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m6A-related genes and their role in Parkinson’s 
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Insights from machine learning and consensus clustering
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Abstract 
Parkinson disease (PD) is a chronic neurological disorder primarily characterized by a deficiency of dopamine in the brain. In recent 
years, numerous studies have highlighted the substantial influence of RNA N6-methyladenosine (m6A) regulators on various 
biological processes. Nevertheless, the specific contribution of m6A-related genes to the development and progression of PD 
remains uncertain. In this study, we performed a differential analysis of the GSE8397 dataset in the Gene Expression Omnibus 
database and selected important m6A-related genes. Candidate m6A-related genes were then screened using a random forest 
model to predict the risk of PD. A nomogram model was built based on the candidate m6A-related genes. By employing a 
consensus clustering method, PD was divided into different m6A clusters based on the selected significant m6A-related genes. 
Finally, we performed immune cell infiltration analysis to explore the immune infiltration between different clusters. We performed 
a differential analysis of the GSE8397 dataset in the Gene Expression Omnibus database and selected 11 important m6A-related 
genes. Four candidate m6A-related genes (YTH Domain Containing 2, heterogeneous nuclear ribonucleoprotein C, leucine-rich 
pentatricopeptide repeat motif containing protein and insulin-like growth factor binding protein-3) were then screened using a 
random forest model to predict the risk of PD. A nomogram model was built based on the 4 candidate m6A-related genes. The 
decision curve analysis indicated that patients can benefit from the nomogram model. By employing a consensus clustering 
method, PD was divided into 2 m6A clusters (cluster A and cluster B) based on the selected significant m6A-related genes. The 
immune cell infiltration analysis revealed that cluster A and cluster B exhibit distinct immune phenotypes. In conclusion, m6A-
related genes play a significant role in the development of PD and our study on m6A clustering may potentially guide personalized 
treatment strategies for PD in the future.

Abbreviations: AD = Alzheimer disease, AUC = area under the curve, DCA = decision curve analysis, DEGs = differentially 
expressed genes, ELAVL1 = ELAV Like RNA Binding Protein 1, GEO= Gene Expression Omnibus, HNRNPA2B1 = heterogeneous 
nuclear ribonucleoprotein A2/B1, HNRNPC = heterogeneous nuclear ribonucleoprotein C, IGFBP3 = insulin-like growth factor 
binding protein-3, KEGG = Kyoto Encyclopedia of Genes and Genomes, LRPPRC = leucine-rich pentatricopeptide repeat motif 
containing protein, METTL3 = methyltransferase like 3, m6A= N6-methyladenosine, PD = Parkinson disease, RF = random forest, 
ROC = receiver operating characteristic, ssGSEA = single-sample gene set enrichment analysis, SVM = support vector machine, 
YTHDC1 = YTH Domain Containing 1, YTHDC2 = YTH Domain Containing 2.
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1. Introduction
Parkinson disease (PD), also referred to as “shaking palsy,” is 
a prevalent and progressive neurodegenerative disorder that 
affects the central nervous system. Its clinical presentation 
encompasses a spectrum of symptoms, including bradykinesia 
(slowness of movement), resting tremors, muscular rigidity, 
postural and gait abnormalities, and motor impairments.[1,2] 
PD currently ranks as the second most common neurodegen-
erative disease worldwide, second only to Alzheimer disease 

