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Equations predicting stride frequency (SF) and duty factor (DF) solely based on
running speed have been proposed. However, for a given speed, kinematics vary
depending on the global running pattern (GRP), i.e., the overall individual movement
while running, which depends on the vertical oscillation of the head, antero-posterior
motion of the elbows, vertical pelvis position at ground contact, antero-posterior foot
position at ground contact, and strike pattern. Hence, we first verified the validity of
the aforementioned equations while accounting for GRP. Kinematics during three 50-
m runs on a track (n = 20) were used with curve fitting and linear mixed effects
models. The percentage of explained variance was increased by ≥133% for DF when
taking into account GRP. GRP was negatively related to DF (p = 0.004) but not
to SF (p = 0.08), invalidating DF equation. Second, we assessed which parameters
among anthropometric characteristics, sex, training volume, and GRP could relate to
SF and DF in addition to speed, using kinematic data during five 30-s runs on a
treadmill (n = 54). SF and DF linearly increased and quadratically decreased with speed
(p < 0.001), respectively. However, on an individual level, SF was best described using
a second-order polynomial equation. SF and DF showed a non-negligible percentage
of variance explained by random effects (≥28%). Age and height were positively and
negatively related to SF (p ≤ 0.05), respectively, while GRP was negatively related to
DF (p < 0.001), making them key parameters to estimate SF and DF, respectively, in
addition to speed.

Keywords: biomechanics, running, running speed, stride frequency, duty factor, predictive equation

INTRODUCTION

Running is defined as a cyclic alternance of lower limb support and flight phases, where at most
one limb is in contact with the ground. In other words, the proportion of time spent by one limb in
contact with the ground during a running stride, i.e., the duty factor (DF), is under 50% (Minetti,
1998; Folland et al., 2017). The running speed is determined by the product of the stride length and
stride frequency (SF). All together, these three parameters allow defining running locomotion, out
of which DF and SF, which control the temporal aspects of the running stride, are often of major
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interest due to their supposed relationship with running
efficiency and performance (Moore, 2016). Moreover, DF was
shown to be a good descriptor of running gait types (Fihl and
Moeslund, 2007). Several studies have shown that with increasing
speed, SF increases (Weyand et al., 2000; Mercer et al., 2002;
Nummela et al., 2007) while DF decreases (Lussiana et al.,
2019). On this basis, Gray et al. (2019) proposed quadratic
regression equations to predict SF and DF solely based on speed.
Their findings demonstrated that speed explained considerable
variance in SF (R2 = 90.3%) while other parameters seemed
required to explain variance in DF (R2 = 65.2%).

The considerably good estimation of SF (and DF, to some
extent) provided by the equations proposed by Gray et al.
(2019) might partly be due to their very specific cohort (10
young, well-trained, and healthy male soccer players). Recently,
Moissenet et al. (2019) observed that lower limb sagittal gait
kinematics in walking locomotion was predicted by walking
speed but also by age, BMI, and sex. Similarly, a machine
learning approach identified different running gait strategies
where most of the groups differed in age or sex (Hoerzer et al.,
2015). Other researchers showed that matching participants by
height, mass, and sex was necessary to observe biomechanical
differences between healthy and injured runners (Grau et al.,
2008). Therefore, the results obtained by Gray et al. (2019)
might suffer from a lack of generalization as anthropometric
characteristics and sex could impact individual’s SF and DF
and therefore their predictions. Furthermore, knowing which
of these anthropometric characteristics improve predicting DF
and SF could also help to better predict running efficiency and
performance (Boullosa et al., 2020).

More specifically, DF was found to be highly variable among
runners, with values ranging between 25 and 40% (average
across three speeds: 2.78, 3.06, and 3.33 m/s) in a cohort of 97
endurance runners (Folland et al., 2017). Such variability could
be attributed to participants’ intrinsic parameters such as age
or sex (Cavagna et al., 2008b; Chapman et al., 2012). Indeed,
Cavagna et al. (2008b) observed a lower flight time (tf ) for old
than for young men and Chapman et al. (2012) reported shorter
ground contact time (tc) and swing time (ts) for women than men
elite runners. However, these differences between sex were largely
negated by normalizing to standing height (Chapman et al.,
2012), which makes anthropometric characteristics potential
candidates to impact DF. The spontaneous running pattern
adopted by individuals could also impact DF. Indeed, a shorter
tc and larger tf were observed for aerial (AER) than terrestrial
(TER) runners, where these groups were defined based on
a subjective evaluation of the global running pattern (GRP),
i.e., an overall evaluation while running, which takes into
account the vertical oscillation of the head, antero-posterior
motion of the elbows, vertical pelvis position at ground
contact, antero-posterior foot position at ground contact, and
strike pattern (Gindre et al., 2016; Lussiana et al., 2017b).
Therefore, taking GRP into account as an additional parameter
when predicting DF could potentially improve the quality of
its prediction. Noteworthy, understanding GRP of individuals
might also assist in individualizing their training programs
(Gindre et al., 2016).

On the contrary, no significant difference in step frequency,
i.e., the half of SF, was observed between TER and AER runners
for a given speed (range: 3.33–5.00 m/s) (Gindre et al., 2016),
indicating that GRP might not be related to SF. Nevertheless,
researchers observed large inter-individual differences in the
spontaneous choice of SF at a given speed (Hunter and Smith,
2007; van Oeveren et al., 2017). These differences could be
due to participants’ intrinsic parameters such as age (Cavagna
et al., 2008a,b), sex (Chapman et al., 2012), mass (van Oeveren
et al., 2019), and leg length (Heglund and Taylor, 1988; Cavagna
et al., 1991; Marsh et al., 2004; Srinivasan and Ruina, 2006;
van Oeveren et al., 2019), where greater SF was associated with
older individuals, female, lower mass, and shorter leg length. In
addition, as SF could be modified by gait retraining (Lenhart
et al., 2014); experience, performance, and training could also
impact SF. Indeed, van Oeveren et al. (2019) observed that higher
training frequency and duration were positively related to SF,
but running experience, performance, and injury incidence had
no impact. Interestingly, these authors also observed that on an
individual level, SF as a function of speed relationship was best
described with a second-order polynomial while SF increased
linearly with speed on a group level (van Oeveren et al., 2019).
This result contradicts the observation of Gray et al. (2019) but
might be due to the smaller range of speed and heterogeneous
participant characteristics involved in the study of van Oeveren
et al. (2019).

