nhlane et al. (2020) report that dietary supplementation 
with 2.5% green seaweed improves feed intake and overall body 
weight gain in indigenous chickens. In addition, Yu et al. (2016) 
suggest that dietary supplementation with 2%–3% G. lemane-
iformis increases the final body weight, overall weight gain, and 
specific growth ratio of juvenile Pacific white shrimp (Litope-
naeus vannamei). However, the effects of dietary supplementa-
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Table 2. Effects of dietary Gracilaria lemaneiformis polysaccharides (GLPs) on the growth performance of broiler chickens 
from 0 to 42 days (d) of age.

Items
GLP level (mg/kg)

SEM
P-value

0 1000 2000 4000 Linear Quadratic
0 to 21 d
ADFI (g/d/bird) 44.23 46.31 47.64 45.25 0.342 0.175 0.214
ADG (g/d/bird) 29.46 31.25 33.43 30.54 0.133 0.353 0.156
FCR (feed/gain, g/g) 1.50a 1.48ab 1.43b 1.48ab 0.015 0.036 0.015
22 to 42 d
ADFI (g/d/bird) 129.32 132.44 137.52 130.28 1.638 0.215 0.342
ADG (g/d/bird) 75.74b 80.53ab 85.45a 79.92ab 0.973 0.029 0.041
FCR (feed/gain, g/g) 1.71a 1.64a,b 1.61b,c 1.65a,b 0.012 0.036 0.103
0 to 42 d
ADFI (g/d/bird) 86.25 89.35 92.55 89.70 0.852 0.087 0.289
ADG (g/d/bird) 53.05b 55.85a,b 59.41a 54.70a,b 0.369 0.045 0.113
FCR (feed/gain, g/g) 1.59 1.56 1.52 1.56 0.011 0.098 0.127

a,b,c Means within rows with different superscript letters differ significantly (P < 0.05), whereas values with no letters or the same superscript letters 
are not significantly different (P > 0.05).
ADG, average daily gain; ADFI, average daily feed intake; FCR, feed-to-gain ratio; SEM, standard error of the mean.

Table 3. Effect of dietary Gracilaria lemaneiformis polysaccharides (GLPs) on antioxidant activities of broiler chickens at 
42 days of age.

Items
GLP level (mg/kg)

SEM
P-value

0 1000 2000 4000 Linear Quadratic
Serum
SOD,U/mL 136.78bc 143.52b 169.55a 153.42ab 1.745 0.028 0.013
GSH-Px,U/mL 204.21 216.44 228.36 221.39 2.214 0.102 0.239
CAT, U/mL 4.78b 6.32a 8.32a 7.43a 0.258 0.024 0.378
MDA, nmol/mL 6.39a 4.27b 3.66b 4.89b 0.322 0.005 0.043
Liver
SOD, U/mg 319.32 321.41 332.63 335.79 1.874 0.127 0.316
GSH-Px, U/mg 4.59bc 5.89ab 6.88a 6.59a 0.017 0.024 0.089
CAT, U/mg 4.41b 5.53ab 6.37a 7.11a 0.014 0.019 0.038
MDA, nmol/mg 5.45a 3.74b 2.57b 3.48b 0.163 0.035 0.011

a,b,c Means within rows with different superscript letters differ significantly (P < 0.05), whereas values with no letters or the same superscript letters 
are not significantly different (P > 0.05).
SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; CAT, catalase; MDA, malondialdehyde; SEM, standard error of the mean.
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tion with marine seaweed on the growth performance of poultry 
remain controversial. Abudabos et al. (2013) have demonstrated 
that dietary supplementation with 30 g/kg Ulva lactuca does 
not affect feed intake or body weight gain in broiler chickens. 
El-Deek and Brikaa (2009) reported that the inclusion of 3% 
seaweed in the diets of ducks does not significantly affect their 
growth performance. These conflicting results may be attributed 
to differences in diets, animal species, feeding environments, and 
growth stages. In addition, GLPs consist of agarose and these 
oligosaccharides act as potential prebiotics with several health-
promoting properties, including modulation of the composition 
of gut microbes (Lu et al., 2022), anti-oxidation (Tang et al., 
2021), and anti-inflammatory effects (Liu et al., 2016), which 
may be responsible for stimulating broiler growth. However, the 

beneficial effects of natural GLPs on growth performance and the 
underlying mechanisms warrant further investigation.