(AD). However, despite its prevalence, the precise etiology 
and pathogenesis of PD remain elusive.[3] Current research 
suggested that a combination of genetic factors, environmen-
tal influences, immune responses, inflammation, oxidative 
stress, and other factors collectively contribute to the degen-
eration and loss of dopaminergic neurons in the substantia 
nigra.[4] The primary pathological features of PD manifest 
as the gradual degeneration and loss of dopaminergic neu-
rons in the midbrain’s substantia nigra, resulting in impaired 
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dopamine production. Additionally, the remaining neu-
rons exhibit the accumulation of protein aggregates known 
as Lewy bodies within their cytoplasm.[5,6] Recent studies 
have uncovered evidence implicating 7 rare highly pene-
trant monogenic alterations, namely SNCA, LRRK2, VPS35, 
PRKN, PINK1, DJ-1, and GBA, as strongly associated with 
familial cases of typical PD. Furthermore, mutations within 
90 genetic loci have been linked to sporadic PD. Collectively, 
these genetic variations within the 90 loci account for 16% 
to 36% of the hereditary risk of developing PD.[7,8] Many of 
the genes associated with PD contribute to common biolog-
ical pathways, and their interactions escalate the risk of PD 
onset and progression. Thus, early screening and effective 
prevention strategies targeted at high-risk individuals from 
a genetic standpoint hold immense potential for controlling 
the occurrence of PD.

RNA fulfills a dual role in genetic regulation and expres-
sion, serving as a crucial intermediary in the process of gene 
expression. This multifaceted process is accompanied by 
a diverse array of chemical modifications known as RNA 
modifications, predominantly observed in eukaryotic organ-
isms.[9,10] To date, more than 160 types of RNA modifications 
have been identified, playing pivotal roles in gene transcrip-
tion and posttranscriptional regulatory processes.[11] Among 
these modifications are N6-methyladenosine (m6A), 5- 
methylcytosine, N1-methyladenosine, and others, collectively 
contributing to the functional diversity and genetic informa-
tion encoded within RNA.[12,13] Notably, m6A methylation 
stands as one of the most prevalent RNA modifications in 
eukaryotes.[14] Positioned predominantly in the 3’ untrans-
lated region (3’ UTR) of mRNA and in close proximity to the 
stop codon, m6A methylation at the N6 position of adenos-
ine plays a crucial regulatory role.[15,16] The m6A modification 
represents a significant epigenetic alteration necessitating the 
coordinated action of various regulatory proteins encoded by 
writers, erasers, and readers.[17] As a reversible mRNA modi-
fication, m6A exerts regulatory control over mRNA stability, 
splicing, transport, translation, localization, and can influence 
the higher-order structure of mRNA or disrupt protein–RNA 
interactions, thereby exerting influence over gene expression 
and impacting various biological processes. Notably, extensive 
research has illuminated the broad involvement of m6A in 
processes related to human growth, development, and metabo-
lism.[18,19] Furthermore, the intricate association between m6A 
and various diseases, including tumors and obesity, has been 
established.[20,21] Investigation into mRNA methylation modi-
fications has also unveiled connections to neurodevelopmental 
and neurodegenerative diseases.[22,23] Understanding the inter-
play between m6A RNA methylation and the immune micro-
environment in PD offers insights into disease pathogenesis 
and potential therapeutic strategies. Targeting m6A regulators 
or immune-related pathways affected by m6A dysregulation 
may hold promise for mitigating neuroinflammation, preserv-
ing neuronal function, and slowing disease progression in PD 
patients. However, the precise role of m6A methylation in the 
context of PD remains incompletely understood. Thus, the 
objective of this study is to elucidate the correlation between 
the expression of m6A-related genes and PD, thereby unravel-
ing the intricate association between m6A methylation and the 
pathogenesis of PD. This research has the potential to signifi-
cantly contribute to the prevention and treatment of PD.

2. Materials and methods

2.1. Source and processing of data

The Gene Expression Omnibus (GEO) is an international 
public repository that collects and organizes high-throughput 
genomic data, such as microarray chips and next-generation 
sequencing data, uploaded by researchers worldwide.[24] In 

this study, we utilized the GEO database and downloaded the 
GSE8397 dataset, which consists of 18 control samples and 
29 PD samples. The dataset was generated using the GPL96 
platform, specifically the Affymetrix Human Genome U133A 
Array (HG-U133A).[25] To identify differentially expressed 
genes (DEGs) associated with m6A, we performed differential 
analysis using the “limma” package in R version 4.2.2. This 
analysis was conducted on the control group samples and PD 
samples. Finally, we validated our results using the GSE22491 
dataset (controls: 8, PD: 10) and the GSE28894 dataset (con-
trols: 59, PD: 55).[26] Since the data used in our study is entirely 
sourced from an open database, no additional ethical approval 
was required for our research.

