
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Genomics 114 (2022) 110399

Available online 6 June 2022
0888-7543/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

First report on genome wide association study in western Indian population 
reveals host genetic factors for COVID-19 severity and outcome 

Ramesh Pandit a,1, Indra Singh a,1, Afzal Ansari a,1, Janvi Raval a, Zarna Patel a, Raghav Dixit b, 
Pranay Shah c, Kamlesh Upadhyay d, Naresh Chauhan e, Kairavi Desai f, Meenakshi Shah g, 
Bhavesh Modi h, Madhvi Joshi a,*, Chaitanya Joshi a,* 

a Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (Government of Gujarat), Gandhinagar, Gujarat 382011, India 
b Commissionerate of Health Medical Services and Medical Education Gandhinagar, Gujarat 382010, India 
c Department of Microbiology, B.J. Medical College and Civil hospital, Institute of Medical Post-Graduate Studies and Research, Ahmedabad, Gujarat 380016, India 
d Department of Medicine, B.J. Medical College and Civil hospital, Institute of Medical Post-Graduate Studies and Research, Ahmedabad, Gujarat 380016, India 
e Department of Community Medicine, Government Medical College, Surat, Gujarat 395001, India 
f Department of Microbiology, Government Medical College, Bhavnagar, Gujarat 364001, India 
g Department of General Medicine, GMERS Medical College & Hospital, Gotri, Vadodara, Gujarat 390021, India 
h Department of Community Medicine, GMERS Medical College, Gandhinagar, Gujarat 382012, India   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Genome wide association (GWAS) 
Host genetic factor 
SARS-CoV-2 

A B S T R A C T   

Different human races across the globe responded in a different way to the SARS-CoV-2 infection leading to 
different disease severity. Therefore, it is anticipated that host genetic factors have a straight association with the 
COVID-19. We identified a total 6, 7, and 6 genomic loci for deceased-recovered, asymptomatic-recovered, and 
deceased-asymptomatic group comparison, respectively. Unfavourable alleles of the markers nearby the genes 
which are associated with lung and heart diseases such as Tumor necrosis factor superfamily (TNFSF4&18), 
showed noteworthy association with the disease severity and outcome for the COVID-19 patients in the western 
Indian population. The markers found with significant association with disease prognosis or recovery are of value 
in determining the individual’s response to SARS-CoV-2 infection and can be used for the risk prediction in 
COVID-19. Besides, GWAS study in other populations from India may help to strengthen the outcome of this 
study.   

1. Introduction 

Host-pathogen interaction studies are pivotal in understanding in-
fectious disease biology. The genetic interaction of host and pathogen 
determines response, progression and severity of the infection. COVID- 
19 caused by the infection of SARS-CoV-2 has shaken the human race 
for the past two and half years. Like other RNA viruses, it has also high 
mutation frequency and genetic variations which has led to rapid blow- 
out of virus across the globe [1–3]. One of the most perplexing features 
of SARS-CoV-2 infection is diverse range of clinical symptoms observed 
in different populations and over different waves. COVID-19 many leads 
to respiratory illness, blood clotting manifested by asymptomatic to 
moderate (fever, cough and shortness of breath) or severe symptoms 
(pneumonia, acute respiratory distress, and diffuse alveolar damage) as 

well as death in 2–3% [4] patients. The severity of disease is also posi-
tively correlated with increased age and presence of comorbidities if any 
[5–9]. In addition, the fatality rate also varies with age and among the 
different ethnic groups [10], suggesting complex interactions between 
virus and host genetic makeup to determine the disease outcome. 
Identification of populations at higher risk of developing severe disease 
is important for the development and implementation of effective con-
trol measures. Genome wide study (GWAS) is widely used to identify the 
host genetic factors involved in disease susceptibility, following suitable 
drug development [11,12]. Therefore, the host genetic makeup 
contributing to the disease resistance, susceptibility, and severity in case 
of COVID-19 need to be studied in detail in different human races. Till 
date, several genome wide association studies on COVID-19 are avail-
able [13–22]. Recently, researchers have also mapped epigenetic factors 

* Corresponding authors. 
E-mail addresses: madhvimicrobio@gmail.com (M. Joshi), director@gbrc.res.in (C. Joshi).   

