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Abstract. The mechanism by which yeast dipeptidyl 
aminopeptidase (DPAP) A, a type II integral mem- 
brane protein, is retained in the late Golgi apparatus 
has been investigated. Prior work demonstrated that 
the ll8-amino acid cytoplasmic domain is both neces- 
sary and sufficient for Golgi retention and that mutant 
or overexpressed DPAP A no longer retained in the 
Golgi was delivered directly to the vacuolar membrane 
(Roberts, C. J., S. F. Nothwehr, and T. H. Stevens. 
1992. J. Cell Biol. 119:69-83). Replacement of the 
DPAP A transmembrane domain with a synthetic hy- 
drophobic sequence did not affect either Golgi reten- 
tion of DPAP A or vacuolar delivery of the retention- 
defective form of DPAP A. These results indicate that 
the DPAP A transmembrane domain is not involved in 
either Golgi retention or targeting of this membrane 
protein. A detailed mutational analysis of the cyto- 

plasmic domain of DPAP A indicated that the most 
important elements for retention were within the eight 
residue stretch 85-92. A 10-amino acid region from 
DPAP A (81-90) was sufficient for Golgi retention of 
alkaline phosphatase, a type II vacuolar membrane 
protein. Detailed mutational analysis within this 
10-amino acid sufficient region demonstrated that a 
Phe-X-Phe-X-Asp motif was absolutely required for 
efficient retention. The efficiency of Golgi retention 
via the DPAP A signal could be diminished by overex- 
pression of wild type but not retention-defective ver- 
sions of Kex2p, another late Golgi membrane protein, 
suggesting that multiple Golgi membrane proteins may 
be retained by a common machinery. These results 
imply a role for a cytoplasmic signal involving aro- 
matic residues in retention of late Golgi membrane 
proteins in the yeast Saccharomyces cerevisiae. 

UKARYOTIC proteins that are destined for the Golgi, 
lysosome/vacuole, or plasma membrane are trans- 
ported through the ER and on to the Golgi apparatus 

where the pathways leading to the various destinations di- 
verge (Mellman and Simons, 1992). Sorting decisions made 
in the Golgi are dependent on positive signals on the proteins 
being sorted that specify their ultimate location. Proteins not 
containing positive sorting information will travel through 
and exit from the Golgi with the bulk flow of lipid via the 
default pathway. Therefore, proteins that execute their func- 
tion within the ER or Golgi must have positive signals to 
specify retention within these organelles. For example, solu- 
ble resident proteins of the ER are known to be retained via 
the four amino acid sequence, K/HDEL, at the COOH ter- 
minus (for review see Pelham, 1989). Receptor proteins that 
recognize this signal and aid in retaining these proteins in the 
ER have been identified. In addition, retention signals on ER 
membrane proteins have also been identified and, thus far, 
appear to consist of short peptide sequences on the cytoplas- 
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mic side of the membrane (Jackson et al., 1990; Mallabia- 
barrena et al., 1992). 

Recently, the retention signals of several Golgi membrane 
proteins have been analyzed (for review see Machamer, 
1991). In animal cells, membrane protein retention in the cis 
and medial regions of the Golgi is usually specified by por- 
tions of the protein that include the transmembrane domain. 
Interestingly, the transmembrane domains of the E1 viral 
glycoprotein (Swift and Machamer, 1991) and galactosyl- 
transferase (Aoki et al., 1992) have been shown to contain 
uncharged polar residues that appear particularly important 
for Golgi retention. TGN38, a membrane protein that local- 
izes predominantly to the TGN (Luzio et al., 1990) and cy- 
cles between the TGN and the plasma membrane (Reaves et 
al., 1993) contains a cytoplasmic signal that is both neces- 
sary and sufficient for TGN localization (Humphrey et al., 
1993). Therefore, the mechanism of membrane protein re- 
tention in the TGN may be fundamentally different from that 
of other subcompartments within the Golgi. 

Of the yeast Golgi membrane proteins examined thus far, 
all are retained via their cytoplasmic domains. Our labora- 
tory has focused on the mechanism of targeting and retention 

© The Rockefeller University Press, 0021-9525/93/06/1197/13 $2.00 
The Journal of CeU Biology, Volume 121, Number 6, June 1993 1197-1209 1197 



of dipeptidyl aminopeptidase (DPAP) I A, a type II yeast 
Golgi membrane protein (i.e., NH2-terminal cytoplasmic 
domain, single membrane anchor, and a large lumenal 
domain). DPAP A is one of three resident Golgi proteases 
(along with Kexlp and Kex2p) that process the secreted mat- 
ing pheromone u-factor (Fuller et al., 1988) in a late Golgi 
compartment (Julius et al., 1984; Graham and Emr, 1991; 
Roberts et al., 1992). Previous work has shown that the 
ll8-amino acid cytoplasmic domain of DPAP A is neces- 
sary and sufficient for its retention in the Golgi apparatus 
(Roberts et al., 1992). Mutations in the cytoplasmic domain 
of DPAP A, as well as overproduction of the protein, resulted 
in its mislocalization to the vacuole, not the plasma mem- 
brane. These observations, along with the fact that no single 
domain of the vacuolar membrane protein, DPAP B, was re- 
quired for vacuolar targeting, led us to propose the vacuolar 
default model for membrane protein sorting in the yeast 
secretory pathway (Roberts et al., 1990, 1992). This model 
states that no sorting information is required for transport of 
membrane proteins to the vacuole, and positive sorting in- 
formation is required for nonvacuolar membrane proteins to 
stay out of the vacuole. Consistent with this model are the 
observations that the cytoplasmic domains of Kexlp (Cooper 
and Bussey, 1992) and Kex2p (Fuller et al., 1989; Wilcox 
et al., 1992) are necessary for Golgi retention and that non- 
retained Kexlp and Kex2p are mislocalized to the vacuolar 
membrane. It is important to note that the vacuolar default 
model does not apply to soluble proteins of the yeast secre- 
tory pathway, which are known to be secreted by default 
(Burgess and Kelly, 1987; Pelham, 1989). 

In this study, we have sought to test further the vacuolar 
default model and to analyze the Golgi retention signal of 
DPAP A in detail. An alternative model, in which the 
DPAP A transmembrane contained a cryptic vacuolar tar- 
geting signal, can be ruled out since its replacement with a 
synthetic hydrophobic sequence still resulted in transport of 
Golgi retention-defective DPAP A to the vacuole. An 
8-amino acid peptide sequence within the DPAP A cytoplas- 
mic domain containing a Phe-X-Phe-X-Asp motif was abso- 
lutely required for efficient Golgi retention. A 10-amino 
acid sequence containing the Phe and Asp residues was 
found to be sufficient for retention of a vacuolar membrane 
protein in the yeast Golgi. 

Materials and Methods 

Yeast Strains and Materials 
The following S. cerevisiae strains were used in this study: SF838-1D-8A1 
(MATch, phoSA ::LEU2, leu2-3, leu2-112, ura3-52, his4-519, ade6, gal2), 
SF838-1D-8A2 (MATot, pho8A::LEU2, leu2-3, leu2-112, ura3-52, his4- 
519, ade6, gal2, pep 4-3), JHRY20-1A-13 AgA (MATot, steJ3A::LEU2, 
dap2A::HIS3, ura3-52, leu2-3, leu2-112, his3-A200, pep4-3), JHRY20- 
1ASA1 (MATtx, phoSA::LEU2, ura3-52, leu2-3, leu2-112, his3-A200), 
JHRY20-1AB&2 (MATa, phoSA::LEU2, ura3-52, leu2-3, leu2-112, his3- 
A200, pep4-3) and CRY2-8A (MATot, kex2A::URA3, pho8A::LEU2, 
leu2-3, 1eu2-112, ura3-1, his3-15, ade2-1, trpl). 