2.2. The construction and selection of machine learning 
models

In order to predict the onset of PD, we constructed 2 machine 
learning models: random forest (RF) and support vector 
machine (SVM). RF is an ensemble learning method compris-
ing multiple decision trees. The final prediction of RF is based 
on the average prediction results of all decision trees, making 
it a widely used and effective machine learning model.[27] On 
the other hand, SVM aims to find a hyperplane that effectively 
separates data points of different classes while maximizing the 
distance between the hyperplane and the nearest data points, 
known as support vectors. SVM is particularly useful for han-
dling small-sized datasets with limited samples.[28] For our 
study, we employed the “RandomForest” package for building 
the RF model and the “kernlab” package for constructing the 
SVM model, using R 4.2.2. These packages provide robust and 
efficient tools for implementing the respective machine learn-
ing algorithms. The performance of both models was evaluated 
using various metrics, including the “reverse cumulative distri-
bution of residuals,” “residual boxplots,” and receiver operating 
characteristic (ROC) curves. These evaluations help assess the 
accuracy and predictive capabilities of the models. Based on the 
comprehensive evaluation of the 2 machine learning models, 
we selected the best-performing model for further research and 
analysis.

2.3. The construction and analysis of the nomogram model

In our study, we employed the “rms” package in R 4.2.2 to 
construct a nomogram model based on the selected candidate 
m6A-related genes, aiming to predict the incidence of PD in 
patients. The nomogram model provides a visual representa-
tion of the predictive model, displaying the contribution and 
weightage of each variable. To evaluate the performance of 
the nomogram model, we employed various assessment tech-
niques. Calibration curves were plotted to assess the agree-
ment between the predicted probabilities from the model and 
the observed outcomes. This allows us to evaluate the cali-
bration or accuracy of the model predictions. Decision curve 
analysis (DCA) was conducted to evaluate the clinical utility 
of the model. DCA helps assess the net benefits of using the 
model-based predictions compared to alternative strategies or 
clinical decisions. By examining the threshold probabilities, 
DCA enables us to determine the clinical impact and useful-
ness of the nomogram model. Additionally, clinical impact 
curves were plotted to visualize the potential impact of the 
model-based decisions on patient outcomes. These curves pro-
vide insights into the potential benefits of using the nomogram 
model in clinical decision-making. By utilizing these evaluation 
techniques, we aim to assess the performance, accuracy, and 
clinical utility of the nomogram model in predicting the inci-
dence of PD, ultimately determining whether the model-based 
decisions are beneficial for patients.
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2.4. Identification and analysis of clusters based on 11 
m6A genes

Consensus clustering is a widely used approach for analyz-
ing disease clusters, whereby samples are grouped into dis-
tinct clusters based on various omics datasets. This method 
facilitates the identification of novel disease clusters and 
enables comparative analysis among different clusters.[29] 
In our study, we employed the “Consensus ClusterPlus” 
package in R 4.2.2 to perform consensus clustering based 
on m6A-related genes, with the objective of identifying dif-
ferent m6A clusters. This package provides a comprehen-
sive framework for executing consensus clustering analysis. 
Subsequently, employing a significance threshold of P < .01, 
we utilized the “limma” package in R 4.2.2 to identify DEGs 
between the m6A clusters. The “limma” package is a pow-
erful tool for differential gene expression analysis, allow-
ing us to discern genes that exhibit significant expression 
differences between the identified clusters. Finally, to gain 
insights into the biological functions and pathways associ-
ated with the DEGs, we conducted gene ontology and Kyoto 
Encyclopedia of Genes and Genomes enrichment analysis. 
The Metascape database was employed for this purpose, as 
it provides a comprehensive platform for gene annotation 
and functional enrichment analysis. By utilizing these meth-
ods, we aim to unravel the distinctive characteristics and 
underlying biological processes associated with different 
m6A clusters, providing valuable insights into the molecular 
mechanisms involved in PD and paving the way for further 
research.