Hence, the purpose of this study was twofold. First, using a
cohort of participants depicting similar characteristics than the
one of Gray et al. (2019), we verified the validity of the regression
equations relating SF and DF to speed while accounting for GRP.
Kinematic differences being observed when classifying runners
based on their GRP, we hypothesized that DF regression equation
should no longer be valid when using such classification. On the
contrary, as no difference in step frequency was reported for such
classification, we hypothesized that SF regression equation should
still be valid. Second, we generalized the SF and DF predictions
by using a broader cohort of runners. Indeed, we assessed,
in addition to speed, which parameters among anthropometric
characteristics [age, height, mass, body mass index (BMI), and
leg length], sex, training volume, and GRP could be related to
SF and DF. We hypothesized that anthropometric characteristics,
sex, and training volume should be related to both SF and DF,
with SF and DF being linearly and quadratically dependent to
speed, respectively. In addition, we hypothesized that GRP should
be related to DF but not to SF.

MATERIALS AND METHODS

Participant Characteristics
We conducted a retrospective analysis of data from our
laboratory. For this investigation, we first selected SF and DF data
from a group of 20 young trained males practicing a running
related sport (team sports and triathlon): age: 22.3 ± 2.1 years,
height: 181 ± 6 cm, mass: 71.7 ± 6.2 kg, BMI: 21.9 ± 1.4 kg/m2,
and weekly training hours: 10.3 ± 4.9 h, while running on
an athletic track. This group is the largest group available in
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our database while running on a track and sharing the same
characteristics as in the study of Gray et al. (2019). These specific
data were part of a larger data collection (91 individuals) that
was used to verify that subjectively classified AER and TER
runners were in fact associated with distinct objectively measured
biomechanical parameters (Gindre et al., 2016).

Second, SF and DF were assessed when running on a
treadmill using data from a different cohort of 54 trained runners
composed of 21 females (age: 31.8± 8.7 years, height: 162± 4 cm,
mass: 52.1 ± 5.5 kg, BMI: 19.8 ± 1.6 kg/m2, leg length:
83.8 ± 2.8 cm, and weekly running distance: 50.0 ± 21.0 km)
and 33 males (age: 31.5 ± 9.3 years, height = 175 ± 7 cm, mass:
66.4± 10.7 kg, BMI: 21.6± 2.3 kg/m2, leg length: 91.1± 4.8 cm,
and weekly running distance: 52.6 ± 20.2 km). These specific
data have been previously collected to investigate the kinematic
and energetic values between runners with a high and low DF at
typical endurance running speeds (Lussiana et al., 2019).

All participants voluntarily participated in the original
investigations and previously gave written informed consent.
For study inclusion of the original investigations, participants
were required to be in good self-reported general health with no
current or recent (<3 months) musculoskeletal injuries. As for
the original investigation on the treadmill, participants were also
required to meet a certain level of running performance, i.e., a
road race finishing time of ≤50 min for 10 km, ≤1 h 50 min
for 21.1 km or ≤3 h 50 min for 42.2 km in the last year. These
same criteria have been used for the retrospective analysis of data.
All participants were familiar with running on a treadmill as part
of their usual training program and wore their habitual running
shoes during testing. The institutional review board approved this
study protocol prior to participant recruitment (ID RCB 2016-
A00500-51), which adhered to the latest Declaration of Helsinki
of the World Medical Association.

Experimental Procedure
As for the session on the athletic track, each participant ran for
10 min as a warm-up at a self-selected speed (range: 2.5–3.5 m/s).
Then, the participant performed three randomized 50-m running
trials at 3.33, 4.17, and 5.00 m/s starting from a standing-still
position. Running trials were interspersed by 2-min rest periods
during which time the participant was allowed to walk. Speed
was monitored using photoelectric cells (Racetime2, MicroGate,
Timing, and Sport, Bolzano, Italy) placed at the 20- and 40-
m marks of the 50-m trial. A running trial was accepted when
its speed was within ±5% of the specified speed. Otherwise, it
was disregarded and repeated after a 2-min rest period, which
occurred in less than 20% of the trials and no more than twice
per participant.

As for the session on the treadmill, after measuring the
right leg length of the participant (from anterior superior
iliac spine to medial malleolus), the participant ran for 5 min
at a self-selected speed (range: 2.8–3.5 m/s) on a treadmill
(h/p/cosmos mercury R©, h/p/cosmos sports & medical gmbh,
Nussdorf-Traunstein, Germany) as a warm-up. Then, retro-
reflective markers were positioned on individuals (described in
section “Data Collection and Analysis”) to assess temporal gait
kinematics. As for each participant, first, a 5-s standing static

trial using a standard anatomical position was recorded on the
treadmill for calibration purposes. This was followed by five 30-s
runs at 2.78, 3.33, 3.89, 4.44, and 5.00 m/s (with 1-min recovery
periods on the treadmill between each run). Three-dimensional
(3D) kinematic data were collected during the static trial and the
last 15 s of the running trials.

Subjective Assessment of the Global
Running Pattern
During the warm-up run at self-selected speed (on the athletic
track or treadmill), an expert running coach with 5 years of
experience using the Volodalen R© scale focused on the overall
movement of participants. The coach paid attention to five
key elements: vertical oscillation of the head, antero-posterior
motion of the elbows, vertical pelvis position at ground contact,
antero-posterior foot position at ground contact, and strike
pattern (Gindre et al., 2016; Lussiana et al., 2017a). Each
element was scored from one to five, leading to a subjective
score (V R©score) that represents GRP of participants. This score
ultimately allows the classification of participants in two different
groups termed TER (V R©score ≤ 15) and AER (V R©score > 15).
The intra- and inter-rater reliability of this method has been
shown recently (Patoz et al., 2019a). This method has been
recognized as a reliable evaluation of GRP, being strongly
correlated to the measurements of biomechanical parameters
(Lussiana et al., 2017b).