The following reagents were obtained from the indicated sources: [35S] 
express label was from New England Nuclear (Boston, MA); Zymolyase 
100T was from ICN Biomedicals Inc. (Costa Mesa, CA); glusalase was 

1. Abbreviations used in this paper: ALP, alkaline phosphatase; CEN, yeast 
centromere; DPAP, dipeptidyl aminopeptidase; V-ATPase, vacuolar proton- 
transloeating ATPase. 

from Dupont Pharmaceuticals (Wilmington, DE); oxalyticase was from En- 
zogenetics (Corvallis, OR); all secondary and fluorochrome-conjngated an- 
tibodies for immunofluorescence were from Jackson ImmunoResearch 
Labs. Inc. (West Grove, PA); IgGsorb was from The Enzyme Center (Mal- 
den, MA); reagents for DNA sequencing were from Un. States Biochem. 
Corp. (Cleveland, OH); reagents for PCR were from Perkin-Elmer Cetus 
Instrs. (Norwalk, CT); and SDS (ultra-pure) was from BDH Biochemicals 
(San Francisco, CA). Mutagenic oligonucleotides were synthesized (Ito et 
at., 1982) at the University of Oregon Biotechnology Laboratory on a 380B 
DNA synthesizer (Appl. Biosystems, Inc., Foster City, CA). All other re- 
agents were from the Sigma Chem. Co. (St. Louis, MO). 

DNA Manipulations and Plasmid Construction 

DNA sequencing was performed according to Un. States Biochem. Corp. 
PCRs were carried out as recommended by Perkin-Elmer Cetus Instrs. The 
Hanahan (1985) procedure was used for E. coli transformations. Oligo- 
nucleotide-directed mutagenesis was performed according to Kunkel et ai. 
(1987). All other DNA manipulations were performed as described in Sam- 
brook et al. (1989). The E. coli strain SURE TM (Stratagene, La Jolla, CA) 
was used for construction of plasmids expressing the A-X-A and A85-106- 
A-X-A proteins (see below) while the strain MC1061 (Casadaban and Co- 
hen, 1980) was used for all other routine subcloning steps. Oligonucleotide- 
directed mutagenesis was carried out in strain CJ236. 

A STE/3 disruption plasmid was constructed by inserting a ~4-kbp BcU 
fragment of the LEU2 gene into BclI sites at positions 1235 and 2843 of 
the STE/3 gene (the A of the ATG is nucleotide 163; removing 1.6-kbp of 
coding sequence), which had been cloned into pBR322 as a 7.2-kbp BamHI 
fragment, giving rise to plasmid pSL349, stel3A strains were constructed 
by transforming (Ito et al., 1983) leu2 yeast strains to Leu + with the ~9.5- 
kbp BamHI ste13A::LEU2 fragment from pSL349. 

Replacement of the transmembrane domain of DPAP A (residues 120- 
139) with the sequence L(LALV)5, was as follows: oligonucleotide mu- 
tagenesis of a plasmid pCJR71 (Roberts et al., 1992) consisting of the 
0.65-kbp EagI-PstI STE/3 fragment (Flanagan, C. A., D. A. Barnes, M. C. 
Flessel, and J. Thorner, manuscript submitted for publication) in pKS + 
(Stratagene) was used to remove sequences encoding amino acids 120-139 
while leaving an HpaI site at the in-frame fusion junction resulting in plas- 
mid pSN113. Multiple tandem repeats of the linker (5"ACTAGCC,-CTAGT- 
31 were ligated into the HpaI site ofpSNll3. Sequence analysis showed that 
a resulting plasmid, pSNll8, contains five copies of this linker. The result- 
ing DNA sequence encodes the following amino acids surrounding the 
transmembrane domain: (NH2...RSL(LALV)sTP...)__ where the wild-type 
residues are underlined. The SacI-MhiI fragment from pSNll8 was in- 
serted into the SacI-MluI sites of pCJR106 (Roberts et al., 1992) creating 
pSN121 (A-X-A in a 2 #m plasmid). ~85-106-A-X-A was constructed by in- 
serting an EagI-BsaI fragment from pSN60 (described below) into the 
EagI-BsaI sites of pSNll8 creating pSN119. The SacI-MluI fragment from 
pSNll9 was inserted into the SacI-MluI sites of pCJR106 resulting in 
pSN122 (A85-106-A-X-A in a 2 #m plasmid). 

Plasmids encoding the A-ALP fusion protein were constructed as fol- 
lows: a 3.5-kbp KpnI-EcoRI fragment from pAL145, pBR322 carrying a 
4-kbp BamHI fragment containing the entire PH08 gene (Kaneko et ai., 
1987), was inserted into the KpnI-EcoRI sites of pSK + resulting in the 
plasmid pSN8. Oligonucleotide mutngenesis was performed on pSN8 to in- 
troduce a silent mutation into the PH08 gene (A-G at position 570), which 
removes the BgllI site creating plasmid pSN9. PCR amplification from 
pSN9 resulted in a product consisting of nucleotides 97-1921 of the PH08 
gene with additional nucleotides at the 5' and 3' ends encoding BglH and 
EcoRI sites, respectively. This PCR fragment was digested with BgllI and 
EcoRI, ligated to the l.l-kbp SalI-BgllI fragment from pCJRl6 (6-kpb 
XbaI-BamHI fragment of the ME/3 gene in pUC13; Roberts, C., and T. 
Stevens, unpublished observations), and both fragments were inserted into 
the SalI-EcoRI sites of YCp50 via a three-way ligation creating pSN14. The 
protein sequence at the region of the fusion junction is (NH2...PEKRS- 
KIIV...) where the DPAP A sequence is underlined and the ALP sequence 
is not. Centromere-containing (CEN), HIS3 and URA3 based vectors carry- 
ing the STE13-PH08 gene fusion were constructed by inserting the EagI- 
EcoRI fragment from pSN14 into the EagI-EcoRI sites of plasmids pRS313 
and pRS316 (Sikorski and Heiter, 1989) resulting in plasmids pSN54 and 
pSN55, respectively. 

Deletions within the cytoplasmic domain of DPAP A (see Fig. l) were 
constructed via oligonucleotide mutagenesis of pCJR71. To incorporate 
these deletions into the A-ALP fusion protein, SacI-Bglll fragments carry- 
ing the appropriate deletions were fused to the BglII-EcoRI fragment from 
pSN14 and both fragments were inserted into the SacI-EcoRI sites of 
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pSEYC68 (a URA3-based, CEN plasmid; Emr et al., 1983) via a three-way 
ligation. The following is a list of the resulting plasmids and encoded protein 
products: pSN25 (A2-51-A-ALP), pSN32 (A2-80-A-ALP), pSN34 (A2-100- 
A-ALP), pSN35 (A109-116-A-ALP), pSN27 (A68-106-A-ALP), pSN60 
(A85-106-A-ALP), pSN41 (Ag5-92-A-ALP), pSN42 (A92-99-A-ALP), and 
pSN43 (A99-106-A-ALP), where the deletion endpoints are indicated (e.g., 
A2-51 is missing residues 2 through 51). 

Mutations that changed residues 81-90 of DPAP A to other amino acids 
were also constructed by oligonucleotide mutagenesis of pCJRT1. The 
nomenclature used for the mutant proteins is Phes~ ~ Alags represented as 
F85A. EagI-BgllI fragments from derivatives of plasmid pCJRT1 containing 
the desired mutations were subcloned into the EagI-BgllI sites of pSN55. 
The following is a list of the resulting plasmids and the mutations contained 
within the A-ALP context: pSN196 (R81A), pSN197 (R82A), pSN198 
(Eg3A), pSN199 ($84A), pSN99 (F85A), pSN105-S (F85S), pSN105-Y 
(F85Y), pSN105-D (F85D), pSNI05-G (F85G), pSN105-C (F85C), 
pSN105-R (F85R), pSN200 (Q86A), pSN106-R (Q86R), pSN106-K 
(Q86K), pSN137-W (Q86W), pSNI37-E (Q86E), pSN137-M (Q86M), 
pSN137-V (Q86V), pSN98 (F87A), pSN107-C (F87C), pSN107-V (F87V), 
pSNIO7-G (F87G), pSNI39 (F87Y), pSN174 (N88A), pSN175, (D89A), 
pSN176 (I90A), and pSN100 (F85A,F87A). The F85A and F87A mutations 
were incorporated into wild-type DPAP A by inserting SacI-MluI frag- 
ments (from pCJRT1 derivatives containing these mutations) into the 
SacI-MluI sites of pCJR106 resulting in the 2/~m, URA3 based plasmids 
pSN128 and pSNI27, respectively. All of the mutations described above 
were confirmed by restriction digest analysis (in cases where the point muta- 
tion or point of deletion fell within a restriction site) or by DNA sequence 
analysis. 