1 These authors contributed equally. 

Contents lists available at ScienceDirect 

Genomics 

journal homepage: www.elsevier.com/locate/ygeno 

https://doi.org/10.1016/j.ygeno.2022.110399 
Received 12 October 2021; Received in revised form 18 May 2022; Accepted 1 June 2022   

mailto:madhvimicrobio@gmail.com
mailto:director@gbrc.res.in
www.sciencedirect.com/science/journal/08887543
https://www.elsevier.com/locate/ygeno
https://doi.org/10.1016/j.ygeno.2022.110399
https://doi.org/10.1016/j.ygeno.2022.110399
https://doi.org/10.1016/j.ygeno.2022.110399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygeno.2022.110399&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genomics 114 (2022) 110399

2

with COVID-19 severity [23]. However, no GWAS study has been carried 
out for the Indian population. Therefore, this study was undertaken to 
identify the host genetic factors involved in susceptibility and severity of 
COVID-19 patients during first wave of COVID-19 in Gujarat, India. 
Patients with asymptomatic to severe infection with monitoring of their 
final outcome as recovered or deceased were enrolled in this study. Data 
was further analysed using two different GWAS analysis pipelines, 
PLINK and Scalable and Accurate Implementation of Generalized mixed 
mode (SAIGE) to correlate association of key host genetic variants 
playing a significant role in COVID-19. 

2. Results 

Based on incident rate during the first wave of COVID-19 in 2020, 
571 samples were collected from 25 different hospitals of 24 districts 
across Gujarat, India. Out of 571 samples, 172 and 399 were female and 
male, respectively. Median age of the patients in particular group and 
the percentage of patients with comorbidity increases as the disease 
severity increases i.e. deceased>recovered>asymptomatic and it was 
reversed for the ct values (viral load) as determined using the three viral 
genes targeted in the RT-PCR (Table 1). 

2.1. Quality analysis 

We used Axiom Analysis Suite for the QC of raw data. After quality 
filtering, 561 out of 571 patients, and 8538,78 (98.335) high resolution 
markers out of 8,68,298 markers were obtained. As well, based on the 
results of population stratification PCA plot (Fig. 1), population outliers 
were identified and removed. Therefore, variants from 558 (94, 317 and 
147, deceased, recovered, and asymptomatic, respectively) patients 
were analysed using two different pipelines, PLINK and SAIGE. Finally, 
results of PLINK was considered and reported in this study. We found 
several markers at various genomic loci which are associated with 
different COVID-19 severity. Total 6, 7, and 6 genomic loci with p ≤
10–7 for deceased-recovered, deceased-asymptomatic, and recovered- 
asymptomatic group, respectively were identified. Comparison of two 
tools i.e. PLINK and SAIGE used for GWAS analysis is shown in sup-
plementary Table S2 and respective allele and genotype frequencies are 
mentioned in supplementary Table S3. Manhattan plot for SNPs with p 
≤ 10–7 and Q-Q plots are depicted in Fig. 2, while Manhattan plots for 
markers with p ≤ 10–6 are shown in supplementary Fig. S2. 

Additionally, any markers reported for COVID-19 within the 1 MB re-
gion of the markers/loci identified in this study are shown in Supple-
mentary Table S4. 