Data Collection and Analysis
As for the session on the athletic track, a 20-m optical
measurement system (Optojump Next R©, MicroGate Timing and
Sport, Bolzano, Italy) sampling at 1000 Hz was used to record
tc and tf between the 20- and 40-m marks of the 50-m trial. As
no distinction between right and left limbs were made, ts was, on
average, given by ts = tc + 2tf .

As for the session on the treadmill, 3D kinematic data
were collected at 200 Hz and a resolution of 1.3 megapixels
using seven infrared Oqus cameras (five Oqus 300+, one Oqus
310+, and one Oqus 311+) and Qualisys Track Manager
software version 2.1.1 build 2902 together with the Project
Automation Framework Running package version 4.4 (Qualisys
AB, Göteborg, Sweden). Four retro-reflective markers of 12 mm
diameter were used for static and running trials and were
affixed to the shoes of individuals over anatomical landmarks
(dorsal aspect of the second metatarsal head and aspect of the
Achilles tendon insertion on the calcaneus) using double-sided
tape following standard guidelines from the Project Automation
Framework Running package (Tranberg et al., 2011) and as
already reported elsewhere (Lussiana et al., 2019). The 3D
marker data were exported in .c3d format and processed in
Visual3D Professional software version 5.02.25 (C-Motion Inc.,
Germantown, MD, United States). More explicitly, the 3D marker
data were interpolated using a third-order polynomial least-
square fit algorithm (using three frames of data before and after
the “gap” to calculate the coefficients of the polynomial), allowing
a maximum of 20 frames for gap filling, and subsequently low-
pass filtered at 20 Hz using a fourth-order Butterworth filter.
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Running events were derived from the trajectories of the 3D
marker and using similar procedures to those previously reported
in the literature (Maiwald et al., 2009; Lussiana et al., 2019). More
explicitly, a mid-foot landmark was generated midway between
the heel and toe markers. Footstrike was defined as the instance
when the mid-foot landmark reached a local minimal vertical
velocity prior to it reaching a peak vertical velocity reflecting
the start of swing. Toe-off was defined as the instance when the
toe marker attained a peak vertical acceleration before reaching
a 7-cm vertical position. ts and tc were defined as the time
from toe-off to footstrike and from footstrike to toe-off of the
same foot, respectively. All events were verified to ensure correct
identification and were manually adjusted when required.

Based on tc and ts values, DF was calculated as DF =
tc

tc + ts (Minetti, 1998) and SF was given by SF = 1
tc + ts . tc and

ts represent the average between right and left values. Gray et al.
(2019) proposed to describe these two parameters using the
following quadratic regression equations (Eqs. 1 and 2)

SF = 0.026s2 − 0.111s

+1.398 (R2
adj = 90.2%, SE = 0.21 Hz) (1)

DF = 0.4s2 − 6.1s+ 50 (R2
adj = 64.9%, SE = 7.4 %) (2)

where s represents speed (in m/s) and SE denotes the standard
error of the fit. In this study, a similar curve fitting procedure
based on a second-order polynomial was applied to SF and DF
obtained from the session on the athletic track with and without
the subgrouping of participants. SE and R2

adj were computed to
assess the quality of the fit. Data analysis was performed using
Python (version 3.7.4, Python Software Foundation, available at
http://www.python.org).

Statistical Analysis
Descriptive statistics are presented using mean ± standard
deviation (SD) unless otherwise indicated. The normality
of the data and homogeneity of variances were verified
using Kolmogorov–Smirnov and Levene’s test, respectively.
Bland–Altman plots (Bland and Altman, 1995; Atkinson and
Nevill, 1998) were constructed to examine the presence of
systematic and proportional biases between calculated SF
and DF from the data obtained during the session on the
athletic track and “theoretical” ones computed using Eqs.
1 and 2 provided by Gray et al. (2019). Systematic bias
was also identified by a significant difference obtained from
a paired Student’s t-test. After confirming visually that no
correlation was present among the residuals, the proportional
bias (heteroscedasticity) was identified by a significant slope of
the regression line. Participant characteristics between groups
were compared using unpaired Student’s t-tests. The effect
of speed on SF and DF was evaluated using a linear mixed
effects model fitted by restricted maximum likelihood. The
within-subject nature was controlled for by including random
effects for participant (subject-specific effects). As for the
session on the athletic track, the fixed effects included speed

and GRP (continuous variables) using the following model
(Eq. 3):

Y = b0 + b1s+ b2s2 + c1GRP+ d1 (s× GRP)

+{intercept+ s | part_id} (3)

where Y represents SF or DF, s is speed, the bi’s, c1,
and d1 are the regression coefficients, (s × GRP) is the
interaction term, and the term within curly brackets
denotes the random effects’ term: a participant identifier
(part_id) was used as a random effect variable to account
for individual differences in the intercept and linear s
terms. Of note, a random effect in the quadratic s2 term
could not be used due to the fact that three random terms
applied on 20 participants require >60 observations but 60
observations were made.