2.5. Immune infiltration analysis of m6A clusters

In our study, we employed single-sample gene set enrichment 
analysis (ssGSEA) to evaluate the abundance of immune cells in 
PD samples. The ssGSEA method enables the assessment of the 
enrichment scores of gene expression levels in each sample. To 
perform ssGSEA, we first obtained the gene expression levels of 
the samples and calculated their respective enrichment scores. 
These scores reflect the degree of enrichment or activation of 
specific gene sets within each sample. Next, we searched for 
the genes associated with immune cells in the input dataset and 
computed the sum of their corresponding enrichment scores. 
This summation provides an estimation of the abundance of 
immune cells in each individual sample. By utilizing ssGSEA, we 
aimed to gain insights into the relative abundance of immune 
cells within PD samples. This information can contribute to our 
understanding of the immune landscape and its potential impli-
cations in the pathogenesis and progression of PD. By employing 
these methods, we can further explore the intricate relationship 
between immune cell abundance and PD, potentially uncovering 
novel insights into the immunological mechanisms involved in 
the disease.[30]

3. Results

3.1. Analysis of m6A-related DEGs

In our study, we conducted differential expression anal-
ysis of genes between control and PD samples using 
the “limma” package in R 4.2.2 (Fig. 1A). The analysis 

Figure 1.  Distribution of RNA N6 methyl adenosine (m6A)-related genes in Parkinson disease (PD). (A) A volcanic map of the differential genes identified in 
GSE8397 (PD) dataset. (B) Boxplots of differential expression of m6A-related genes identified between control samples and PD samples. (C) Heatmap of the 
expression of 11 m6A-related genes in control and PD samples. (D) Location of the 11 m6A-related genes on the chromosome. (E) 11 m6A gene correlation 
analysis. *P < .05, **P < .01, and ***P < .001.
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revealed significant differential expression of 26 m6A reg-
ulators. Among them, 11 m6A-related genes exhibited 
significant differential expression. These genes included 
1 writer (methyltransferase like 3 [METTL3]), 1 eraser 
(fat mass and obesity-associated protein), and 9 readers 
(YTH Domain Containing 1 [YTHDC1], YTH Domain 
Containing 2 [YTHDC2], YTH N6-methyladenosine RNA 
binding protein 2, heterogeneous nuclear ribonucleoprotein 
C [HNRNPC], leucine-rich pentatricopeptide repeat motif 
containing protein [LRPPRC], heterogeneous nuclear ribo-
nucleoprotein A2/B1 [HNRNPA2B1], insulin-like growth 
factor binding protein-3 [IGFBP1], IGFBP3, ELAV Like 
RNA Binding Protein 1 [ELAVL1]) (Fig. 1B). To visualize 
the expression patterns of these 11 m6A-related genes, we 
generated a heatmap (Fig. 1C). The heatmap highlighted the 
differential expression levels of these genes between control 
and PD samples. It was observed that METTL3, YTHDC1, 
HNRNPC, HNRNPA2B1, IGFBP1, IGFBP3, and ELAVL1 
were upregulated in PD samples, while YTHDC2, YTH 
N6-methyladenosine RNA binding protein 2, LRPPRC, and 
fat mass and obesity-associated protein were downregulated 
in PD samples. To gain insights into the genomic distribution 
of the 11 m6A regulators, we utilized the “RCircos” package 
to generate a visualization of their chromosomal locations 
(Fig. 1D). Furthermore, we employed linear regression anal-
ysis to explore the correlations between m6A genes in PD. 

The analysis revealed strong positive correlations between 
the expression levels of IGFBP1 and YTHDC1, as well as 
METTL3 in PD samples. Additionally, a strong positive 
correlation was observed between YTHDC1 and METTL3, 
as well as RNA binding motif protein 15B3. On the other 
hand, the expression of YTHDC1 showed a negative cor-
relation with YTHDC2. ELAVL1 exhibited a positive cor-
relation with HNRNPC but a negative correlation with 
LRPPRC (Fig. 1E). These findings indicate that differentially 
expressed m6A-related genes in PD samples exhibit distinct 
correlations with each other. These results shed light on the 
differential expression patterns and interrelationships of 
m6A-related genes in the context of PD, providing valuable 
insights into the potential roles of these genes in disease 
pathogenesis.