2.2. Deceased vs recovered (mortality) 

For this comparison, after imputation, we had total 29,48,95,933 
SNPs out of which 63,32,698 SNPs passed the cutoff MAF > 0.05. Upon 
further analysis of these 63,32,698 SNPs using PLINK, we obtained a 
total of 6 significant markers having p ≤ 10–7 (Table 2). The genes 
associated with these six significant genomic loci are TNFSF4, TNFSF18, 
DHX15, RP1–15D23.2, GOT2P2, WAC, PPARGC1A, CTD-2036A18.2, 
PTP4A1P4, and LINC00540-AL354828.1. Marker, rs17300100, 
(chr1:173115604:T:G; 1q25.1) with p-value 9.14E-07 (CHISQ 24.21) 
has nearest genes tumor necrosis factor 4 (TNFSF4) (upstream, 68.127 
kb), tumor necrosis factor 18 (TNFSF18) (downstream, 64.641 kb) and 
GOT2P2 (downstream, 25.496). Here, the frequency of altered allele (G) 
is 9.3% higher among the deceased patients as compared to those who 
recovered. The regional association plot for this marker is shown in 
Fig. 3A. Similarly, two very nearby (1536 bp apart) markers at chro-
mosome 4p15.2 are rs73246461 (chr4:24511798:A:G; p-value-4.54E- 
07; CHIQ:25.45; and rs12651262, (chr4:24513334:A:C; p-value- 9.84E- 
07; CHIQ:23.96) are located within downstream region of DHX15. The 
regional association plots for these two markers are shown in Fig. 3B&C. 
For these two positions, the frequency of altered allele was found to be 
6.8% lesser in deceased patients as compared to those who recovered. 
The Manhattan plot for markers with p-value ≤10–6 is shown in sup-
plementary Fig. S2A and listed in supplementary Table S6. 

2.3. Recovered vs asymptomatic (susceptibility) 

For this comparison, we got total 6 significant genomic loci (Table 3). 
Interesting marker for this comparison is rs72663004 (chr1:20166359: 
C:T; p-value 7.92E-07; CHISQ 24.38; 1p36.12) and genes nearby to this 
marker are PLA2G2D, PLA2G2C, PLA2G5, and UBXN10. For this marker, 
the frequency of altered allele is 12.27% lesser in asymptomatic patients 
when compared with recovered patients. A regional association plot for 
this marker is shown in Fig. 4A. Another two markers present on chro-
mosome 9 (9p24.2) are rs72699049 (chr9:3320390:C:A; p-value 3.21E- 
07; CHISQ 26.12) and rs72699016 (chr9:3258654:T:G; p-value 3.59E- 
07; CHISQ 25.91) having nearby gene RFX3. At both these loci, the 
frequency of altered allele is 1.5 and 4.94%, respectively lower in the 
patients those who remained asymptomatic after SARS-CoV-2 infection 
against those who recovered after infection. When the frequency of 
these loci was compared with deceased patents again, it was lower in 
asymptomatic one. Region association plot for both these markers are 
shown in Fig. 4B&C. Other two nearby markers (within 874 bp region) 
on chromosome 4 (4q35.2) are rs72717619 (chr4:188628742:C:G; p- 
value 9.56E-07; CHISQ 24.02) and rs1734523522 (chr4:188628742:C: 
G; p-value 9.56E-07; CHISQ 24.02). Nearby of these loci, only pseudo-
genes are present. The Manhattan plots for markers with p-value ≤10–6 
is shown in Fig. S2B and listed in supplementary Table S6. 

2.4. Deceased vs asymptomatic (morbidity) 

For this comparison, after imputation, we got a total of 30,76,54,523 
variants. Out of which 64,68,284 variants passed the threshold, MAF >
0.05. Here, we found total 7 significant markers and the associated genes 
are ANGEL1, LRRC74A, ANO3, MOK, CINP, TECPR2, and many 
uncharacterized loci (Table 4). Marker rs34279101, (chr14:76832814: 
C:CT; p-value 4.12E-08; CHISQ 30.09; 14q24.3) has the nearby genes 
ANGEL1 and LRRC74A. Here, the frequency of altered allele is 7.4% 
higher in deceased patients as compared to asymptomatic group. A 
regional association plot for rs34279101 marker is shown in Fig. 5. Two 
other very nearby markers present on chromosome 14 (14q32.31) are 
rs11160678 (chr14:102356233:A:G; p-value-5.23E-07; CHISQ-25.18) 

Table 1 
Details of male and female patients with reference to three disease states.   