As for the session on the treadmill, the fixed effects included
speed (continuous variable), sex (categorical variable), and
variables among age, height, mass, BMI, leg length, weekly
running distance, and GRP that correlated to less than 0.7 to
prevent collinearity (van Oeveren et al., 2019). Correlation was
determined using Pearson correlation coefficient (r), calculated
between each pair of previously mentioned variables. Very high,
high, moderate, low, and negligible correlations are given by
the following r values, respectively: 0.90–1.00, 0.70–0.90, 0.50–
0.70, 0.30–0.50, and 0.00–0.30 (Hinkle et al., 2003). Based
on correlation coefficients; age, height, BMI, weekly running
distance, and GRP (continuous variables) were used as fixed
effects on the model, which was as follows (Eq. 4):

Y = b0 + b1s+ b2s2 +
5∑

i =1

[civi + di (s× vi)] + 0.5 [c6sex

+d6 (s× sex)] + {intercept+ s+ s2| part_id} (4)

where Y represents SF or DF, s is speed, the bi’s, ci’s, and di’s
are the regression coefficients, the sex is 1 for female and -1 for
male, the vi’s are as follows: v1: age, v2: height, v3: BMI, v4: weekly
running distance, and v5: GRP, (s × vi) and (s × sex) are the
interaction terms, and the term within curly brackets denotes the
random effects’ term (individual differences in intercept, linear s,
and quadratic s2 terms were taken into account).

Continuous independent variables were centered around the
mean. The variance explained by the fixed effects over the
total expected variance of the dependent variable was given by
R2

marginal while R2
conditional represented the variance explained by

the fixed and random effects together over the total variance of
the dependent variable (Johnson, 2014). Intra-class correlation
coefficients (ICCs) of the random effects were computed as the
ratio of the variance of the random coefficient divided by the sum
of itself and the residual variance. On the basis of commonly used
thresholds, poor, moderate, good, and excellent ICCs are given
by ICC values <0.5, 0.5–0.75, 0.75–0.90, and ≥0.90, respectively
(Koo and Li, 2016). Likelihood ratio tests were employed to
assess the relevance of using several random effects. Statistical
analysis was performed using Jamovi (version 1.2.17, Computer
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FIGURE 1 | Bland–Altman plots that compare calculated and theoretical (A)
stride frequency (SF) and (B) duty factor (DF). Calculated values were
obtained during the session on the athletic track while theoretical ones were
computed using Eqs. 1 and 2 proposed by Gray et al. (2019). A significant
bias is reported for DF (the horizontal line at 1DF = 0 is not within the 95%
confidence interval given by the dark gray shaded area) but not for SF.

Software, retrieved from https://www.jamovi.org) with a level of
significance set at p ≤ 0.05.

RESULTS

Session on the Athletic Track
The Bland–Altman plots comparing calculated SF and DF to
theoretical ones are depicted in Figure 1. The bias ± random
error (1.96 SD) of SF and DF were −0.02 ± 0.14 Hz and
0.75 ± 5.20%, respectively. Significant systematic (p = 0.03)
and proportional (slope ± SE = 0.76 ± 0.09, p < 0.001)
biases were obtained for DF but not for SF (p ≥ 0.07,
slope± SE = 0.18± 0.14).

Second-order polynomial curve fitting applied to the data
of the 20 participants pooled together led to the following
relationships (Eqs. 5 and 6):

SF = 0.052s2 − 0.372s

+2.004 (R2
adj = 30.0%, SE = 0.07 Hz) (5)

DF = 0.90s2 − 11.6s+ 64.9 (R2
adj = 54.8%, SE = 2.5 %) (6)

where s represents speed. Then, the 20 participants were classified
based on their GRP, which led to 10 participants in TER (V R©score:
12.7 ± 2.5, age: 22.6 ± 2.2 years, height: 183 ± 5 cm, mass:
73.5± 4.8 kg, BMI: 21.9± 1.4 kg/m2, and weekly training hours:
10.0± 3.5 h) and AER (V R©score: 19.3± 2.5, age: 22.0± 2.1 years,
height: 179 ± 6 cm, mass: 69.8 ± 7.0 kg, BMI: 21.8 ± 1.6 kg/m2,
and weekly training hours: 10.6 ± 6.3 h) groups. No significant
differences were revealed for participant characteristics (age,
height, mass, BMI, and weekly training hours) between groups
(p ≥ 0.08). The corresponding regression equations obtained
using quadratic curve fitting are given by Eqs. 7–10.

SFTER = 0.077s2 − 0.589s

+2.481 (R2
adj = 31.2%, SE = 0.07 Hz) (7)

SFAER = 0.022s2 − 0.112s

+1.438 (R2
adj = 36.8%, SE = 0.06 Hz) (8)

DFTER = 1.22s2 − 14.33s

+72.42 (R2
adj = 72.7%, SE = 1.67 %) (9)

DFAER = 0.39s2 − 7.21s

+53.70 (R2
adj = 78.9%, SE = 1.33 %) (10)

where s is speed. These equations are also represented in Figure 2
together with theoretical models proposed by Gray et al. (2019).

The linear mixed effects model reported that both speed and
the square of speed were significantly related to SF and DF
(p ≤ 0.002; Table 1). The regression coefficients imply that for
each 1 m/s increase in speed, SF is increased by 0.064 Hz, and
for each 1 m2/s2 increase in the square of speed, SF is increased
by 0.027 Hz (Table 1). The DF model indicated that for each
1 m/s increase in speed, DF is decreased by 4.01% while for
each 1 m2/s2 increase in the square of speed, DF is increased by
1.12% (Table 1). In addition, GRP was negatively related to DF
(p < 0.004; Table 1), with a 1 point increase in V R©score leading
to a decrease in DF of 0.36% (Table 1). The model with random
effects explained almost all variance in the data for both SF and
DF (R2

conditional ≥ 95.4% versus R2
marginal ≤ 69.3%; Table 1).

The ICCs of the random effects were excellent for the intercept
and moderate for speed, for both SF and DF models (Table 1).
The significant likelihood ratio tests obtained for both SF and DF
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FIGURE 2 | Calculated (circle) and fitted (dashed line) (A) stride frequency (SF)
and (B) duty factor (DF) for terrestrial (TER) and aerial (AER) runners together
with regression equations (theo) proposed by Gray et al. (2019) (plain line, SF:
Eq. 1, and DF: Eq. 2) for which no group distinction was made.

models allowed us to conclude that using {intercept+ s | part_id}
random effect was better than using {intercept | part_id} random
effect (p ≤ 0.03; Table 1).