3.2. Construction and screening of machine learning 
models

We constructed 2 machine learning models, RF and SVM, 
utilizing 11 differentially expressed m6A-related genes to 
predict the onset of PD. Upon examining the “Boxplots of 
Residuals” (Fig. 2A) and the “Reverse Cumulative Distribution 
of Residuals” (Fig. 2B), it is evident that the RF model exhib-
its the smallest residuals, signifying its superior performance. 

Figure 2.  RF and SVM machine learning model construction. (A) Box plots of RF and SVM residuals to show the distribution of residuals for the RF and SVM 
models. (B) Inverse cumulative distribution of RF and SVM residuals to show the distribution of residuals for RF and SVM models. (C) ROC curves show the 
accuracy of RF and SVM models. (D) Random forest tree results. (E). Importance scores for disease characterizing genes. RF = random forest, ROC = receiver 
operating characteristic, SVM = support vector machine.
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Transitioning to the evaluation phase, the ROC curve was 
employed to assess the accuracy of these models. Notably, the 
RF model achieved an impeccable area under the curve (AUC) 
score of 1.0, outshining the SVM model, which secured an AUC 
of 0.983 (Fig. 2C). This further corroborates the RF model’s 
heightened accuracy. In the final stage, we visualized the RF 
model (Fig. 2D) and identified genes with importance scores 
exceeding 2, namely YTHDC2, HNRNPC, LRPPRC, and 
IGFBP3, as prime candidates (Fig. 2E).

3.3. Construction of nomogram model

We proceeded to construct a nomogram model, utilizing 
the 4 identified m6A-related genes (YTHDC2, HNRNPC, 
LRPPRC, and IGFBP3), to predict the prevalence of PD. This 
was achieved through the “rms” package in R version 4.2.2 
(Fig. 3A). Moving forward, the calibration curve was plotted 
and it revealed an outstanding predictive performance of the 
nomogram model (Fig. 3B). This is a pivotal step as it vali-
dates the reliability of the predictions made by the model. 
Subsequently, we conducted a DCA, the results of which 
suggest that employing the nomogram model for decision- 
making could be advantageous for patients diagnosed with PD 
(Fig. 3C). Lastly, the clinical impact curve was drawn, which 
further attests to the significant predictive capability of the 
nomogram model (Fig. 3D).

3.4. Identification of clusters based on 11 related m6A genes

Utilizing the “ConsensusClusterPlus” package in R version 4.2.2, 
consensus clustering techniques were employed to identify dis-
tinct m6A clusters based on 11 significant m6A-related genes, 
eventually identifying 2 m6A clusters, namely cluster A and clus-
ter B (Fig. 4A–D). The cumulative distribution function curve 
exhibited changes within the consensus index’s minimum range 
from 0.2 to 0.6 (Fig. 4E). Cluster A comprises 16 PD samples, 
whereas cluster B encompasses 13 PD samples. Heatmaps and 
box plots were subsequently generated to display the differential 
expression levels of the 11 critical m6A-related genes between the 
2 clusters. IGFBP3 exhibits elevated expression levels in cluster 
A compared to cluster B, while HNRNPA2B1 and ELAVL1 dis-
play higher expression levels in cluster B than in cluster A (Fig. 4F 
and G). Principal component analysis reveals that the 11 critical 
m6A-related genes can distinctly differentiate the 2 m6A clusters 
(Fig. 4H). A total of 35 DEGs associated with m6A were cho-
sen between the 2 m6A clusters. To explore the potential roles of 
these DEGs in PD, we conducted Kyoto Encyclopedia of Genes 
and Genomes enrichment analyses (Fig. 4I).