Deceased Recovered Asymptomatic Total 

Male N = 60 N = 228 N = 111 399 
Median age years 

(Range) 
60.5 
(35–86) 

52 (15–90) 39 (18–84) NA 

Comorbidity 41/60 
(68.33%) 

102/228 
(44.73%) 

13/111 
(11.71%) 

156 
(52.0%) 

Median Ct of N 
gene 

27.13 29.37 30.06  
NA 

Median Ct of ORF 
gene 

26.32 28.5 29.88 

Median Ct of S 
gene 

27.12 28.18 29.9 

Female N = 36 N = 99 N = 37 172  

Median age years 
(Range) 

62 (40–86) 54 (18–90) 35 (20–76) NA 

Comorbidity 27/36 
(75.0%) 

56/99 
(56.56%) 

10/37 (27%) 151 
(87.8%) 

Median Ct of N 
gene 

24.95 29.88 30.7 NA 

Median Ct of ORF 
gene 

24.5 29.9 30.13 

Median Ct of S 
gene 

24.93 29.21 29.37  
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Fig. 1. Population stratification by principal component analysis using PLINK. Scatter plot depict principal component one (PC1) vs principal component two (PC2), (A) without removing outliers and (B) after removing 
population outliers. 
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Fig. 2. Figure depicting Manhattan and Q-Q plots of the association statistics from the meta-analysis of three-group comparison using PLINK. (A) Manhattan plot and (B) Q-Q plot. For Manhattan plots, p-values from 
GWAS analysis is plotted and threshold was set P ≤ 10− 6. Quantile-quantile (Q-Q) plots are showing quantile distribution of observed p-values (on the y-axis) versus the quantile distribution of expected p-values to show 
genomic inflation (λ) for each analysis. 
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and rs12323812 (chr14:102363920:C:T; p-value-9.51E-07; CHISQ- 
24.02). Here the nearest genes are MOK, CINP and TECPR2. Similarly, 
three significant markers on chromosome 16 (16p12.3) are, rs1453512 
(chr16:16924042:C:A; p-value-4.60E-07; CHISQ-25.42), rs1597988 
(chr16:16900377:T:C, p-value-9.44E-07; CHISQ-24.04), and rs4371135 
(chr16:16897099:G:C, p-value-9.44E-07; CHISQ-24.04). These three 
markers on chromosome 16 having no any gene nearby, instead all are 
falling under uncharacterized loci i.e. pseudogene AC098965.1. More-
over, the difference in frequency of the altered allele is also minor. The 
Manhattan plot for markers with p-value ≤10–6 is shown in supple-
mentary Fig. S2C and listed in supplementary Table S7. 

3. Discussion 

Currently, researchers across the globe are working on the different 
aspect of the SARS-CoV-2 infection through looking into epidemiology 
[10,24], viral mutations [25,26], host transcriptome signature [27], in 
silico analysis of different mutations [28,29] etc. to tackle the viral 
infection. Apart from this, researchers are also looking for herbal rem-
edies [30,31] to prevent and cure SARS-CoV2 infection. While, all this 
information is very crucial to understand the viral transmissibility and/ 
or severity, host genetic makeup is also one of the factors which are also 
equally important. Therefore, although comorbidities and age remain 
the major contributors for mortalities, host genetics appears as signifi-
cant component for observed differences in individual response to 
COVID-19 infection, disease progression, as well as severity [32–34]. As 

Fig. 3. Regional association plots for region around the significant loci for deceased-recovered comparison. (A) rs17300100, (B) rs73246461, and (C) rs12651262. 
These plots were generated using LocusZoom using all the population. The most strongly associated SNPs are highlighted as purple diamond. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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mentioned previously, several GWAS studies on COVID-19 patients for 
various ethnic groups have been carried out and identified several genes. 
Very recently, COVID-19 Host Genetics Initiative has published GWAS 
data of 46 studies across 19 countries and reported 13 significant (P <
1.67 × 10–8) genomic loci for COVID-19 [17]. Similarly, [35] have 
reported 8 super-variants for COVID-19 mortality. Here we aimed to 
identify the host SNPs and genes associated with COVID-19 severity in 
the asymptomatic, recovered and deceased patients from Gujarat, India. 

Lungs are the major organ associated with respiratory diseases 
including COVID-19. Thrombosis related heart and lung malfunctions 
are common in COVID-19 patients [36–38]. Similarly, high D-Dimer in 
COVID-19 patients is associated with mortality [39]. Additionally, car-
diac arrest in COVID-19 patients and post COVID-19 is prominent 
[40,41]. Therefore, genes associated with heart and lung disease are 

very crucial and worth to study with prospect of COVID-19 
complications. 