Session on the Treadmill
The 54 participants were classified based on their GRP, which
led to 26 participants in TER (V R©score: 11.4 ± 2.4, age:
31.7 ± 8.9 years, height: 168 ± 9 cm, mass: 58.6 ± 9.3 kg, BMI:
20.7 ± 1.9 kg/m2, leg length: 87.3 ± 5.8 cm, weekly running
distance: 53.7± 21.1 km, 10 males, and 16 females) and 28 in AER
(V R©score: 19.3 ± 2.6, age: 31.5 ± 9.2 years, height: 172 ± 8 cm,
mass: 62.9 ± 12.9 kg, BMI: 21.0 ± 2.5 kg/m2, leg length:
89.1 ± 5.1 cm, and weekly running distance: 49.6 ± 19.8 km,
23 males, and 5 females) groups. No significant differences
were revealed for participant characteristics (age, height, mass,
BMI, leg length, and weekly running distance) between groups
(p ≥ 0.10).

High and very high correlations were obtained between height
and mass, height and leg length, BMI and mass, and mass and leg

TABLE 1 | Regression coefficients [estimate ± standard error (SE) together with
95% confidence interval (CI)] as defined in Eq. 9, percentage of variance explained,
fixed effects, and random effects [variance, intra-class correlation coefficient (ICC),
and likelihood ratio test (LRT)] when assessing the effect of speed (s) and global
running pattern (GRP) on stride frequency (SF) and duty factor (DF) obtained
during the session on the athletic track using a linear mixed effects model.

SF DF

Regression
coefficients

Estimate ± SE
(95% CI)

Estimate ± SE
(95% CI)

b0 (intercept) 1.372 ± 0.014
(1.345, 1.400)

31.91 ± 0.45
(31.03, 32.78)

b1 (s) 0.064 ± 0.007
(0.050, 0.077)

−4.01 ± 0.22
(−4.44, −3.57)

b2 (s2) 0.027 ± 0.007
(0.012, 0.042)

1.12 ± 0.24
(0.64, 1.59)

c1 (GRP) −0.006 ± 0.004
(−0.013, 0.000)

−0.36 ± 0.11
(−0.57, −0.14)

d1 (s × GRP) 0.002 ± 0.002
(−0.002, 0.005)

0.01 ± 0.05
(−0.09, 0.12)

Variance
explained

% %

R2
marginal 35.9 69.3

R2
conditional 95.4 97.7

Fixed effects p p

Intercept <0.001 <0.001

s <0.001 <0.001

s2 0.002 <0.001

GRP 0.08 0.004

s × GRP interaction 0.38 0.83

Random effects – –

Variance for
intercept

4E-3 3.77

Variance for s 6E-4 0.71

ICC for intercept 0.92 0.92

ICC for s 0.69 0.69

LRT for s in
{intercept + s |
part_id} (p)

0.03 0.02

Statistical significances (p ≤ 0.05) are indicated in bold.

length (r ≥ 0.81, p < 0.001; Table 2); leg length and mass were
not included in the linear mixed effects model.

The linear mixed effects model reported that both speed and
age were positively related to SF (p ≤ 0.05; Table 3) while height
was negatively related to SF (p = 0.01; Table 3). The regression
coefficients imply that for each 1 m/s increase in speed, SF is
increased by 0.094 Hz; for a 1-year increase in age, SF is increased
by 0.003 Hz, and being 10 cm taller corresponds to a decrease
of SF by 0.054 Hz (Table 3). Both speed and the square of speed
as well as GRP and speed × GRP interaction were significantly
related to DF (p ≤ 0.03; Table 3). The DF model indicated that
for each 1 m/s increase in speed, DF is decreased by 3.77%,
while for each 1 m2/s2 increase in the square of speed, DF is
increased 1.05% (Table 3). In addition, for a 1 point increase
in V R©score, DF is decreased by 0.40% and an individual with a
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TABLE 2 | Correlation matrix providing the Pearson’s correlation coefficients (r) for each pair of variables among age, height, mass, BMI, leg length, weekly running
distance, and global running pattern (GRP), together with their corresponding statistical significance (p ≤ 0.05), indicated in bold.

Age Height Mass BMI Leg length Weekly running
distance

GRP

Age r
p

NA
– – – – – –

Height r
p

0.25
0.07

NA
– – – – –

Mass r
p

0.35
0.01

0.86
<0.001 NA

– – – –

BMI r
p

0.30
0.03

0.52
<0.001

0.88
<0.001 NA

– – –

Leg length r
p

0.22
0.12

0.94
<0.001

0.81
<0.001

0.48
<0.001 NA

– –

Weekly running distance r
p

0.19
0.17

−0.10
0.49

−0.15
0.27

−0.18
0.20

−0.04
0.76

NA
–

GRP r
p

−0.06
0.68

0.29
0.03

0.22
0.11

0.07
0.61

0.25
0.07

0.04
0.79

NA

Gray shaded boxes denote correlation coefficients above r = 0.7 and were not analyzed together in the linear mixed effects model to prevent collinearity. BMI, body mass
index and NA, not applicable.

V R©score of 19 running at 3 m/s would have a DF 2.29% higher
than an individual with a V R©score of 12, while at 5 m/s, the
difference would be 3.82% (Table 3). The model with random
effects explained almost all variance in the data for both SF and
DF (R2

conditional ≥ 96.4% versus R2
marginal ≤ 66.5%; Table 3). The

ICCs of the random effects for the SF model were excellent for the
intercept, good for speed, and moderate for the square of speed
(Table 3). As for the DF model, The ICCs of the random effects
were good for the intercept and moderate for both speed and the
square of speed (Table 3). The significant likelihood ratio tests
obtained for both SF and DF models allowed us to conclude that
using {intercept + s+ s2 | part_id} random effect was better than
using {intercept | part_id} random effect (p < 0.001; Table 3).