Yeast CEN plasmids expressing ALP and RS-ALP were constructed as 
follows: a 4-kbp BamHl fragment from pAL145 containing the PH08 
gene was subeloned into the BamHI site of pKS +. The resulting plasmid 
(pSN93) was used for oligonucleotide mutagenesis to replace sequences en- 
coding amino acids 11-17 of ALP with sequences encoding residues 81-90 
of DPAP A creating the plasmid pSN94. The resulting amino acid sequence 
is as follows: (NH2...EQRRESFQFNDIDS...) where the DPAP A se- 
quence is underlined. BamHI fragments from pSN93 and pSN94 were sub- 
cloned into pRS316 (CEN, URA3 based vector) resulting in pSN92 and 
pSN97, respectively, and into pRS313 (CEN, HIS3 based vector) creating 
pSN124 and pSN125, respectively. 

Growth Conditions, Radiolabeling, 
and Immunoprecipitation 
Yeast strains were grown at 30°C to midlogarithmic phase in selective syn- 
thetic media lacking methionine and cysteine. 0.50Ds of cells (~5 x 10 ~) 
were then pelleted and resuspended in fresh media. The cells were pulsed 
by the addition of NEN aSS-express label and chased by addition of 50 
t~g/ml methionine and 50 #g/ml cysteine. To end the chase, the cultures were 
adjusted to 10 mM NaN3 on ice. The cells were then spheroplasted 
(Stevens et al., 1986), pelleted, and lysed by incubating in 1% SDS, 8 M 
urea, 0.5 mM PMSF, 1 tzg/mi leupeptin, and 1/~g/ml pepstatin at 100°C 
for 5 min. The volume was then adjusted on ice to 1 ml with IP buffer (10 
mM Tris, pH 8.0, 0.1% Triton X-100, 2 mM EDTA) and IgGsorb was added 
to 0.5%. After preadsorbing on ice for 15 min, the IgGsorb was pelleted, 
and either anti-ALP polycloual antibody (Raymond et al., 1992) or anti- 
DPAP A polycional antibody (Roberts et al., 1992) was added to the super- 
natant followed by a 1-h incubation on ice. Immune complexes were precipi- 
tated by adding IgGsorb to 0.5% and incubating I h on ice. The precipitates 
were washed twice with 0.1 M Tris, pH 7.6, containing 2.0 M urea, 0.2 M 
NaCI, and 1% Triton X-100, and then twice with 1% 2-mercaptoethanol. 
The samples were then analyzed by SDS-PAGE and fluorography as de- 
scribed previously (Stevens et al., 1986). Gels were quantified using Radio- 
analytic Imaging System (AMBIS Inc., San Diego, CA). 

lmmunofluorescence 
The primary antibodies used for indirect immunofluorescence were as fol- 
lows: (a) for ALP and A-ALP, an affinity purified rabbit polyclonal antibody 
against the luminal domain of ALP, which had been preadsorbed against 
fixed phoSA yeast cells (Raymond et al., 1992) was used; (b) for Kex2p, 
an affinity purified rabbit polyclonal antibody against Kex2p kindly 
provided by Robert Fuller was used; (c) for DPAP A, an affinity purified 
rabbit polyclonal antibody against the luminal domain of DPAP A, which 
had been preadsorbed against fixed stel3A yeast cells (Roberts et al., 1992) 
was used; and (d) for the 60-kD vacuolar proton-translocating ATPase 

(V-ATPase) subunit, the mouse monoclonal antibody 13Dll (Kane et al., 
1992) was used. 

The preparation of fixed, spheroplasted cells was carried out essentially 
as described (Roberts et al., 1991) except that the extent of SDS treatment 
was adapted to the antigens being detected. For simultaneous detection of 
both the 60-kD V-ATPase subunit and A-ALP (or ALP), DPAP A and the 
60-kD V-ATPase subunit, and A-ALP (RS-ALP or ALP) and Kex2p, the 
cells were treated as follows: 1.5% SDS for 2-3 min, 0.5% SDS for 2-3 
min, and 5 % SDS for 5 rain, respectively. 

For simultaneous detection of A-ALP, ALP, or DPAP A with the 60-kD 
V-ATPase subunit, the cells were incubated with the following solutions fol- 
lowed by extensive washing with 5 mg/ml BSA in PBS after each step: (a) 
1:10 dilution each of rabbit anti-ALP or anti-DPAP A antibody and the anti- 
60-kD V-ATPase subunit mouse mAb, (b) 1:1,000 dilution of biotin- 
conjugated goat anti-rabbit IgG (H + L), and (c) 1:500 dilution each of 
FITC-conjugated streptavidin and rhodamine-conjugated goat anti-mouse 
IgG (H + L). The procedure for costaining of A-ALP, ALP, or RS-ALP 
with Kex2p was essentially as described by Franzusoff et al. (1991) and in- 
volved the following incubations: (a) I:10 dilution of rabbit anti-ALP, (b) 
10 #g/ml Fab fragment of goat-anti-rabbit IgG (H + L), (c) 1:50 dilution 
of rabbit anti-Kex2p, (d) 1.5/~g/ml mouse anti-rabbit IgG (H + L), and 
(e) 1.5 ~g/ml each of rhodamine-conjugated rabbit anti-goat F(ab')2 and 
FITC-conjugated rabbit anti-mouse F(alY)2. 

Quantitation of the localization of A-X-A, A85-106-A-X-A, and RS-ALP 
was performed by analyzing >100 cells that bad stained for the antigen of 
interest (at least 53% of total). Golgi localization was defined as cytoplas- 
mic punctate patches that were distinct from the nucleus, ER, and vacuole. 
Vacuolar localization was defined by coiocaiization with the 60-kD 
V-ATPase subunit. The extent of colocalization of Kex2p with A-ALP and 
RS-ALP was quantified by analyzing cells that clearly stained for each anti- 
gen ('~80% of total). Doubly stained cells that exhibited essentially com- 
plete colocalization of the two staining patterns were scored as demonstrat- 
ing colocalization. 

Results 

The Transmembrane Domain Is Not 
Necessary for DPAP A Golgi Retention or Delivery 
of Retention-defective DPAP A to the 
Vacuolar Membrane 

The role of the transmembrane domain of DPAP A in its 
retention in the Golgi apparatus, and in delivery to the 
vacuolar membrane of retention-defective DPAP A, was in- 
vestigated. We previously demonstrated that a deletion of 
residues 85-106 in the cytoplasmic domain of DPAP A 
resulted in its delivery to the vacuolar membrane (Roberts 
et al., 1992) indicating that this domain is necessary for 
Golgi retention. While these data supported the hypothesis 
that the vacuole was the default destination for membrane 
proteins of the yeast secretory pathway, another possibility 
was that the transmembrane domain contained a "cryptic" 
vacuolar targeting signal, which directed the mutant protein 
to the vacuole in the absence of Golgi retention. To distin- 
guish between these models, the transmembrane domain of 
wild-type DPAP A and of A85-106-AAA (Roberts et al., 
1992) were replaced with a 21 residue synthetic hydrophobic 
sequence, X = L(LALV)s, resulting in the A-X-A and A85- 
106-A-X-A proteins (Fig. 1 A). Repeats of the sequence, 
LALV, were previously shown to functionally replace the 
transmembrane domain of the E. coli coliphage fl gene III 
protein (Davis and Model, 1985). 

The constructs were analyzed in a strain containing a null 
allele of STE/3, the structural gene for DPAP A (Julius et al., 
1983). Immunoprecipitations of DPAP A, A85-106-AAA, 
A-X-A, and A85-106-A-X-A expressed from 2 #m plasmids 
were carried out using a polyclonal antibody against the lu- 
minal domain of DPAP A (Roberts et ai., 1992). Fig. 2 shows 
that the SDS-PAGE mobility of A-X-A is indistinguishable 
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Figure 1. (A) Schematic illustration of wild-type DPAP A, A85-106- 
AAA, A-X-A, and A85-106-A-X-A proteins. The proteins span the 
membrane once with the NH2 terminus (at the left) protruding 
into the cytoplasm. The deleted region is indicated by a thin single 
line whereas the replacement of the wild-type transmembrane 
domain (unshaded) with the synthetic hydrophobic sequence, 
L(LALV)~, is indicated by the shaded region. (B) Structure of the 
A-ALP fusion protein. The A-ALP fusion protein consists of the 
NH2-terminal cytoplasmic domain of DPAP A (unshaded) fused 
to the transmembrane and luminal domains of ALP (shaded). ALP 
and A-ALP contain a propeptide at their COOH terminus (darkly 
shaded region), which is removed (cleavage site indicated by the 