The analysis of deceased vs recovered patients identified six genomic 
loci. Tumor Necrosis Factor Ligand Superfamily membrane genes, 
TNFSF4 and TNFSF18 are located in the vicinity of significantly associ-
ated marker (rs17300100) in this study and the genes associated have 
key role in the inflammatory disease conditions or inflammatory acti-
vation of macrophage/microglia cells [42]. Moreover, mutation in 
TNFSF4 have a known role in myocardial infarction [43] and Systemic 
Lupus Erythematosus (SLE) [44]. Several studies have discussed the role 
of T cell response in COVID-19 [45–48]. TNFSF18 is associated with T- 
cell responses as well, can act as a co-stimulator and lower the threshold 
for T-cell activation and proliferation [49–51]. Another nearest gene to 
this marker is GOT2P2 i.e. Glutamic-Oxaloacetic Transaminase 2-Like 2. 

Fig. 4. Regional association plot for region around the significant loci for recovered-asymptomatic comparison. (A) rs72663004, (B) rs72699049, and (C) 
rs72699016. These plots were generated using LocusZoom using all the population. The most strongly associated SNPs are highlighted as purple diamond. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Regional association plot for region around rs34279101 for deceased-asymptomatic comparison. These plot was generated using LocusZoom using all the population. The most strongly associated SNP is shown 
as purple diamond. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Two SNPs (rs6691738 and rs10158467) nearby rs17300100 have been 
reported for asthma [52,53]. Additionally, five SNPs/markers 
(rs114680188, rs12117214, rs147327230, rs9425716, and 
1:173368150) within 1 MB region of TNFSF4 and TNFSF18 are already 
reported for their association with COVID-19 [54]. For this marker, the 
frequency of altered allele is 9.3% higher in deceased patients as 
compared to those who recovered. Similarly, if we compare this fre-
quency with other populations, it is also high in the European popula-
tion (which also experienced high mortality compared to SAS) and 
matching with the frequency of deceased group. The frequency of this 
allele in South Asian population is similar to the recovered group in this 
study. Another two significant markers are located on 4p15.2 and 

nearby genes are DHX15, RN7SL16P, PPARGC1A. It has been reported 
that several members of the DEXD/H box helicase family including 
DHX15 have key role in innate immunity against the viral infection 
[55–58]. Further, knockdown of DHX15 impair the capacity of myeloid 
dendritic cells to synthesize IFN-b, IL-6, and TNF-a in response to dsRNA 
and RNA virus [55] and NF-κB regulation of cytokines, ERK and TNF-α 
signalling pathways play an important role in inflammation [59]. In the 
same way, DDX1 has been reported to interact with NSP14 of the in-
fectious bronchitis coronavirus and enhance viral replication [60]. 
Moreover, in support to this study, numerous SNPs (with p-value ≤1 ×
10− 4) in the 1 Mb downstream stream region of DHX15 gene have been 
reported for their association with COVID-19. Similarly, another gene 

Table 2 
Significant markers for deceased-recovered comparison. imputed data was analysed using PLINK with MAF >0.05 and markers with p-value p ≤ 10–7 were considered 
significant.  

CHR SNP BP rsID Band 
position 

Ref Alt CHISQ p- value Gene 

10 chr10:28606315:C:T 28,606,315 rs12773860 10p12.1 C T 26.02 3.38E- 
07 

WAC-AS1, BAMBI, WAC-AS1, RNU4ATAC6P, TPRKBP1, 
RNU6,1067P, snRNA 

4 chr4:24511798:A:G 24,511,798 rs73246461 4p15.2 A G 25.45 4.54E- 
07 

PPARGC1A, DHX15 

5 chr5:86011821:T:G 86,011,821 rs4424029 5q14.3 T G 25.07 5.52E- 
07 

CTD, 2036A18.2, PTP4A1P4 

13 chr13:22495675: 
AG:A 

22,495,675 rs10714879; 
rs398021874; 
rs398077102 

13q12.11 AG G 24.99 5.78E- 
07 

LINC00540, AL354828.1 

1 chr1:173115604:T:G 173,115,604 rs17300100 1q25.1 T G 24.1 9.14E- 
07 

TNFSF4, TNFSF18,  
RP1–15D23.2, GOT2P2 

4 chr4:24513334:A:C 24,513,334 rs12651262 4p15.2 A C 23.96 9.84E- 
07 

DHX15, RN7SL16P, PPARGC1A  

Table 3 
Significant markers for recovered-asymptomatic comparison. imputed data was analysed using PLINK with MAF >0.05 and markers with p-value p ≤ 10–7 were 
considered significant.  