3.5. Immuno-infiltration analysis of m6A clusters

We applied ssGSEA to calculate the abundance of immune 
cells in PD samples and evaluated the correlation between 11 

Figure 3.  Construction of nomogram model. (A) Construction of nomogram model based on 4 candidate m6A-related genes. (B) Construction of calibration 
curve of the nomogram model. (C) Construction of DCA of the nomogram model. (D) Clinical impact curves to assess the clinical impact of nomogram models. 
DCA = decision curve analysis.
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important m6A-related genes and immune cells. We found that 
activated CD4 T cells, activated dendritic cells, CD56 bright 
natural killer cells, gamma delta T cells, MDSCs (myeloid- 
derived suppressor cells), macrophages, natural killer T cells, 
natural killer cells, neutrophils, plasmacytoid dendritic cells, 
regulatory T cells, T follicular helper cells, and type 1 T helper 
cells have significantly different expression levels between clus-
ter A and cluster B (Fig. 5A). Subsequently, we explored the 
correlation between m6A genes and immune cells. The results 
showed that HNRNPA2B1 is positively correlated with acti-
vated dendritic cells, regulatory T cells, and activated CD4 T 
cells, while it is negatively correlated with monocytes (Fig. 5B 
and C).

3.6. Identification of 2 genetic clusters and immune cell 
infiltration analysis

By employing the consensus clustering technique based on 35 
m6A-related DEGs, PD samples were categorized into distinct 
clusters. We observed that there are 2 disparate m6A gene 
clusters (namely gene cluster A and gene cluster B), which 
aligns with the classification of m6A clusters (as depicted in 
Fig. 6A–D). The expression levels of the 35 m6A-related DEGs 
in gene cluster A and gene cluster B are illustrated in Figure 6E. 
Figure 6F and G demonstrates that the variations in expression 
levels of the 11 critical m6A genes and immune cell infiltration 
between gene cluster A and gene cluster B are akin to those in 
the m6A clusters. This lends further credence to the precision of 
our categorization through the consensus clustering approach. 
Finally, we validated our RF model using external independent 
datasets (GSE22491 and GSE28894). The constructed ROC 
results showed an AUC value of 0.582 for GSE22491 and an 
AUC value of 0.615 for GSE28894. All of these results demon-
strated the good diagnostic efficacy of the RF model, as well as 
the reliability and accuracy of our findings (Fig. 7A and B).

4. Discussion
PD stands as a neurodegenerative ailment typified by the demise 
or impairment of neurons, subsequently leading to compromised 
motor function. Its etiology is thought to arise from a confluence 
of genetic and environmental factors.[31,32] Mounting evidence 
indicates the involvement of m6A-related genes in the biologi-
cal mechanisms of diverse ailments.[33] Nevertheless, the precise 
implications of m6A-related genes in PD remain incompletely 
understood. Hence, this present investigation embarked upon 
differential expression analysis utilizing control and PD samples 
from the GSE8397 dataset, which successfully identified 11 piv-
otal m6A-related genes exhibiting disparate expression levels. 
Subsequent to this discovery, we devised a RF model founded 
upon these 11 differentially expressed m6A-related genes, with 
the aim of predicting the onset of PD. Moreover, utilizing the 
ranking system of feature gene importance scores from the RF 
model, we formulated a nomogram model centered around 4 
promising candidate m6A-related genes (YTHDC2, HNRNPC, 
LRPPRC, and IGFBP3). By virtue of DCA, it was evident that 
the nomogram model held potential benefits for PD patients. 
Lastly, predicated on the aforementioned 11 m6A-related genes, 
we categorized the PD samples into 2 distinct clusters, namely 
cluster A and cluster B, whereupon we conducted immune infil-
tration analysis on these clusters. The ensuing results unearthed 
noteworthy disparities in various immune cells between clus-
ter A and cluster B, strongly hinting at the existence of discrete 
immune phenotypes. In the context of PD, dysregulation of m6A 
modification has been observed in the brains of PD patients. 
This dysregulation affects the expression and activity of m6A 
writers, erasers, and readers, consequently impacting the sta-
bility, translation efficiency, and function of immune-related 
transcripts.[34] The immune microenvironment in PD is charac-
terized by chronic neuroinflammation, marked by the activation 
of microglia and infiltration of peripheral immune cells into the 
brain parenchyma. Dysregulated immune responses contribute 