Excessive reactive oxygen species (ROS) may disrupt metab-
olism in animals, damage cell structures, and accelerate oxida-
tion, thereby causing various diseases (Hou et al., 2022). SOD, 
GSH-Px, and CAT are the primary parameters used to evaluate 
antioxidant levels in organisms. SOD participates in oxygen me-
tabolism, scavenging, and the reduction of superoxide to water 
and molecular oxygen (Hao et al., 2015). GSH-Px reduces lipid 
hydroperoxides to alcohols and free hydrogen peroxide to water 
(Cheng et al., 2020). MDA levels indicate the degree of organic 
lipid peroxidation and are associated with cell damage (Cheng 
et al., 2019). GLPs increase the activity of total antioxidant ca-
pacity, GSH-Px, CAT, and SOD, and decrease the concentra-

Table 4. Effect of dietary Gracilaria lemaneiformis polysaccharides (GLPs) on serum immunoglobulins and inflammatory 
factors of broiler chickens at 42 days of age.

Items
GLP level (mg/kg)

SEM
P-value

0 1000 2000 4000 Linear Quadratic
IgA, mg/mL 4.35c 6.24b 7.56a 7.01ab 0.126 0.026 0.011
IgM, mg/mL 1.33 1.38 1.40 1.42 0.081 0.472 0.693
IgG, mg/mL 2.21bc 2.57b 3.65a 3.29a 0.132 0.015 0.031
IL-6, pg/mL 101.65b 125.03a 137.42a 136.11a 8.485 0.021 0.036
IL-1β, pg/mL 203.34b 223.62a 238.73a 237.55a 12.436 0.014 0.028
IL-4, ng/mL 74.22 78.68 82.36 81.03 4.598 0.089 0.525
IL-10, ng/mL 25.68b 32.97a 36.31a 37.27a 3.467 0.029 0.012
TNF-α, pg/mL 31.63b 40.54ab 47.94a 46.32a 4.831 0.042 0.033
IFN-γ, pg/mL 62.35b 66.37b 88.68a 85.79a 2.356 0.034 0.046

a,b,c Means within rows with different superscript letters differ significantly (P < 0.05), whereas values with no letters or the same superscript letters 
are not significantly different (P > 0.05).
IgA, immunoglobulin (Ig)A; IgM, immunoglobulin (Ig)M; IgG, immunoglobulin (Ig)G; IL-1β, interleukin (IL)-1β; IL-6, interleukin (IL)-6; IL-4, 
interleukin (IL)-4; IL-10, interleukin (IL)-10; TNF-α, tumor necrosis factor-α; IFN-γ, interferon-γ; SEM, standard error of the mean.

Table 5. Effect of dietary Gracilaria lemaneiformis polysaccharides (GLPs) on the meat quality of breast muscle in broiler 
chickens at 42 days of age.

Items
GLP level (mg/kg)

SEM
P-value

0 1000 2000 4000 Linear Quadratic
pH45 min 5.84 5.86 5.89 5.88 0.022 0.241 0.438
pH24 h 6.04 6.02 6.01 6.05 0.034 0.304 0.763
Lightness(L*)45 min 52.34 51.97 52.78 53.14 0.621 0.592 0.378
Redness(a *)45 min 11.84 11.76 11.82 12.05 0.452 0.613 0.794
Yellowness(b *)45 min 7.47 7.61 7.71 7.66 0.385 0.296 0.582
Lightness(L*)24 h 51.23 50.86 51.39 52.21 0.619 0.241 0.336
Redness(a *)24 h 10.65 10.34 10.76 11.45 0.832 0.462 0.812
Yellowness(b *)24 h 6.94 7.14 7.32 7.21 0.521 0.684 0.302
Drip loss, % 3.42 3.21 3.33 3.37 0.243 0.693 0.316
Cooking loss, % 27.65 28.12 29.45 28.62 1.263 0.417 0.758
WHC,% 88.57 88.63 88.25 87.79 1.94 0.641 0.293