CHR SNP BP rsID Band 
position 

Ref Alt CHISQ p-value Gene 

9 chr9:3320390:C:A 3,320,390 Rs72699049 9p24.2 C A 26.12 3.21E- 
07 

RFX3 

9 chr9:3258654:T:G 3,258,654 rs72699016 9p24.2 T G 25.91 3.59E- 
07 

RFX3, LINC01231 

10 chr10:130802064:T: 
G 

130,802,064 rs12253652 10q26.3 T G 25.17 5.24E- 
07 

AC016816.1-MIR378C 

1 chr1:20166359:C:T 20,166,359 rs72663004 1p36.12 C T 24.38 7.92E- 
07 

PLA2G2D, UBXN10, LINC01757, PLA2G5, UBXN10- 
AS1, PLA2G2F, Z98257.1, PLA2G2C 

4 chr4:188628742:C:G 188,628,742 rs72717619 4q35.2 C G 24.02 9.56E- 
07 

AC093909.3, LINC01060, RNU7-192P, snRNA, 
LINC01060 

4 chr4:188627868: 
CTCT:C 

188,627,868 rs1734523522 4q35.2 CTCT C 24.02 9.56E- 
07 

AC093909.5, LINC01060, RNU7-192P, snRNA  

Table 4 
Significant markers for deceased-asymptomatic comparison. imputed data was analysed using PLINK with MAF >0.05 and markers with p-value p ≤ 10–7 were 
considered significant.  

CHR SNP BP rsID Band 
position 

Ref Alt CHISQ p-value Gene 

14 chr14:76832814:C: 
CT 

76,832,814 rs34279101 14q24.3 C CT 30.09 4.12E- 
08 

ANGEL1, VASH1-AS1, AC007376.2, RN7SKP17, misc_RNA, 
AF111169.1, LRRC74A, RPL22P2, AF111169.4 

11 chr11:26675470:T: 
G 

26,675,470 rs10835056 11p14.2 T G 25.55 4.32E- 
07 

ANO3, SLC5A12 

16 chr16:16924042:C: 
A 

16,924,042 rs1453512 16p12.3 C A 25.42 4.60E- 
07 

AC098965.1 

14 chr14:102356233: 
A:G 

1.02E+08 rs11160678 14q32.31 A G 25.18 5.23E- 
07 

MOK, TECPR2, ZNF839, CINP 

16 chr16:16900377:T: 
C 

16,900,377 rs1597988 16p12.3 T C 24.04 9.44E- 
07 

AC098965.1 

16 chr16:16897099:G: 
C 

16,897,099 rs4371135 16p12.3 G C 24.04 9.44E- 
07 

AC098965.1 

14 chr14:102363920: 
C:T 

1.02E+08 rs12323812 14q32.31 C T 24.02 9.51E- 
07 

MOK, CINP, TECPR2, ZNF839  
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nearby these two loci is PPARGC1A (PGC-1α) which is a key regulator of 
mitochondrial function [61,62]. Recent evidences suggest that, SARS- 
CoV-2 take over the mitochondrial function and specifically disrupt 
the immune function in COVID-19 patients [63–67]. Downregulation of 
PPARGC1A during SARS-CoV-2 infection is already reported [68]. Thus, 
the finding of this is comparable with the previous studies. Contrary to 
rs17300100, here the reference alleles were found to be associated with 
the mortally/severalty while, altered allele was found to be protective 
(recovery). Here also, the allele frequency of the European population is 
very close to the altered allele frequency of the deceased patients. In one 
the study authors have performed Transcriptome Wide Association 
Study (TWAS) and reported genetic regulation of CXCR6, and correlated 
it with COVID-19 severity [69]. Thus, the findings of this study is also 
correlating with the previously reported data. All this data, in sum 
suggest that, TNFSF, GOT2P2, DHX15, and PPARGC1A may have a vital 
role in COVID-19 severity and mortality. 