Figure 2. Immunoprecipitation of wild-type and mutant forms of 
DPAP A. JHRY20-1A-13A2A cells (ste13A) carrying 2 #m plasmids 
encoding DPAP A (pCJR46), A85-106-AAA (pSN59), A-X-A 
(pSN121), or A85-106-A-X-A (pSN122) were labeled with S 3s for 
60 min and chased for 30 min in the presence of 50 gg/ml each of 
methionine and cysteine. The cells were converted to spheroplasts, 
and extracts immunoprecipitated with a polyclonal antibody against 
DPAP A. The samples were then analyzed by SDS-PAGE and 
fluorography. The position of a molecular weight standard (97-kD) 
is indicated with an arrow. 

from DPAP A whereas the A85-106-AAA and A85-106- 
A-X-A mutants have a slightly greater mobility, consistent 
with a 22-amino acid deletion. Non-glycosylated DPAP A 
is reduced in size ~,5-kD compared to the glycosylated pro- 
tein (Roberts et al., 1992), therefore these results indicate 
that the mutant enzymes are translocated into the ER and re- 
ceive carbohydrate modifications in the ER and Golgi simi- 
larly to DPAP A. To determine the cellular locations of the 
constructs, indirect immunofluorescence microscopy was 
performed using an anti-DPAP A antibody (Roberts et al., 
1992). Fig. 3 B shows that A-X-A, like DPAP A (Roberts et 
al., 1992; data not shown), is localized to discrete punctate 
patches in the cytoplasm distinct from the ER and vacuole 
and typical of the yeast Golgi apparatus (Redding et al., 
1991). Comparison of this staining pattern with that of the 
60-kD vacuolar proton-translocating ATPase (V-ATPase) 
subunit (Fig. 3 C), a marker for the yeast vacuolar mem- 
brane (Yamashiro et al., 1990), demonstrates that the loca- 
tion of A-X-A is nonvacuolar. A-X-A exhibited a Golgi stain- 
ing pattern in 100% of the cells examined, and was found 
on the vacuolar membrane in <1% of cells (for details see 
Materials and Methods) suggesting that the transmembrane 

arrow) in a PEP4-dependent manner. (C) Sequence of the DPAP A 
cytoplasmic domain and deletions within this domain. The amino 
acid sequence of the NH2-terminai cytoplasmic domain of DPAP 
A is shown, and below is a schematic showing the wild-type cyto- 
plasmic domain (continuous shaded bar) and deletions (single thin 
line) made in the context of the A-ALP fusion protein. The amino 
acid sequence removed by each deletion is indicated to the left. 
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Figure 3. Indirect immunofluorescence microscopy of A-X-A and 
A85-106-A-X-A mutant forms of DPAP A. JHRY20-1A-I 3A2A cells 
(stel3A) carrying 2/tin plasmids encoding A-X-A (pSN121) or A85- 
106-A-X-A (pSN122) were fixed, converted to spheroplasts, and 
stained with a rabbit antibody against DPAP A (B and E) and a 
mouse antibody against the 60-kD V-ATPase subunit (C and F). 
The cells were viewed by Nomarski optics (A and D) and epi- 
fluorescence through filter sets specific for fluorescein (DPAP A; 
B and E) and rhodamine (V-ATPase; C and F) fluorescence. 

domain of DPAP A does not appear to be involved in its 
retention in the Golgi other than acting as a membrane an- 
chor. In addition, the A-X-A protein complemented a stel3A 
strain for processing of the u-factor mating pheromone 
demonstrating that it was correctly folded and in the correct 
Golgi compartment (data not shown). In contrast to the 
Golgi localization of A-X-A, ARS-106-A-X-A exhibited a 
vacuolar membrane staining pattern (Fig. 3, compare panels 
E and F) indistinguishable from that of A85-106-AAA 
(Roberts et al,, 1992). A85-106-A-X-A decorated the vacuo- 
lar membrane in 100% of the cells examined and in a small 
percentage of cells (11%) was also localized to the Golgi ap- 
paratus. These data show that mislocalization of DPAP A to 
the vacuole as caused by the A85-106 mutation occurs nor- 
really when the transmembrane domain is replaced with a 
synthetic hydrophobic sequence, demonstrating that trans- 
port to the vacuole does not require a specific signal within 
this domain. 

The A-ALP Fusion Protein Is a Relevant Model for 
Studying Golgi Retention 

Our previous observation that the cytoplasmic domain of 
DPAP A was sufficient to retain a vacuolar membrane pro- 
tein (DPAP B) in the yeast Golgi (Roberts et al., 1992), com- 
bined with the analysis of the transmembrane and cytoplas- 
mic domains above, strongly indicate that all the information 
required for retention lies within the cytoplasmic domain. A 

hybrid membrane protein was constructed to characterize 
the retention signal within the liB-amino acid cytoplasmic 
domain in more detail. This A-ALP fusion protein consisted 
of the cytoplasmic domain of DPAP A fused to the trans- 
membrane and luminal domains of alkaline phosphatase 
(ALP; Klionsky and Emr, 1990), a type II integral mem- 
brane protein of the vacuole (Fig. 1 B). ALP contains a •3- 
kD propeptide at its COOH terminus, which is removed in 
a manner dependent on protease A, the product of the PEP4 
gene (Ammerer et al., 1986), indicating that this modifica- 
tion occurs within the vacuole (Klionsky and Emr, 1989). 
Therefore, this PEP4-dependent cleavage event can be used 
as an assay for vacuolar delivery of A-ALP. In addition, un- 
like DPAP A, A-ALP can be analyzed by immunofluores- 
cence microscopy when expressed from the endogenous 
STEJ3 promotor on a single-copy, CEN plasmid, thereby 
avoiding the necessity to overproduce the protein. 

Western blot analysis of extracts ofpho8A cells carrying 
a CEN-based plasmid encoding the A-ALP fusion protein 
demonstrated that A-ALP was synthesized as a 95-kD poly- 
peptide, which behaved as an integral membrane protein 
under high pH carbonate extraction conditions (data not 
shown). Immunolocalization experiments showed that A-ALP 
exhibits a cytoplasmic punctate staining pattern (Fig. 4 A) 
that is distinct from the vacuolar staining pattern obtained 
using a monoclonal antibody against the 60-kD V-ATPase 
subunit and distinct from wild-type ALP (see below). The 
staining pattern of A-ALP was indistinguishable from the 
staining pattern observed for the Golgi membrane proteins 
DPAP A (Roberts et al., 1992), Kex2p (Redding et al., 
1991), and Kexlp (Cooper and Bussey, 1992). As a direct test 
of whether A-ALP is localized to the same Golgi structures 
as Kex2p, double-labeling experiments were carded out to 
simultaneously detect the two antigens. Fig. 4 A shows repre- 
sentative cells expressing both A-ALP and Kex2p, where 
Kex2p was overexpressed (*15-fold) by placing the KEX2 
gene under the control of the GAL/promoter to aid in its vi- 
sualization. This level of KEX2 overexpression does not 
qualitatively affect its localization (Redding et al., 1991). 
Comparison of the Kex2p staining pattern with that of A-ALP 
revealed (Fig. 4 A) striking overlap of the staining patterns 
for the two antigens. Quantitation of the immunofluorescence 
data (for details see Materials and Methods) indicated that 
97 % of the cells that stain for both antigens exhibited exten- 
sive colocalization. Thus, the data indicate that the vast 
majority of A-ALP colocalizes with Kex2p, a marker for the 
yeast Golgi apparatus (Redding et ai., 1991). 

Because the staining procedure depends on separate am- 
plification of two rabbit primary antibodies (Franzusoff et 
al., 1991; see Materials and Methods), control experiments 
were performed to ensure a lack of secondary antibody cross 
reactivity. No Kex2p staining was observed in a kex2A strain 
lacking Kex2p (Fig. 4 B), and similarly no A-ALP staining 
was observed in phoSA strains lacking the A-ALP fusion 
protein (Fig. 4 C). Moreover, when the procedure was ap- 
plied to a strain expressing Kex2p and wild-type ALP, a 
vacuolar membrane protein, the staining patterns were dis- 
tinct, further demonstrating a lack of cross reactivity of the 
two rabbit antibodies (Fig. 4 D). Finally, when either pri- 
mary antibody was omitted from the procedure no significant 
staining was observed for either corresponding antigen (data 
not shown). 
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Figure 4. Colocalization of 
A-ALP with Kex2p. Cells 
were cultured in the presence 
of 2 % galactose, costained by 
antibodies against Kex2p and 
ALP (see Materials and Meth- 
ods), and were viewed by 
Nomarksi optics and epifluo- 
rescence through filter sets 
specific for fluorescein (Kex2p 
staining) and rhodamine 
(A-ALP or ALP staining) flu- 
orescence. (A) Shown are 
JHRY'20-1A8A cells (phoSA) 
co-expressing A-ALP and 
Kex2p from plasmids pSN54 
(CEN-based plasmid contain- 
ing STEI3-PH08 fusion) and 
pBM-KX22 (KEX2 behind the 
GAL/ promoter; Redding et 
al., 1991), respectively. (B) 
Shown is strain CRY2-8A 
(kex2A,pho8A) expressing 
A-ALP (pSN54), but not 
Kex2p. (C) Shown is strain 
JHRY'20-1ASA (phoSA) ex- 
pressing Kex2p (pBM-KX22), 
but not A-ALP. (D) Shown is 
strain JHRY'20-1ASA cells 
(phoSA) expressing wild-type 
ALP (pSN124) and Kex2p 
(pBM-KX22). 