DISCUSSION

In accordance with our first hypothesis, the DF regression
equation proposed by Gray et al. (2019) was not applicable
when GRP was taken into account, while such parameter had
no impact on SF regression equation. We also found that
GRP was negatively related to DF but not to SF, supporting
these observations. Our second hypothesis, however, was partly
refuted. Indeed, even if a linear dependence with speed was
obtained for SF when using a broader cohort of runners, only age
and height (among age, height, BMI, weekly running distance,
sex, and GRP) were positively and negatively related to SF,
respectively. As for DF, though a quadratic dependence with
speed was obtained, only GRP was negatively related to DF. In
addition, a positive relation between speed × GRP interaction
and DF was found.

The present findings showed no systematic or proportional
biases when comparing SF values obtained from athletic track
measurements to theoretical values using Eq. 1 proposed by
Gray et al. (2019) (Figure 1) and a similar cohort in terms
of participant characteristics. This result demonstrates that the

quadratic relationship between SF and speed proposed by Gray
et al. (2019) seems to be consistent for such specific cohort.
However, a much smaller R2

adj was obtained here than by these
authors (90.2 versus 30.0%), though associated with a lower
SE (0.21 versus 0.07 Hz). The reason of the smaller SE might
come from the smaller number of observations made here (20
participants and 3 speeds versus 10 participants, 6 speeds, and 2
trials per participant), leading to a smaller residual sum of squares
error (SSR), and thus a smaller SE. The smaller R2

adj obtained
here might be due to the smaller range of speed employed (3.33–
5.00 m/s) and corresponding smaller range of SF observed for
these speeds than in Gray et al. (2019). Indeed, this might have
led to a smaller total sum of squares error (SST), and the small
SSR and SST obtained here gave a SSR/SST ratio larger than
that in Gray et al. (2019) and thus a smaller R2

adj. Moreover,
the smaller speed range used in this study gave more weights to
the lower end of the speed interval (3.33 m/s), leading to more
pronounced differences with respect to the results of Gray et al.
(2019) on the low-speed side than on the high-speed side. SF
regression equations for TER and AER runners (Eqs. 7 and 8;
R2

adj ≤ 36.8%; SE ≥ 0.06 Hz), i.e., taking into account individual
GRP to estimate SF, were not explaining more variance or having
a smaller SE than the regression equation without subgrouping
of participants (Eq. 5; R2

adj = 30.0%; SE = 0.07 Hz). In addition,
the linear mixed effects model depicted no effect of GRP on SF
(Table 1). These results agree with the fact that TER and AER
runners were shown to share the same step frequency (Gindre
et al., 2016). Nevertheless, large inter-individual differences in the
spontaneous choice of SF was depicted by the fact that the model
with random effects explained more and almost all variance in
the data than a model with only fixed effects (R2

conditional = 95.4%
versus R2

marginal ≤ 35.9%; Table 1) and by the fact that the
ICCs of the random effects were excellent for the intercept
and moderate for speed (Table 1). Therefore, as the cohort
shared the same participant characteristics, such SF variability
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TABLE 3 | Regression coefficients [estimate ± standard error (SE) together with
95% confidence interval (CI)] as defined in Eq. 10, percentage of variance
explained, fixed effects, and random effects [variance, intra-class correlation
coefficient (ICC), and likelihood ratio test (LRT)] when assessing the effect of
speed (s), age, height, body mass index (BMI), weekly running distance, global
running pattern (GRP), and sex on stride frequency (SF) and duty factor (DF)
obtained during the session on the treadmill using a linear mixed effects model.

SF DF

Regression coefficients Estimate ± SE
(95% CI)

Estimate ± SE
(95% CI)

b0 (intercept) 1.509 ± 0.012
(1.486, 1.532)

33.15 ± 0.35
(32.47, 33.83)

b1 (s) 0.094 ± 0.005
(0.085, 0.103)

−3.77 ± 0.20
(−4.16, −3.37)

b2 (s2) 0.006 ± 0.003
(−5E-4, 0.012)

1.05 ± 0.16
(0.73, 1.37)

c1 (age) 0.003 ± 0.001
(1E-4, 0.006)

0.05 ± 0.04
(−0.02, 0.13)

c2 (height) −0.549 ± 0.198
(−0.936, −0.162)

6.58 ± 5.47
(−4.14, 17.31)

c3 (BMI) −0.009 ± 0.006
(−0.021, 0.002)

−0.13 ± 0.16
(−0.45, 0.19)

c4 (weekly running distance) 4E-5 ± 6E-4
(−0.001, 0.001)

−0.02 ± 0.02
(−0.05, 0.01)

c5 (GRP) −0.004+0.003
(−0.009, 0.001)

−0.40 ± 0.08
(−0.55, −0.26)

c6 (sex) −0.016 ± 0.038
(−0.090, 0.058)

−0.57 ± 1.04
(−2.61, 1.48)

d1 (s × age) 4E-4 ± 5E-4
(−7E-4, 0.001)

0.01 ± 0.03
(−0.04, 0.06)

d2 (s × height) −0.087 ± 0.078
(−0.240, 0.066)

−1.30 ± 3.50
(−8.16, 5.55)

d3 (s × BMI) 0.001 ± 0.002
(−0.003, 0.006)

0.01 ± 0.10
(−0.19, 0.22)

d4 (s × weekly running distance) −4E-5 ± 2E-4
(−5E-4, 4E-4)

9E-4 ± 0.01
(−0.02, 0.02)

d5 (s × GRP) 0.001 ± 0.001
(−0.003, 0.001)

0.11 ± 0.05
(0.02, 0.20)

d6 (s × sex) 0.011 ± 0.015
(−0.018, 0.041)

0.67 ± 0.67
(−0.63, 1.98)