Analysis of recovered vs asymptomatic patients revealed significant 
association of six genomic loci with SARS-CoV-2 infection. Among these, 
rs72663004 (chr1:20166359:C:T) has nearby genes are secretory 
calcium-dependent phospholipase group A2 (PLA2G5, PLA2G2D, 
PLA2G2F, and PLA2G2C) and UBXN10. Lipid metabolism plays an 
important role in viral endocytosis, exocytosis and also act as a putative 
target for antiviral therapy [70,71]. Up regulation of sphingomyelins, 
GM3s, and glycerophosphocholines have been reported in COVID-19 
patients [72,73]. Function of phospholipase A2 group IID in age 
related susceptibility for SARS-CoV infection is already reported [74]. 
Moreover, it has been also anticipated that, inhibition of phospholipases 
A2 may help in treatment of COVID-19 patients. Another nearby gene to 
marker rs72663004 is ubiquitin regulatory X (UBX) and members of this 
family have been reported to inhibit the viral life cycle of retrovirus and 
lentivirus via regulation of genes involve in the pathways related to cell 
adhesion and immune system signalling. Innate immune system plays an 
important role during an early stage of infection for any pathogen. Cilia 
in the respiratory track play an essential role in innate immune system 
for the respiratory infections via removing the gasped elements [75,76]. 
RFX family of transcription factors including regulatory factor X3 
(RFX3) is indispensable for ciliogenesis [77–79]. It has been also re-
ported that RFX3 complement with FOXJ1 for cilia formation in the 
human airway epithelium and any mutation in this gene may cause 
Primary ciliary dyskinesia [75,79,80]. In this study, we also found two 
markers (rs72699049 & rs72699016) on chromosome 9p24.2 both are 
located near RFX3. If we compare the allele frequencies for the markers 
rs72699016, rs12253652, rs72717619, and rs1734523522, frequency 
of altered allele is very high both in recovered and asymptomatic group 
as compared to the frequency in the European and South Asian pop-
ulations. And if, we compare only recovered and asymptomatic group 
for this study, among the above mentioned locations, rs72699016, 
rs12253652, rs72663004 has higher altered allele frequency in the pa-
tients those who recovered. This data altogether suggests that, the 
altered allele at these genomic positions in the Western Indian popula-
tion might have a protective role against COVID-19, i.e. even if they are 
infected with SARS-CoV-2, they may have remained asymptomatic or 
recovered. 

For the analysis of deceased vs asymptomatic patients, seven sig-
nificant loci are identified. Here, the important one is rs34279101and 
nearby genes are ANGEL1, LRRC74A, VASH1-AS1, and uncharacterized 
genes. As mentioned earlier, respiratory distress syndrome and lung 
pathology is commonly observed in severe cases of COVID-19. While 
comparing deceased and asymptomatic patients in the present study, we 
found two putative genes LRRC74A and ANGEL1 near rs34279101 
which may have role in COVID-19 severity in deceased patients. In 
support to this study, five locations within 1 Mb region of rs34279101 
are already reported for COVID-19 however, with leaser p-vale. Func-
tion of leucine rich repeat such as LRRC10 in cardiomyopathy [81] and 
primary ciliary dyskinesia [82] has already been reported. Similarly, 
allelic variants in LRRC56 are associated with primary ciliary 

dyskinesia, a disorder associated with chronic respiratory tract in-
fections [83]. Another nearby gene to this locus is ANGEL1/Ccr4e. 
Again, this gene in either way associated with cardiac disease such as 
loss of myocardial cells. At this locus, the frequency of altered allele is 
higher in deceased individuals as compared to asymptomatic patients. 
However, allele frequency in other populations is quite different. 
rs10835056 on 11p14.2 has nearby genes ANO3 and SLC5A12. Elevated 
level of lactate and lactate dehydrogenase may be because of hypoxia 
[84,85] or inflammation, is reported in the COVID-19 patients and also 
associated with the mortality in the septic patients [86–89]. Low and 
high affinity SLC5A12 transporters transport the lactate [90]. Previous 
studies suggest that SLC5A12 transport lactate into the T cells at the site 
of inflammation and control its function [91,92]. At this locus, the 
reference allele was found to be associated with mortality as its fre-
quency was higher than the asymptomatic patients group. 