Residues 85-92 of  DPAP A Are Involved in 
Golgi Retention 

A series of deletions were made in the cytoplasmic domain 
of DPAP A (in the context of the A-ALP fusion protein) to 
identify the region responsible for its retention in the Golgi 
(Fig. 1 C). The A-ALP deletion mutants were expressed in 
a phoSA strain and localized by indirect immunofluores- 
cence microscopy. In accordance with the vacuolar default 
model for membrane protein sorting in yeast (Roberts et al., 
1992), the deletion mutants that failed to be retained in the 
Golgi were delivered to the vacuolar membrane rather than 
to the cell surface. Table I shows quantitation of the im- 
munolocalization data focusing on the percentage of cells 
that exhibit vacuolar staining. As indicated in Fig. 4, wild- 
type A-ALP exhibited a Golgi staining pattern, with very few 
cells (<1%) exhibiting vacuolar membrane staining. Re- 
moval of residues 2-51 or even 2-80 within the ll8-amino 
acid cytoplasmic domain had little effect on localization of 
A-ALP. However, deletion of 20 additional residues (A2-100) 
resulted in dramatic mislocalization of A 2-100-A-ALP to the 
vacuole, as the anti-ALP antibody decorated the vacuolar 
membrane in 100% of the stained cells examined. The res- 
idues immediately adjacent to the transmembrane domain 
were not required for retention since the A109-116-A-ALP 
protein exhibited essentially wild-type localization. Removal 
of residues 68-106, as well as the smaller deletion A85-106, 
prevented retention in the Golgi apparatus. The observation 
that the 22-amino acid deletion (A85-106) resulted in as se- 
vere a mislocalization phenotype (99% of cells exhibiting 
vacuolar staining) as removal of almost the entire cytoplas- 
mic tail (A2-100, 100%) suggested that the most important 

elements of the retention signal were within this region. To 
define region 85-106 further, three smaller deletions (A85- 
92, A92-99, and A99-106) were analyzed. The A85-92-A- 
ALP protein was mislocalized to the vacuole (100% of cells 

Table L Quantitation of lmmunofluorescence Observations 
for Wild-Type and Mutant A-ALP Proteins 

% Cells showing 
Protein* vacuolar staining¢ 

wild type A-ALP <1 
A2-51-A-ALP 0 
A2-80-A-ALP 7 
A2-100-A-ALP 100 
AI09-116-A-ALP 0 
A68-106-A-ALP 88 
A85-106-A-ALP 99 
A85-92-A-ALP 100 
A92-99-A-ALP 0 
A99-106-A-ALP 3 
F87A-A-ALP 96 

* Each construct was analyzed in SF838-1D-8A2 cells (pho8A, pep4-3) con- 
taning CEN-based plasmids encoding either wild-type or mutant A-ALP pro- 
teins (see Materials and Methods for detailed description of plasmids). The 
cells were fixed, spheroplasted, and costained with rabbit anti-ALP and mouse 
anti-60-kD V-ATPase subunit, and analyzed by indirect immunofluorescence 
microscopy as described in Materials and Methods. Staining for all constructs 
was apparent in at least 90% of the cells examined, and of these stained cells 
at least 100 cells were quantified. 
¢ The percentages refer to the percent of cells that exhibit significant vacuolar 
staining for each protein. Vacuolar staining was scored by comparing the stain- 
ing pattern of each construct in a given cell with the pattern obtained using an 
antibody against the 60-kD V-ATPase subunit, a marker for the vacuolar mem- 
brane (see Materials and Methods). Depending on the protein being analyzed, 
other staining patterns such as Golgi staining were sometimes observed rather 
than (or in addition to) vacuolar staining. 
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Figure 6. Analysis of PEP4-dependent processing of wild-type 
A-ALP and F85A-A-ALP. SF838-1D-8A1 (pho8A, PEP4) cells 
(lanes 1, 2, 4, and 5) and SF838-1D-8A2 (pho8A, pep4-3) cells 
(lanes 3 and 6) expressing wild-type A-ALP (pSN55) or F85A-A- 
ALP (pSN99) were 35S-labeled for 30 min and chased by adding 
50/~g/ml each of methionine and cysteine. At the indicated times, 
the cells were spheroplasted, and extracts immunoprecipitated with 
a polyclonal antibody against ALP followed by SDS-PAGE and 
fluorography. 

Figure 5. Immunolocalization of wild-type and mutant forms of the 
A-ALP fusion protein. Shown are SF838-1D-8A2 cells (phoSA, 
pep4-3) expressing wild-type A-ALP (pSN55), A2-80-A-ALP 
(pSN32), A85-92-A-ALP (pSN41), and F85A-A-ALP (pSN99). 
ALP staining (indicating wild-type and mutant forms of A-ALP) is 
shown in B, E, H, and K; 60-kD V-ATPase subunit staining in C, 
F, L and L; and Nomarski images of whole cells in A, D, G, and J. 

exhibiting vacuolar staining), whereas the A92-99-A-ALP 
and A99-106 hybrid proteins exhibited little or no vacuolar 
staining. Fig. 5 shows a typical staining pattern for the A2-80 
and A85-92-A-ALP proteins. The staining pattern for A2-80- 
A-ALP was indistinguishable from wild-type A-ALP (com- 
pare panel B-E). However, removal of residues 85-92 
caused the vast majority of A-ALP to reside on the vacu- 

olar membrane as demonstrated by colocalization with the 
60-kD V-ATPase subunit (panels H and I). Taken together, 
these results indicate that the most important elements for 
Golgi retention lie within the eight amino acid stretch: 
FQFNDIEN. 

Phe85, Phe87, and Asp89 Are Required for 
Golgi Retention 

In mammalian cells, there is much evidence that aromatic 
residues in the cytoplasmic domains of membrane proteins 
can act as sorting signals for clustering into coated pits (for 
review see Trowbridge, 1991). Therefore, it was intriguing 
that there were two phenylalanine residues at positions 85 
and 87 within the eight amino stretch found to be essential 
for Golgi retention of A-ALP. To test whether the phenylala- 
nine residues at positions 85 and 87, and the intervening 
nonaromatic glutamine residue at position 86, were impor- 
tant for retention, extensive site saturation mutagenesis was 
performed at each of these three positions, The mutant 
A-ALP hybrids were analyzed by monitoring the kinetics of 
PEP4-dependent processing, enzymatic activity, as well as 
indirect immunofluorescence microscopy. Cells expressing 
either wild-type A-ALP or the mutant protein with F85 sub- 
stituted by alanine (F85A-A-ALP) were pulse-labeled with 
35S for 30 min and chased for the indicated times (Fig. 6). 
After a 60-min chase, no processing was detected for wild- 
type A-ALP whereas processing of the F85A-A-ALP protein 
was evident at the beginning of the chase period and was 
~50% complete by 60-min of chase. Processing of the 
F85A-A-ALP hybrid protein, which was completely PEP4- 
dependent (compare lanes 5 and 6), suggested that the F85A 
mutation disrupted retention of A-ALP in the Golgi. This re- 
sult was corroborated by the striking vacuolar membrane 
staining pattern of F85A-A-ALP as shown in Fig. 5 (J-L). 