a,b,c Means within rows with different superscript letters differ significantly (P < 0.05), whereas values with no letters or the same superscript letters 
are not significantly different (P > 0.05).
WHC, water-holding capacity; SEM, standard error of the mean.
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tions of MDA and intracellular ROS in HepG2 cells (Long et 
al., 2022). Wen et al. (2017) report that GLPs enhance the activ-
ity of SOD, GSH-Px, and CAT and reduce MDA levels in the 
serum and liver of mice, exhibiting excellent antioxidant activ-
ity. Tang et al. (2021) report that modified GLPs exhibit better 
free radical-scavenging ability. The current study revealed that 
dietary supplementation with 2,000 and 4,000 mg/kg GLPs lin-
early and/or quadratically increased SOD, CAT, and GSH-Px ac-
tivity and reduced the concentration of MDA in the serum and 
liver of broilers. Similarly, Liu et al. (2020a) report that dietary 
supplementation with algae-derived polysaccharides increases 
SOD activity in the liver and CAT activity in the serum, and re-
duces MDA levels in the serum and liver of broilers. The findings 
of this study suggest that polysaccharides derived from marine 
organisms, such as GLPs, may be used as natural antioxidants 
in broilers and that their antioxidant activity is correlated with 
growth performance.

Serum immunoglobulins (IgA, IgM, and IgG) are important 
components of the humoral immune system and play critical 
roles in immune responses and gut epithelial protection against 
pathogens (Chen et al., 2019). Natural polysaccharides derived 
from seaweeds also promote host immune responses (Liu et al., 
2020b). To the best of our knowledge, this study is the first to 
demonstrate that dietary supplementation with 2,000 and 4,000 
mg/kg GLPs increased serum IgA and IgG levels in broilers. Zou 
et al. (2021) report that dietary supplementation with Entero-
morpha-derived polysaccharides increases IgA and IgG serum 
concentrations in weaned piglets. Excessive immunoglobulins 
stimulate complement components to enhance specific immune 
mechanisms in birds and protects them against infection (Long 
et al., 2020). Furthermore, inflammatory cytokines play essential 
roles in systemic and local immune responses (Han et al., 2021). 
Both in vitro and in vivo studies have demonstrated that GLPs 
regulate immune activity by activating macrophages or lympho-
cytes to promote the secretion of cytokines (e.g., TNF-α, IL-6, 
IL-1β, IL-4, and IL-10) (Liu et al., 2016; Han et al., 2020). In 

this study, broilers fed diets with 2,000 and 4,000 mg/kg GLPs 
had high serum concentrations of IL-6, IL-1β, TNF-α, IFN-γ, and 
IL-10. Similar findings are reported by Zou et al. (2021), who 
demonstrate that pigs fed diets containing Enteromorpha-derived 
polysaccharides enhance humoral immune response by increas-
ing serum IL-6 and TNF-α concentrations. These results suggest 
that the inclusion of seaweed extracts in diets enhances humoral 
immune responses in both livestock and poultry.