Variance explained % %

R2
marginal 56.9 66.5

R2
conditional 98.3 96.4

Fixed effects p p

Intercept <0.001 <0.001
s <0.001 <0.001
s2 0.08 <0.001
Age 0.05 0.19

Height 0.01 0.24

BMI 0.11 0.42

Weekly running distance 0.95 0.26

GRP 0.16 <0.001
Sex 0.67 0.59

s × age 0.46 0.66

s × height 0.27 0.71

s × BMI 0.59 0.92

s × weekly running distance 0.86 0.93
s × GRP interaction 0.36 0.03
s × sex 0.44 0.32

Random effects – –

(Continued)

TABLE 3 | Continued

SF DF

Fixed effects p p

Variance for
intercept

6E-3 5.47

Variance for s 1E-3 1.66

Variance for s2 4E-4 0.93

ICC for intercept 0.96 0.89

ICC for s 0.78 0.71

ICC for s2 0.57 0.57

LRT for s in
{intercept + s+ s2 |
part_id} (p)

<0.001 <0.001

LRT for s2 in
{intercept + s+ s2 |
part_id} (p)

<0.001 <0.001

Statistical significances (p ≤ 0.05) are indicated in bold.

on an individual level might be related not only to participants’
intrinsic parameters such as age (Cavagna et al., 2008b, a), sex
(Chapman et al., 2012), mass (van Oeveren et al., 2019), leg
length (Heglund and Taylor, 1988; Cavagna et al., 1991; Marsh
et al., 2004; Srinivasan and Ruina, 2006; van Oeveren et al., 2019),
and training frequency and duration (Heglund and Taylor, 1988;
Cavagna et al., 1991; Marsh et al., 2004; Srinivasan and Ruina,
2006; van Oeveren et al., 2019), but also to the subconscious fine-
tuning of running biomechanics referred to as self-optimization
(Moore, 2016). Nonetheless, the large random effects observed
here could also be due to the small range of tested speeds (3.33–
5.00 m/s); thus, applying the same linear mixed effects model to
a dataset containing a larger speed range such as the one of Gray
et al. (2019) would prove to be useful to validate this assumption.
The range of speed we selected here is, however, in line with most
of the running speeds faced by endurance runners and could be
considered as representative of this physical activity.

The comparison between DF obtained from athletic track
measurements and Eq. 2 proposed by Gray et al. (2019) depicted a
slightly smaller R2

adj and a lower SE in this study than in Gray et al.
(2019) (R2

adj: 64.9 versus 54.8%; SE: 7.4 versus 2.5%). The smaller
difference in R2

adj obtained for DF than for SF between measured
and theoretical values might be due to the larger variations
of DF than SF values within the speed range employed (3.33–
5.00 m/s), leading to a larger SST and thus smaller SSR/SST ratio
for DF than for SF. However, systematic and proportional biases
were obtained for DF (Figure 1) despite the similar participant
characteristics. As pointed out by Gray et al. (2019), due to
the fact that a R2

adj of 64.9% was obtained for DF regression,
DF seemed to rely on factors other than speed. Therefore, we
took into account GRP in the DF estimation, which is in line
with the fact that a shorter tc and larger tf were observed for
AER than TER runners (Gindre et al., 2016; Lussiana et al.,
2017b) and that classifying runners in two groups based on their
DF led to kinematic differences of their running gait (Lussiana
et al., 2019) as well as similar subgroupings of runners between
classifications based on GRP and DF (Patoz et al., 2019b). DF
regression equations for AER and TER runners led to a reduction
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of SE by ≥147% and an improvement of R2
adj of ≥133%.

Therefore, including such classification increased the quality of
the fit and percentage of explained variance. This was reinforced
by the negative relation between GRP and DF depicted in the
linear mixed effects model, in addition to the negative and
positive effects observed for speed and the square of speed,
respectively (Table 1). Similarly to SF, inter-individual differences
in the spontaneous choice of DF was depicted by a greater
R2

conditional = 97.7% than R2
marginal = 69.3% (Table 1), and by the

ICCs of the random effects which were excellent for the intercept
and moderate for speed (Table 1). Therefore, DF variability on
an individual level might also be related to self-optimization, as
this was shown to be present in tc (Moore, 2016; Moore et al.,
2019), but again, using the same linear mixed effects model on
a dataset with a larger speed range would be needed to validate
this assumption.

As for treadmill data, the high and very high correlations
obtained between height and mass, height and leg length, BMI
and mass, and mass and leg length (r ≥ 0.81; Table 2) are in
agreement with previous observations (van Oeveren et al., 2019).
Indeed, these authors also obtained correlation coefficients above
0.7 except between leg length and mass (but quite close; r = 0.66).
The correlation coefficient between leg length and mass obtained
here was the smallest one among the ones being above 0.7,
which is consistent with the observations of van Oeveren et al.
(2019). The presence of such correlations forced us to not use leg
length and mass in the linear mixed effects model, so that any
collinearity be avoided.

Stride frequency was linearly related to speed at a group
level (Table 3), as already observed (van Oeveren et al., 2019).
On an individual level, variations in SF were relatively large, as
depicted by the improvement of explained variance when using
random effects (R2

conditional = 98.3% versus R2
marginal = 56.9%;

Table 3) and the moderate to excellent ICCs of the random
effects (ICC≥ 0.57; Table 3). Moreover, the significant likelihood
ratio tests (p < 0.001; Table 3) demonstrated that SF as a
function of speed relationship was best described by a second-
order polynomial, which confirms results from previous studies
(Weyand et al., 2000; Mercer et al., 2002; Nummela et al.,
2007; van Oeveren et al., 2019). The small range of speed
(2.78–5.00 m/s) might partly explain why the quadratic term in
the linear mixed effects model was not significant. Indeed, the
quadratic behavior starts to be visible at a speed above 5 m/s on
a group level [e.g., see Figure 3 in van Oeveren et al. (2019)];
therefore, the small speed range employed here might have
smoothed out the quadratic behavior observed on an individual
level to a linear behavior on a group level. Another part of
the explanation might be that individuals may preferentially
rely either on an increase of SF or on stride length to increase
speed, leading to a different sign for the quadratic coefficient,
thus canceling each other at a group level, as already pointed
out (van Oeveren et al., 2019). Taller runners had lower SF
(Table 3). As leg length was very highly correlated to height
(Table 2), runners with longer legs presumably had lower SF,
which is in agreement with previous findings (van Oeveren et al.,
2019). Older runners had higher SF (Table 3), suggesting that