Kinetic analyses have been carried out on the PEP4- 
dependent processing of several mutant A-ALP fusion pro- 
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Table II. The Half-Time of PEP4-dependent Processing for 
the A-ALP Mutants with Amino Acid Replacements at 
Positions 85, 86, and 87 

Table IlL The Half-Time of PEP4-dependent Processing for 
the A-ALP Mutants with Alanine Replacements at Positions 
81 through 90 

Sequence at Processing Processing 
positions 85-87 half-time* Sequence at ositions 81-90 half-time* 

F Q F (wild type) no processing 
A - -  70 
C - -  65 
D - -  75 
G - -  85 
S - -  80 
Y - -  90 

A no processing 
E no processing 

- M - no processing 
- K - >180 
- R - > 1 8 0  

- V - > 1 8 0  

- W - > 1 8 0  

- - A 5 5  

- - C 6 5  

- - G 7 5  

- - V 1 6 5  

- - Y 145 
A - A 70 

* The determination of the half-time of PEP4-dependent processing was made 
by analyzing SF838-1D-8AI (pho8A, PEP4) cells carrying CEN-based plas- 
raids encoding wild-type or mutant A-ALP proteins (see Materials and 
Methods). Each strain was 3sS-labcled for 15 rain and chased for 0, 20, 60, 
and 180 rain, spheroplasted, lysed,and subjected to immunoprecipitation using 
an anti-ALP antibody. The percent processing at each time point was quantified 
by scanning SDS-PAGE gels with an AMBIS Redioanalytic Imaging System 
and the half-time was determined by linear regression analysis. For proteins 
having <20% processing after a 180-min chase or proteins having no detecta- 
ble processing at the 180-rain time point, the half-time of processing was ex- 
pressed as ">180" or by ~no processing," respectively. 

teins containing amino acid replacements at positions 85, 86, 
or 87 (Table II). No processing of wild-type A-ALP was de- 
tected after 3 h of chase while every amino acid replacement 
at positions 85 and 87 caused processing to occur with half 
times that ranged from 55 to 165 min. Replacing both 
phenylalanines with alanines (A85,A87-A-ALP; t~a of 70 
min) did not decrease the half time of processing as com- 
pared with replacing F85 or F87 alone (t~ of 70 and 55, 
respectively), nor did the double replacement increase the 
already severe mislocalization defect of the F85A-A-ALP 
(Fig. 5) and F87A-A-ALP (Table I; 96% of cells show vac- 
uolar staining) mutants as judged by immunofluorescence 
microscopy. Whereas there appears to be a specific require- 
ment for a phenylalanine at position 85, position 87 is some- 
what less strict since a tyrosine or valine substitution ex- 
hibited a less severe phenotype than the other residues 
tested. In contrast to replacement of F85 and F87, replace- 
ments for Q86 had little if any affect on Golgi retention as 
judged by the extremely slow rates of processing. 

While these data suggest that the most critical element of 
the retention signal consists ofa  Phe-X-Phe motif, it is possi- 
ble that amino acids surrounding this sequence are also im- 
portant for retention. To test this possibility, alanine scan- 
ning mutagenesis was carded out at positions 81-84 and 
88-90 (Table HI). Conversion of residues 81-84, 88, and 90 
to alanine had little if any effect on Golgi retention of A-ALP 
as judged by the lack of PEP4-dependent processing. How- 
ever, the D89A mutation, while not as severe as the F85A 

R R E S ! ~  

A . . . .  

- A - - - 

- - A - - 

- - - A - 

. . . . . . .  A - - 

. . . . . . . . .  A 

Q F N ) I (wild type) 

A . . . .  

no processing 
no processing 
no processing 
no processing 
no processing 

70 
no processing 

55 
no processing 

110 
no processing 

* Boxes indicate the positions occupied by amino acids required for efficient 
retention of A-ALP. For other details refer to the legend to Table II. 

and F87A mutations, did result in a half-time of processing 
of 105 min indicating that D89 is also important for Golgi 
retention of A-ALP. 

ALP is inactive until its propeptide is cleaved in a PEP4- 
dependent manner in the vacuole (Klionsky and Emr, 1989). 
Therefore, enzymatic activity can also be used as an assay 
for vacuolar delivery of the A-ALP proteins containing point 
mutations, since wild-type and mutant protein levels were 
essentially the same (Fig. 6; data not shown). When the ac- 
tivity of wild-type A-ALP and the F85A,F87A-A-ALP mu- 
tant were assayed in a phoSA, PEP4 strain, the ALP activity 
for the mutant hybrid was sixfold greater than that of wild- 
type A-ALP after subtracting out the background activity 
of the cytoplasmic alkaline phosphatase, Phol3p (Kaneko 
et al., 1989). This is in agreement with the localization 
and processing data above indicating that F85,F87-A-ALP 
is mislocalized to the vacuole, and also argues that F85A, 
F87A-A-ALP is correctly folded into an enzymatically active 
conformation. 

Although we previously showed that the A85-106 mutation 
caused DPAP A to be mislocalized to the vacuole (Roberts 
et al., 1992), it was not clear whether removal of just F85 

Figure 7. Immunolocalization of DPAP A containing a Phe to Ala 
mutation at position 85. JHRY20-1A-13A2A cells (stel3A, pep4-3) 
carrying a 2 /~m plasmid encoding F85A-AAA (pSN128) were 
stained as in Fig. 3. DPAP A staining is shown in B, 60-kD 
V-ATPase subunit staining in C, and a Nomarski image of whole 
cells in A. 
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and F87, essential for Golgi retention of A-ALP, would lead 
to mislocalization of the full-length DPAP A protein. In- 
direct immunofluorescence microscopy was carded out on 
ste13A cells expressing F85A-AAA, a mutant form of 
DPAP A in which only the F85 residue was altered (to ala- 
nine). Fig. 7 shows that this protein is clearly mislocalized to 
the vacuolar membrane. A similar result was obtained for 
the F87A-AAA mutant (data not shown) demonstrating the 
importance of these residues for retention of wild-type 
DPAP A. 

Residues 81-90 of  DPAP A Are SuJ~cient to Retain 
A L P  in the Golgi 

Mutational analysis clearly identified an eight amino stretch 
containing a critical Phe-X-Phe-X-Asp sequence as neces- 
sary for retention; however, it was important to determine 
whether this sequence motif could function independently to 
retain a non-Golgi membrane protein. A sufficiency test was 
conducted by incorporating the 10-amino acid sequence sur- 
rounding F85 and F87 that had been analyzed by alanine 
scanning mutagenesis (residues 81-90 of DPAP A; Table III) 
into the cytoplasmic domain of ALP, removing residues 11- 
17 of ALP in the process (Fig. 8 A). This new hybrid protein 
(RS-ALP) as well as wild-type ALP were analyzed in a 
pho8A strain by indirect immunofluorescence microscopy. 
Fig. 8 B shows that the antibody against ALP clearly labels 
the vacuolar membrane of cells expressing wild-type ALP, 
as expected (compare to the 60-kD V-ATPase subunit stain- 
ing pattern). In contrast, cells expressing RS-ALP exhibit a 
punctate, predominantly nonvacuolar staining pattern remini- 
scent of the Golgi membrane proteins DPAP A and Kex2p. 
All of the cells analyzed clearly exhibited a Golgi-type of 
staining pattern, whereas 27 % also exhibited a detectable 
level of vacuolar staining in addition to Golgi staining (see 
Materials and Methods for details). 

To determine whether the punctate cytoplasmic structures 
containing RS-ALP were indeed components of the Golgi, 
costaining with an antibody against Kex2p was performed as 
in Fig. 4. Fig. 8 C demonstrates that these structures colocal- 
ize with Kex2p. Quantitation of these results demonstrated 
that 93 % of the cells that stain with both antigens exhibited 
extensive colocalization. 