Figure 4.  Consistent clustering of 11 m6A-related genes in Parkinson disease. (A) Consensus clustering matrix when k = 2. (B) Consensus clustering matrix 
when k = 3. (C) Consensus clustering matrix when k = 4. (D) Consensus clustering matrix when k = 5. (E) Representative CDF curves. (F) Box plots of differential 
expression of 11 m6A-related genes in cluster A and cluster B. (G) Heatmap of the expression of 11 m6A-related genes in cluster A and cluster B. (H) Principal 
component analysis of cluster A and cluster B. (I) KEGG enrichment analysis of 35 DEGs. *P < .05, **P < .01, and ***P < .001. CDF = cumulative distribution 
function, KEGG = Kyoto Encyclopedia of Genes and Genomes, m6A = N6-methyladenosine.
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to neuronal damage and disease progression.[35] Importantly, 
m6A RNA methylation influences the expression of immune- 
related genes and modulates immune responses. For instance, 
m6A modification can regulate the expression of cytokines, 
chemokines, and immune receptors, as well as modulate innate 
and adaptive immune cell functions.[36,37]

Intriguing research findings have illuminated the indispens-
ability of specific binding proteins for the manifestation of the 
biological functions attributed to m6A modification. Among 
these, the YTH protein family emerges as a notable cohort, 
adept at discerning and selectively recognizing m6A-modified 
mRNA, thereby orchestrating its functional role.[38,39] Notably, 
YTH Domain Containing 2 (YTHDC2), the largest member 
of the YTH family, assumes a prominent position within the 
nucleus. Its principal undertaking revolves around augment-
ing the translation efficiency of downstream target genes.[40] 
As a significant m6A recognition protein and one of the m6A 
readers, YTHDC2 is primarily engaged in the recruitment of 
m6A-binding proteins. Notably, YTHDC2 exhibits a predilec-
tion for binding to noncoding RNAs, in addition to introns 
and intergenic regions.[22] Possessing adenosine triphosphate- 
dependent RNA helicase activity, YTHDC2 harbors 2 operative 
domains: Helicase N and Helicase C. The anchor protein repeat 
sequence interposed between these 2 domains facilitates the 
interaction with the ribonuclease XRN1, suggesting a putative 
role for YTHDC2 in regulating mRNA stability.[41,42]

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) gene 
belongs to a subfamily of heterogeneously expressed ribonucleo-
proteins (hnRNPs) that are ubiquitously distributed throughout 
the cell. Intriguingly, m6A has been demonstrated to facilitate 
the interaction between HNRNPC and mRNA, mediated by a 
mechanism aptly termed the “m (6)A-switch,” thereby exerting 

regulatory control over mRNA splicing events.[43] Current inves-
tigations have unveiled the involvement of HNRNPC in the 
malignant progression of diverse tumors, shedding light on its 
potential significance as a therapeutic target.[44–46] Furthermore, 
studies have indicated that augmented expression of HNRNPC 
can engender enhanced cellular proliferation and hinder apop-
tosis in PC2019 cells. Notably, it also serves to suppress the 
expression of inflammatory factors such as IFN-β, IL-2, and 
TNF-α. These intriguing observations posit the possibility of 
HNRNPC contributing to the pathogenesis of PD by impeding 
dopaminergic neuronal proliferation, promoting apoptosis, and 
eliciting immune-mediated inflammation.[37]