4. Conclusion 

In summary, the present study suggests that polymorphic loci around 
genes involved in lung and heart diseases such as Tumor necrosis factor 
superfamily TNFSF4&18, GOT2P2, and LRRC74A as well as genes con-
nected with innate immune system (DHX15), and mitochondrial func-
tion (PPARGC1A) are significantly associated with COVID-19 severity in 
Western India population. Whereas, altered allele near RFX3 and 
UBXN10 genes are found to be protective in COVID-19 patients in the 
study population. Our findings suggest that, identified genomic markers 
may be decisive for the COVID-19 progression and severity in the 
Western Indian population. Therefore, the unfavourable alleles of the 
markers showing association with the disease severity and outcome can 
be used for risk prediction during the SARS-CoV-2 infections. 

5. Material and methods 

5.1. Recruitment of patients 

In this study, we recruited 571 COVID-19 patients with different 
stages of disease severity. Samples were collected from 25 different 
hospitals of 24 districts across the Gujarat state of India (Supplementary 
Fig. S1). All the metadata information such as age, sex, and comorbidity 
if any, were recorded (Supplementary Table S1). All the patients were 
confirmed for SARS-CoV-2 infection using RT-PCR of nasopharyngeal 
swab samples using TaqPath™ 1-Step RT-qPCR kit on Applied Bio-
systems 7500 Fast Dx Real-Time PCR system (Thermo Fisher Scientific). 
Based on the clinical manifestations and disease severity, all the patients 
were broadly categorized as either symptomatic or asymptomatic. 
Asymptomatic patients are those who experienced very mild symptoms 
such as cough, body aches, etc. but did not required hospitalisation. 
Symptomatic patients had major symptoms including cold, fever, 
breathlessness, sore throat etc. and importantly they required ventila-
tion or oxygenation in the intensive care unit (ICU). Symptomatic pa-
tients were further followed for the final outcome and further divided 
into two groups i.e. recovered and deceased. Therefore, in the final 
analysis, comparison was made among three groups i.e. asymptomatic, 
symptomatic but recovered and deceased. With these criteria, total 148, 
327 and 96 patients were considered as asymptomatic, recovered and 
deceased, respectively. 

5.2. Sample processing, genotyping, imputation and data GWAS analysis 

DNA from blood samples was isolated using John’s method [93]. 
Quantity of extracted DNA was estimated using DNA High sensitivity 
assay kit on Qubit fluorimeter v 4.0 (Thermo Fisher Scientific). Quality 
of extracted DNA was assessed using agarose gel electrophoresis and 
QIAxpert system (QIAGEN). For genotyping, we used Axiom™ Precision 
Medicine Diversity Array (PMDA) Plus Kit, 96-format containing 
8,68,298 markers selected for high genomic coverage (Thermo Fisher 
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Scientific) on GeneTitan Multi-Channel (MC) Instrument (Thermo Fisher 
Scientific). Best markers were selected using Axiom Analysis Suite 
following the best practices workflow with the following parameters: 
sample QC Threshold; QC call_rate: ≥97, SNP QC Threshold; scr-cutoff: 
≥95, and therefore, markers with high-resolution were analysed further. 
For imputation, we used TOPMed Imputation Server (https://imputati 
on.biodatacatalyst.nhlbi.nih.gov/). To perform GWAS, imputed chro-
mosome files were merged and VCF format files were further converted 
to plink format. The population stratification was performed using 
PLINK v1.9. GWAS analysis was performed using PLINK v1.9 [94] and 
SAIGE v 0.44.5 [95] at minor allele frequency (MAF) >0.05. Compari-
son between different groups was done as; deceased vs recovered, 
deceased vs asymptomatic and recovered vs asymptomatic patients. 
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