Overproduction of  Kex2p Results in Mislocalization of  
A-ALP to the Vacuole 

Kex2p contains an aromatic residue (Tyr) in its cytoplasmic 
domain that is essential for its efficient retention in the Golgi 
(Wilcox et al., 1992). That study combined with our analysis 
of DPAP A raises the question of whether multiple Golgi 
membrane proteins are recognized via the same retention 
"machinery" or whether each membrane protein is recog- 
nized and retained by a separate mechanism. To address this 

bTgure 8. (A) Schematic illustration of the RS-ALP protein. Wildo 
type ALP is diagrammed as a rectangle with the NH2-terminal cy- 
toplasmic domain, transmembrane domain, and propeptide indi- 
cated as very lightly shaded, darkly shaded, and lightly shaded, 
respectively. The amino acid sequence of the ALP cytoplasmic do- 
main is shown. The unboMed region was replaced by amino acids 
81-90 from the DPAP A cytoplasmic domain (shown below, in bo/d) 
resulting in the RS-ALP protein. (B) Immunolocalization of ALP 

and RS-ALP. SF838-1D-8A2 (pho8A, pep4-3) cells expressing 
ALP (pSN92) and RS-ALP (pSN97) were viewed by Nomarski op- 
tics and epifluorescence through filter sets specific for fluorescein 
(ALP staining) and rhodamine (60-kD V-ATPase subunit staining) 
fluorescence. (C) Colocalization of RS-ALP with Kex2p. JHRY20- 
1A8A cells (pho8A) expressing Kex2p (pBM-KX22) and RS-ALP 
(pSN125) were analyzed as in Fig. 4. 
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Figure 9. PEP4-dependent processing of A-ALP in strains over- 
producing wild-type and mutant Kex2p. Strains analyzed were 
JHRY20-1A8A1 (phoSA, KEX2, PEP4) and an isogenic pep4-3 
strain both of which carried pSN54 (CEN-based plasmid containing 
the STE13-PH08 fusion). In addition, the strains harbored pRS316 
(vector with no insert; first two lanes), pCW-KX20 (wild-type 
Kex2p under control of the GAL/promoter as described by Wilcox 
et al., 1992; WTlanes), pCW-KX21 (derivative of pCW-KX20 con- 
taining the Y713A mutation; Y713A lanes), and pCW-KX27 
(derivative of pCW-KX20 containing the C-tailA mutation; C-tailA 
lanes). The ceils were grown overnight in the presence of 2 % galac- 
tose, 35S-labeled for 30 min, and chased for 2 h in the presence of 
50 #g/ml each of methionine and cysteine, whereupon immunopre- 
cipitation was carried out as in Fig. 6. 

question we exploited the earlier observation that over- 
production of DPAP A caused a portion of DPAP A to be 
mislocalized to the vacuolar membrane (Roberts et al., 
1992). This result suggested that mislocalization could be 
achieved by overwhelming the putative Golgi retention ma- 
chinery with high levels of ligand. If the retention machinery 
recognizes both DPAP A (or A-ALP) and Kex2p, then over- 
expression of one protein might lead to mislocalization of the 
other. 

To test this idea, we 35S-labeled pho8A yeast cells carry- 
ing A-ALP alone on a single copy plasmid, or A-ALP with 
a plasmid overexpressing Kex2p from the GAL/ promoter 
(Johnston and Davis, 1984), and immunoprecipitated 
A-ALP after 120 min of chase (Fig. 9). No processing was 
observed in the presence of normal Kex2p levels but when 
wild-type Kex2p was overproduced (,M5-fold) a significant 
fraction of the A-ALP protein underwent PEP4-dependent 
processing (29%). However, the same level of overproduc- 
tion of retention-defective mutant versions of Kex2p (Wilcox 
et al., 1992) lacking a critical tyrosine residue (Y713A) or 
the entire cytoplasmic tail (C-tailA; removes residues 702- 
814) resulted in greatly diminished levels of A-ALP reaching 
the vacuole (8 and <3% processing, respectively). Thus, 
A-ALP was less efficiently retained in the Golgi when wild 
type but not mutant Kex2p was overproduced, suggesting 
that the cytoplasmic retention signals of the two proteins may 
be recognized by the same retention machinery. 

It should be noted that although 'M5-fold Kex2p over- 
production significantly increases the rate at which A-ALP 
reaches the vacuole, the majority of A-ALP protein in the 
steady state localizes to the Golgi under these conditions 
(Fig. 4; data not shown). Similarly, F87V-A-ALP, which ex- 

hibits a slow but significant rate of PEP4-dependent process- 
ing (tu2 = 165 min), also exhibits Golgi complex staining 
(data not shown). Finally, Kex2p overproduction did not 
have an effect on processing and secretion of or-factor demon- 
strafing that general Golgi functions are intact under these 
conditions (data not shown). 

Discussion 

The data presented in this paper address fundamental issues 
in membrane protein sorting in the yeast secretory pathway. 
We present experiments that further test and support the va- 
lidity of the vacuolar default model, which states that the 
vacuole is the default destination for membrane proteins of 
the yeast secretory pathway. In addition, a detailed charac- 
terization of the Golgi retention signal of DPAP A led to the 
conclusion that certain aromatic amino acid residues within 
the cytoplasmic domain constitute a signal that is responsible 
for retention. This observation, which contrasts with studies 
in mammalian cells demonstrating that several Golgi mem- 
brane proteins are retained via their transmembrane do- 
mains (Machamer, 1991), indicates that Golgi retention sig- 
nals can reside in cytoplasmic or transmembrane domains. 
Genetic approaches available with yeast should soon allow 
identification of components of the retention machinery that 
retain DPAP A in the Golgi apparatus. 

Additional Testing of the Vacuolar Default Model 

Replacement of the DPAP A transmembrane domain with a 
synthetic hydrophobic sequence, L(LALV)5, had no effect 
on the vacuolar delivery of retention-defective DPAP A, ar- 
guing that this domain does not contain a cryptic vacuolar 
targeting signal. Vacuolar targeting information is also un- 
likely to reside in the luminal domain of DPAP A since its 
replacement with that of DPAP B, a domain demonstrated 
to lack vacuolar targeting information, also had no effect on 
transport of mislocalized DPAP A to the vacuole (Roberts et 
al., 1992). Finally, removal of almost the entire cytoplasmic 
domain of A-ALP (A2-100-A-ALP) resulted in its delivery to 
the vacuole, and thus it is unlikely that the DPAP A cytoplas- 
mic domain contains both a Golgi retention signal and a 
cryptic vacuolar targeting signal. We conclude that vacuolar 
delivery of DPAP A protein not retained in the Golgi is not 
a signal mediated event and thus occurs by default. 

Several other observations are consistent with the vacuolar 
default model: (a) no single domain of DPAP B, a type II 
vacuolar membrane protein, is required for its vacuolar 
transport (Roberts et al., 1992); (b) Kexlp not retained in the 
Golgi apparatus due to removal of retention information or 
overproduction is delivered to the vacuolar membrane 
(Cooper and Bussey, 1992); and (c) a point mutation in the 
Kex2p cytoplasmic domain results in its vacuolar delivery 
(Wilcox et al., 1992). In addition, mislocalization of mutant 
DPAP A to the vacuolar membrane does not occur via trans- 
port to the plasma membrane followed by subsequent uptake 
from the plasma membrane to the vacuole. This was demon- 
strated for the A22-AA-B protein (Roberts et al., 1992) and 
for F85A-A-ALP (Nothwehr, S., and T. Stevens, unpublished 
data) by the finding that these proteins were able to reach the 
vacuole in a secl-ts mutant strain (secl-ts mutant cells are 
conditionally blocked in secretory vesicle fusion with the 
plasma membrane; Novick et al., 1981; Salminen et al., 
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1987) at the restrictive temperature. The next step in testing 
the vacuolar default model is to determine whether discrete 
sorting signals are required for proper localization of a yeast 
plasma membrane protein, a project currently underway in 
our laboratory. 

An Aromatic Residue Signal Is Necessary and 
Sufficient for Golgi Retention 
Our data point toward an eight residue sequence in the 
DPAP A cytoplasmic domain containing two phenylalanine 
residues as being a Golgi retention signal. Mutagenesis of 
the A-ALP fusion protein was a viable approach for this anal- 
ysis since: (a) A-ALP was localized to the Golgi apparatus 
as shown by its colocalization with Kex2p, (b) A-ALP was 
membrane bound and mutants processed in a PEP4-depen- 
dent manner were enzymatically active, indicating correct 
folding, (c) A-ALP could be easily detected at low expression 
levels, (d) localization could be assessed by both indirect im- 
munofluorescence and by PEP4-dependent processing, and 
(e) regions of the DPAP A cytoplasmic domain identified as 
being necessary for Golgi retention of A-ALP were also 
shown to be necessary for DPAP A retention. 