The appearance, texture, juiciness, flavor, WHC, and nutri-
tional value of meat are key parameters in meat production. Col-
or, pH, cooking loss, drip loss, and shear strength are the main 
indicators of meat quality (Choi and Kim, 2009). In this study, di-
etary GLP supplementation had no effect on meat quality param-
eters. These results are consistent with those reported by Nhlane 
et al. (2020), who demonstrate that dietary supplementation with 
seaweed do not adversely affect the pH or color of breast meat in 
Boschveld hens. It is noteworthy that the pH of meat (5.8–6.1) 
reported in this study falls within the normal pH range of poultry 
meat (5.7–6.1) proposed by Werner et al. (2008). Furthermore, 
dietary GLPs did not affect the cooking loss, drip loss, or WHC 
of meat, indicating that the inclusion of GLPs in the diet did not 
interfere with the normal oxidative stability of broiler meat. Oxi-
dative stress is a biological phenomenon that adversely affects 
meat quality by increasing the rate at which meat pH declines, 
consequently reducing WHC (Wang et al., 2016). The results of 
this study are consistent with those of a previous study, which 
reported that WHC, drip loss, and cooking loss are not altered in 
broilers fed seaweed-supplemented diets (Matshogo et al., 2020). 
Future studies should investigate the physicochemical character-
istics of chickens fed seaweed-based diets.

Diarrhea caused by E. coli is one of the most common poul-
try diseases and leads to high morbidity and mortality (Liang 
et al., 2021). Lactobacillus is a beneficial probiotic strain that 
balances the gut microbiota, maintains the mucus layer, inhibits 
pathogenic bacteria, such as E. coli, and boosts immunity (Wang 
et al., 2017; Long et al., 2021b). Dietary supplementation with 

Journal of Poultry Science, 60, jpsa.2023018 (2023)

Fig. 1. Effect of dietary Gracilaria lemaneiformis polysaccharides on cecal 
microbial populations in broilers. Bacterial number is expressed as log10 colony 
forming units per gram wet digesta. Each bar represents the mean for eight birds per 
treatment ± standard error (SE). a-b Bars with different letters differ significantly (P 
< 0.05).
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seaweed or seaweed extracts modifies selected populations of gut 
microbes (e.g., Lactobacillus and E. coli) in pigs (Mcdonnell et 
al., 2010; Sweeney et al., 2011). In this study, dietary supplemen-
tation with GLPs increases the abundance of Lactobacillus and 
nearly reduces the abundance of E. coli, which is consistent with 
the results of previous studies by O’Doherty et al. (2010), Huang 
et al. (2019), and Lu et al. (2022). Diets containing complex car-
bohydrates contribute to the growth of polysaccharide bacteria, 
such as Lactobacillus and some Lachnospiraceae (Flint et al., 
2012; Fava et al., 2019). It is possible that GLPs are used as sub-
strates for degradation by Lactobacillus (Huang et al., 2019). In 
addition, sulfated polysaccharides derived from G. lemaneifor-
mis alleviate diarrheal symptoms by altering the composition of 
E. coli in mice (Liu et al., 2019). Intragastric treatment with sul-
fated polysaccharides derived from G. Lemaneiformis increases 
acetic acid, propionic acid, and butyric acid levels, and decreases 
fecal pH in mice (Han et al., 2021). Therefore, polysaccharides 
may be more readily used by bacteria, such as Lactobacillus, to 
produce short-chain fatty acids, which in turn rapidly decrease 
the gut pH. This reduction subsequently suppresses the growth 
of pH-sensitive E. coli, providing energy for intestinal cells and 
protecting the intestinal barrier (Knudsen et al., 2012; Clavijo 
and Flórez, 2018).

This study revealed that dietary GLP supplementation im-
proved ADG and decreased the FCR in broiler chickens. In addi-
tion, dietary GLP supplementation enhanced SOD, GSH-Px, and 
CAT activity; decreased MDA levels in the serum and liver; in-
creased IgA, IgG, IL-6, TNF-α, IFN-γ, IL-1β, and IL-10 levels in 
the serum; and modulated the composition of the cecal microbi-
ota. Altogether, this study suggested that GLPs might be used as 
potential additives to improve the health and growth performance 
of broilers, and a concentration of 2,000 mg/kg was considered 
the best dose for GLP inclusion in broiler diets.
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