Leucine-rich pentatricopeptide repeat motif containing pro-
tein (LRPPRC), primarily situated on chromosome 2, assumes 
a pivotal role in the early onset of mitochondrial disorders, 
thus underscoring its significance in cellular homeostasis.[47,48] 
Extending beyond its involvement in mitochondrial diseases, 
LRPPRC has been implicated in an array of pathological con-
ditions. Notably, in the realm of oncological investigations, 
LRPPRC has exhibited heightened expression across multiple 
cancer types, including but not limited to prostate cancer, colon 
cancer, gastric cancer, and lung cancer.[49–52] Furthermore, emerg-
ing studies have put forth the notion that heightened LRPPRC 
expression within the brain may disrupt mitochondrial ade-
nosine triphosphate production, thereby influencing the onset 
and progression of neurodegenerative disorders such as AD and 
PD.[53]

Insulin-like growth factor binding protein-3 (IGFBP3), a 
prominent member of the IGFBP protein family, assumes a mul-
tifaceted role in cellular physiology. Research has elucidated 
that IGFBP3 exerts influence over cell proliferation and apop-
tosis via both IGF-dependent and IGF-independent signaling 

Figure 5.  Analysis of immune cell infiltration by m6A subtypes. (A) Differential immune cell infiltration between cluster A and cluster B. (B) Correlation analysis 
between infiltrating immune cells and 11 m6A-related genes. (C) Difference in the abundance of infiltrating immune cells between high and HNRNPA2B1 expres-
sion groups. *P < .05, **P < .01, and ***P < .001. HNRNPA2B1 = heterogeneous nuclear ribonucleoprotein A2/B1, m6A = N6-methyladenosine.
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pathways.[54] Moreover, IGFBP3 has emerged as a key regula-
tor of tumor cell growth, underscoring its significance in can-
cer biology.[55] Notably, studies have provided insights into 
the role of TRAIP, acting through the IGFBP3/AKT pathway, 
in promoting the degradation of KANK1, thus amplifying the 
invasive and proliferative capacities of osteosarcoma cells.[56] In 
the context of AD, investigations have uncovered the intrigu-
ing interplay between astrocyte-produced IGFBP3 and tau 
phosphorylation in neurons, thus imparting an impact on the 
progression of AD.[57] This study unveils the potential role of 
m6A-related genes in PD, enhancing our understanding of its 
pathogenic mechanisms. These genes likely play crucial roles in 
the development of PD, offering avenues for discovering novel 
therapeutic targets. By identifying these genes and elucidating 
their roles in PD, the study provides guidance for personalized 
treatment, aiding clinicians in assessing disease progression and 
devising more effective therapeutic strategies. Moreover, it sets a 
direction for future research, providing a framework for explor-
ing the specific roles of these genes in PD and their interactions 
with other factors. This study furnishes invaluable insights into 
understanding the pathogenesis of PD, guiding clinical interven-
tions, and inspiring future investigations, with the potential to 
substantially improve the health outcomes of patients.

Nevertheless, it is important to acknowledge the limitations of this 
study. Firstly, the absence of dedicated datasets specifically tailored 
to m6A-related genes within publicly available databases impeded 
our ability to independently validate the model. Consequently, the 

generalizability of our findings may be constrained. Moreover, the 
current comprehension surrounding the roles of the 4 identified 
genes (YTHDC2, HNRNPC, LRPPRC, and IGFBP3) in relation 
to PD remains limited, with the precise underlying mechanisms of 
their involvement in PD yet to be fully elucidated. In light of these 
limitations, future endeavors shall encompass conducting pertinent 
cell and animal experiments to corroborate the potential value of 
our model and shed light on the specific mechanisms underpin-
ning PD pathogenesis. By doing so, we aim to further advance our 
understanding of this complex disorder.

5. Conclusion
Our study has achieved significant milestones by constructing 
a robust RF model and devising a nomogram model based on 
4 promising m6A-related genes, facilitating accurate prediction 
of PD occurrence. Additionally, leveraging the insights gleaned 
from the 11 m6A-related genes, we have identified 2 distinct 
m6A clusters within PD, characterized by contrasting immune 
phenotypes. The culmination of these findings holds the poten-
tial to inspire new avenues of research, offering fresh perspec-
tives and guiding future investigations pertaining to PD.
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