Mutational analysis indicated a requirement for phenylala- 
nine residues at positions 85 and 87 in the Golgi retention 
signal of DPAP A (RRESFQFNDI90). At position 85, all of 
the replacements analyzed inactivated the signal to a similar 
extent including the relatively conservative tyrosine replace- 
ment. However, at position 87 the large aliphatic and aro- 
marie substitutions (Val and Tyr) were not as severe as the 
others (Ala, Cys, Gly), suggesting that more variability is al- 
lowed at this position. Simultaneous replacement of F85 or 
F87 with alanines did not increase the severity of the pheno- 
type of the F85A- or F87A-A-ALP mutant proteins suggesting 
that the phenylalanines do not act in an independent, additive 
fashion for retention. Rather, these data suggest that they 
form a single structural motif recognized by the yeast Golgi 
retention machinery. Alanine scanning mutagenesis of the 
entire 10-amino acid region (81-90) indicated that no 
specific sequence information was required at positions 81- 
84, 86, 88, or 90; however an Asp residue at position 89 was 
required for efficient retention. Additional mutational analy- 
sis will be needed to determine whether there is a specific 
requirement for an Asp residue at position 89 or whether 
other residues will function at this position. At the least, 
these results demonstrate that in addition to a Phe-X-Phe mo- 
tif, certain contextual sequences are also required. 

The observation that Kex2p overexpression reduces the 
efficiency of A-ALP retention in the Golgi (only when Kex2p 
has an intact Golgi retention signal) suggests that a common 
sorting apparatus, perhaps a receptor, can become saturated 
due to excess ligand. Comparison of the COOH-terminal cy- 
toplasmic tail of Kex2p (type I) and the NH2-terminal tail 
of DPAP A (type II) reveals no obvious sequence similarity. 
However, a critical dement of the Kex2p Golgi retention sig- 
nal has recently been shown to be a q~yr residue at position 
713 of the cytoplasmic tail (Wilcox et al., 1992). Interest- 
ingly, a phenylalanine residue is present at position 715 
(YEF715). While the role of F715 in Kex2p localization has 
not been tested, comparison suggests that a general ele- 
ment for Golgi retention of yeast membrane proteins may be 
(Y/F-X-Y/F). The fact that DPAP A and Kex2p have different 
membrane orientations would not rule out identical retention 

mechanisms since clathrin-coated pit signals of membrane 
bound receptors are able to function equally well irrespec- 
tive of their orientation with the membrane (Collawn et al., 
1991; Jadot et al., 1992). Although the above data are consis- 
tent with DPAP A and Kex2p having retention signals that 
are recognized by the same trans-acting factor, the prefer- 
ence for phenylalanine over tyrosine in the DPAP A signal 
would appear to be at odds with this interpretation. It is pos- 
sible that there are separate components that recognize each 
signal, but that there are other more generic components that 
are shared in the retention of each protein. Alternatively, the 
dependence of the DPAP A signal on phenylalanine may be 
a result of the context of this signal. 

Comparison of the Golgi retention signal of DPAP A with 
the signals directing plasma membrane receptors and lyso- 
somal membrane proteins into clathrin-coated pits of animal 
cells also reveals some interesting similarities. Recent struc- 
tural and mutagenesis studies suggest that these coated pit 
signals consist of short (4-6 amino acid) sequences that in- 
variably contain one or more Tyr or Phe residues and appear 
to be in a turn conformation (for review see Trowbridge, 
1991). Beyond the aromatic residue requirement, most of the 
coated signals reveal little if any primary sequence similarity 
to each other or to the Phe-X-Phe-X-Asp retention motif of 
DPAP A. An exception is the internalization signal of bovine 
cation-independent mannose-6-phosphate receptor, which 
was demonstrated by Canfield et al. (1991) to include a Tyr- 
X-Tyr motif as an important dement. The similarity of the 
Golgi retention signal of DPAP A to signals that sort mem- 
brane proteins into clathrin-coated pits suggests that the 
retention of DPAP A may involve clustering into clathrin- 
coated pits. 

Model for Golgi Retention of DPAP A 
The similarity of the DPAP A Golgi retention signal to inter- 
nalization signals raises the question of whether localization 
of DPAP A involves cycling between the plasma membrane 
and the Golgi. According to this model, DPAP A may be 
constitutively transported to the plasma membrane, endocy- 
tosed via interaction of its "retention signal" with clathrin- 
coated pits, and returned to the Golgi. This type of model 
is consistent with the observation that disruption of the 
clathrin heavy chain gene (CHC1) resulted in mislocalization 
of a significant pool of Kex2p and DPAP A to the plasma 
membrane rather than the vacuole (Payne and Schekman, 
1989; Seeger and Payne, 1992). However, much data argues 
against this model. The localization of A-ALP (Nothwehr, 
S., and T. Stevens, unpublished data), Kexlp (Cooper and 
Bussey, 1992), and Kex2p (Redding et al., 1992) are not 
affected by blocking secretory vesicle fusion with the plasma 
membrane (secl-ts mutation). Furthermore, this model 
would predict that removal of Golgi retention information 
would cause DPAP A to accumulate at the cell surface. We 
have found that neither wild-type nor retention-defective 
DPAP A accumulate at the cell surface as judged by the im- 
munofluorescence experiments presented here and by enzy- 
matic activity measurements (Roberts et al., 1992; Noth- 
wehr, S., and T. Stevens, unpublished data). 

Nevertheless, the important observation of a role for 
clathrin in the retention of DPAP A (Seeger and Payne, 1992) 
combined with our identification of an aromatic residue 
Golgi retention signal in the cytoplasmic domain of DPAP A, 
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strongly suggest that coated vesicle structures are some- 
how involved in its retention. The data are consistent with 
a retrieval model for Golgi membrane protein retention simi- 
lar to that proposed for soluble ER proteins (Pelham et al., 
1989). In this model, DPAP A protein may leave the Golgi 
via the default pathway for membrane proteins that eventu- 
ally leads to the vacuole. Before reaching the vacuole, 
DPAP A may pass through a "prevacuolar compartment, 
wherein it interacts with clathrin-coated structures and is 
transported back to the late Golgi compartment via transport 
vesicles. In animal cells, the interaction of the cytoplasmic- 
coated pit signals with the clathrin coat is thought to be 
mediated by specific interactions with an "adaptor" complex 
(Pearse, 1988; Glickman et al., 1989; Beltzer and Spiess, 
1991) and putative adaptor subunit homologues have been 
found in yeast (Kirchhausen, 1990). By interaction with 
clathrin coat proteins, DPAP A in the prevacuolar compart- 
ment could be packaged into clathrin-coated vesicles bound 
for the Golgi. In the absence of the clathrin heavy chain, the 
retrieval system may become less specific and the vesicles 
may eventually fuse with the plasma membrane. Mutant 
DPAP A lacking a retrieval signal would not bind clathrin 
coat proteins and would be transported via the default path- 
way from the prevacuolar compartment to the vacuole (for 
additional discussion, see Seeger and Payne, 1992; Wilcox 
et al., 1992). While such a role for clathrin-coated vesicles 
fits with all of the results in yeast, results from an in vitro 
assay (Draper et al., 1990) suggest that clathrin-coated vesi- 
cles are not involved in the recycling of the mannose 6-phos- 
phate receptor from a prelysosomal compartment back to the 
TGN in animal cells. 

The existence of a prevacuolar compartment in yeast has 
not been firmly established. However, recently our labora- 
tory has demonstrated that a subset of the vps mutants, which 
are defective in vacuolar protein sorting, accumulates a 
vacuolar-like organelle adjacent to the vacuole (Raymond et 
al., 1992). This organelle shares similarity with the vacuole 
in that it contains the V-ATPase and soluble vacuolar hydro- 
lases such as carboxypeptidase Y and protease A. However, 
the organelle also contains a significant pool of A-ALP, with 
the rest being located in the Golgi. Therefore, it is possible 
that wild-type cells contain a prevacuolar compartment and 
DPAP A passes through it as part of its retrieval system. An 
exciting possibility is that retrograde trafficking of vesicles 
(containing DPAP A) from this compartment back to the 
Golgi is partially blocked in these mutants. 

It is possible that, in addition to a retrieval system, a static 
mode of retention may also exist wherein the static system 
would simply reduce the rate at which DPAP A escapes the 
Golgi. The static system might also recognize features of the 
cytoplasmic tail of DPAP A distinct from the retention signal 
containing aromatic residues. This model might explain why 
the kinetics of vacuolar delivery of mutant forms of A-ALP 
lacking the aromatic residue signal is somewhat slower (55 
min for F87A-A-ALP) than the processing half time of 
A-ALP lacking most of its cytoplasmic domain (25 min for 
A2-100-A-ALP; Nothwehr, S., and T. Stevens, unpublished 
data) and that of wild-type ALP (5 min; Klionsky and Emr, 
1989). In any event, it is clear that the aromatic residue sig- 
nal is an important determinant for yeast Golgi retention and 
further work will be needed to identify other elements within 
the DPAP A cytoplasmic domain, if any, that influence 
retention. 
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