less horizontal propulsion (longer stride length) is achievable
with increasing age. A similar observation was made by Cavagna
et al. (2008b) when studying two groups of runners with larger
age difference and was attributed to a reduction of muscle mass
with age. No effect of GRP on SF was observed (Table 3),
suggesting that GRP does not impact SF, as already observed for
the athletic track session and between AER and TER runners
(Gindre et al., 2016). The weekly running distance was not
significantly related to SF, meaning that training volume is not a
determinant factor of SF. This result is opposed to the observation
of van Oeveren et al. (2019) and possibly explained by the fact
that the weekly running distance was not broad enough to reflect
a relation with SF.

Duty factor was quadratically related to speed (Table 3),
which is in line with the results obtained from the athletic
track measurements and by Gray et al. (2019). On an individual
level, DF had smaller inter-individual variations than SF
(R2

conditional = 96.4% versus R2
marginal = 66.5%; Table 3) but still

non-negligible, as depicted by the moderate and high ICCs of
the random effects (ICC ≥ 0.57; Table 3). GRP was negatively
related to DF, which is in agreement with TER runners spending
more time in contact with the ground but less time in the air
than AER runners (Gindre et al., 2016; Lussiana et al., 2017b).
A positive speed × GRP interaction was observed (Table 3),
suggesting that a greater decline in DF with the increase of
speed is observed for a lower V R©score. TER runners having a
larger DF than AER suggests that TER runners have a larger
adaptation range of DF with increasing speed than AER runners.
Moreover, increasing running speed leads to a running pattern
that tends to be more aerial (more bouncy). This could suggest
that faster runners, due to the fact that they train at higher
running speeds, have a more aerial running pattern. This in
agreement with the findings of da Rosa et al. (2019), which
showed that high-performance runners had longer tf than low-
performance runners, and therefore, these high-performance
runners demonstrated a better use of elastic components. Age
and sex were not related to DF, meaning that the observations
of a lower tf for old than for young men (Cavagna et al., 2008b)
and a shorter tc for women than for men elite runners (Chapman
et al., 2012) were not as strongly present here to be reflected
in DF. These differences might be due to the fact that the old
participants in Cavagna et al. (2008b) were much older than the
participants of this study (oldest participant: 51 years) and that
no elite runners were tested.

A few limitations to the present study exist. The number
of speeds tested was limited for the athletic track session, and
additional conditions (speeds, slopes, and types of ground)
would be necessary to obtain universal equations. However,
the main purpose being the generalization of SF and DF
prediction equations (by using a broader cohort of runners
and by taking into account anthropometric characteristics, sex,
training volume, and GRP in addition to speed), the strength
of these results was given by the large dataset employed in
this part of the study. Nonetheless, treadmill instead of athletic
track data were used to study the relation between participant
characteristics and both temporal gait kinematic parameters
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because this was the largest dataset available to us. SF and
DF models obtained from treadmill measurements might be
applied to data recording on the athletic track due to the fact
that spatiotemporal parameters between motorized treadmill and
overground running are largely comparable (Van Hooren et al.,
2020). However, it was also concluded that participants behaved
differently when attempting to achieve faster running velocities
overground than on a treadmill (Bailey et al., 2017). Therefore,
further studies should focus on prediction equations of temporal
gait kinematic parameters based on athletic track data. Then,
these equations could be compared to the treadmill ones. In case
of any differences, a mathematical relation could be constructed
so that one could easily switch from treadmill to overground
prediction by providing either treadmill or overground data.
Also, the four linear mixed effects models did not explain more
than 69.3% of the variance without random effects while the
random effects explained more than 95.4% of the variance,
leading to ≥28% of the variance that is unexplained inter-
individual variation, meaning that parameters related to SF and
DF might still be missing in the model. Further research including
internal factors such as leg muscle strength, aerobic capacity, or
strike angle as well as environmental factors like shoe mass or
shoe drop might reveal other determinants of SF and DF, and
might prove to be useful. Moreover, including more participants,
more measures of each parameter, and a larger range of speed
might increase the importance of the determinants of SF and DF,
and potentially lead to additional determinants. Finally, a single
running coach with 5 years of experience using the Volodalen R©

scale has been rating the GRP of participants. Therefore, due
to the fact that GRP is a key element of this study, its results
would have been reinforced by having several raters. Nonetheless,
the Volodalen R© method was shown to be reliable intra- and
inter-raters (Patoz et al., 2019a).

PRACTICAL APPLICATIONS

The present study showed that age and height as well as GRP
determine self-selected SF and DF, respectively, in addition to
speed. However, due to the large proportion of inter-individual
variations (random effects), coaches should take into account
these inter-individual differences and promote self-optimization.
Then, they could analyze the running technique of their runners
in probably the best way (Boullosa et al., 2020).

CONCLUSION

Taking into account GRP to obtain regression equations for
temporal gait kinematic parameters improved the percentage
of explained variance and SE only for DF, which is supported

by the fact that GRP was negatively related to DF but not to
SF. Therefore, these results invalidated DF regression equation
proposed by Gray et al. (2019) solely based on speed but not
the quadratic equation relating SF and speed. Using a broader
cohort of runners, SF was shown to linearly increase with speed
while a quadratic decrease was obtained for DF. However, on
an individual level, SF was best described using a second-order
polynomial. In addition, among age, height, BMI, weekly running
distance, sex, and GRP, only age and height were shown to be
positively and negatively related to SF, respectively, while none
of these parameters were related to DF except GRP, which was
negatively related to DF. Therefore, age and height as well as
GRP are key parameters to estimate SF and DF, respectively, in
addition to speed.
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