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Identification of immune-related genes
for the diagnosis of ischemic heart failure
based on bioinformatics

Yiding Yu,1 Xiujuan Liu,2 Yitao Xue,2,* and Yan Li2,3,*

SUMMARY

The role of immune cells in the pathogenesis of ischemic heart failure (IHF) is well-established. However,
identifying key genes in patients with IHF remains a challenge. We obtained two IHF datasets from the
GEO database (GSE76701 and GSE21610), and identified four potential diagnostic candidate genes for
IHF by using bioinformatics and machine learning algorithms, namely RNASE2, MFAP4, CHRDL1, and
KCNN3. We constructed nomogram and validated the diagnostic value of these genes on additional
GEO datasets (GSE57338). The results showed that these four genes had high diagnostic value (area un-
der the curve value of 0.961). Furthermore, our immune infiltration analysis revealed the presence of
three dysregulated immune cells in IHF, namely macrophages M2, monocytes, and T cells gamma delta.
We also explored the potential molecular mechanisms of IHF. These findings provide new insights into
the pathogenesis, diagnosis, and treatment of IHF.

INTRODUCTION

Cardiovascular disease is a leading cause of human mortality, encompassing hypertension, arrhythmias, coronary heart disease, and heart

failure, among other heart-related conditions. Of these, heart failure is often the ultimate outcome of most cardiovascular diseases, primarily

due to structural changes or functional impairments of the heart that hinder ventricular filling or ejection function.1With the advent of interven-

tional techniques and drugs, survival rates for patients with ischemic heart disease and acute myocardial infarction are improving, leading to

an increased number of patients at risk for heart failure.2 Damaged and unrecoverable myocardium is the principal cause of heart failure and

death in patients within five years of an infarction.3 Consequently, identifying myocardial-specific genes for ischemic heart failure (IHF) at the

transcriptome level could facilitate early diagnosis and targeted treatment of these patients.

Previous studies have demonstrated that immune cells play protective and destructive roles in cardiac remodeling after infarction.4 Multi-

potent cells of the innate immune system, such as monocytes and macrophages, are critical for the initial inflammatory response to post-

infarction myocardial injury and subsequent wound healing.5 Clinical studies have aimed to target elements of the immune response in heart

failure by modulating the inflammatory response. However, the results of these clinical studies have been unsatisfactory, and in some cases,

have even exacerbated heart failure.6 Therefore, examining the immune response and associated genes in the progression of IHF could help

develop novel therapeutic strategies.

Rapid advances in high-throughput technologies and bioinformatics can aid in the screening of sensitive and specific diagnostic tools to

diagnose and treat heart failure patients before they reach a refractory end stage. Additionally, with the development and maturation of ma-

chine learning in bioinformatics applications, multiple machine learning models can aid in uncovering potential mechanisms, prospective

diagnostic tools, and therapeutic targets for IHF.7

In this study, we initiated by acquiring two IHF datasets from the GEO database, followed by identifying differentially expressed genes

(DEGs) through the Limma package. Subsequently, we selected significant modular genes via weighted gene co-expression network analysis

(WGCNA). We then performed functional enrichment analysis. We utilized three different machine learning models, namely, least absolute

shrinkage and selection operator (LASSO), random forest (RF), and support vector machine recursive feature elimination (SVM-RFE), to deter-

mine diagnostic models. We further assessed these genes through nomogram and single-sample gene set enrichment analysis (ssGSEA).

Additionally, we validated the diagnosticmodels on another GEOdataset. Finally, we conducted immune cell infiltration analysis on the data-

set to identify immune-related genes in IHF and to elucidate the role of immune cells in the development of this condition. Figure 1 depicts

the study flowchart.
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RESULTS

Identification of differentially expressed genes

After data merging and normalization, we identified a total of 115 differential genes in the merged dataset using the LIMMA package, of

which there were 78 up-regulated and 37 down-regulated genes. The visualization of the associated results was shown in Figure 2.

Weighted gene co-expression network analysis and key module identification

We usedWGCNA to identify themost relevant modules in IHF. TheWGCNApackage will automatically select the best b value for calculation

at runtime. In this study, when the value of b=6, the network is closer to the scale-free network. Ultimately, we obtained 16 gene co-expression

modules. Among them, the turquoisemodule had the highest correlation with IHF (correlation coefficient = 0.72, p = 5e-05), containing a total

of 6164 genes. Therefore, we selected the turquoisemodule as the keymodule for the subsequent analysis. The visualization of the results was

shown in Figure 3.

Functional enrichment analysis of ischemic heart failure

To ensure that geneswith significant functions but insignificant differentialmultiplicities were not overlooked, we conducted aGSEAon all the

genes in the dataset. GSEA results indicate that genes related to IHF may be involved in biological functions such as programmed cell death,

inflammation, and immunity. Among them, genes involved in antigen processing and presentation were generally up-regulated, while genes

involved in apoptosis, proteasome, and Th1 and Th2 cell differentiation were generally down-regulated. Afterward, we intersectedDEGs with

Figure 1. The study flowchart. This is a summary of our study as a whole
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the turquoise module genes to obtain 92 IHF key genes. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis on the IHF key genes. The categories of GO analysis include biological process (BP), cellular compo-

nent (CC), and molecular function (MF), and we will show the top five results, respectively. The KEGG enrichment analysis did not yield many

pathways, so we will show all the enriched results. The visualization results were shown in Figure 4.

Identification of hub genes via machine learning

We used threemachine learning algorithms, LASSO, RF, and SVM-RFE, to further screen Hub genes for IHF.We identified 17 potential candi-

date biomarkers by the LASSO algorithm. The RF algorithm ranked the genes based on the importance calculation of each gene, and we

selected the top 30 as potential candidates for IHF. The SVM-RFE algorithm exhibited the highest precision, identifying 13 genes with a con-

stant precision score of 1 thereafter. To establish the optimal number of Hub genes, we selected the top 16 genes for the SVM-RFE algorithm

results as candidate genes. By intersecting the results of all three algorithms, we identified four Hub genes for IHF: RNASE2,MFAP4, CHRDL1,

and KCNN3. The visualization results were shown in Figure 5.

Diagnostic value assessment

We constructed nomograms based on the four Hub genes and built receiver operating characteristic (ROC) curves to assess the diagnostic

specificity and sensitivity of each gene and nomogram. In addition, we plotted differential expression boxplots for the Hub genes. Finally, we

completed the validation of Hub genes in GSE57338 using ROC curve analysis. The validation results showed that the area under the curve

(AUC) of each gene was greater than 0.7, and the AUC of the 4-gene diagnostic model was 0.961, which had high diagnostic value. The visu-

alization results were shown in Figure 6.

ssGSEA enrichment analysis

We performed ssGSEA enrichment analysis for RNASE2, MFAP4, CHRDL1, and KCNN3, respectively. The results showed that all these genes

are involved in the development of IHF and the biological functions of immunity and inflammation in the disease process to varying degrees.

A D

B C

Figure 2. Results of differentially expressed genes

(A) Normalization of data. We have completed the normalization of samples, so that the data of each sample and parallel experiments are at the same level,

making downstream analysis more accurate and reliable.

(B) Principal component analysis plot. The results show that the repeatability within the group is relatively good, the sample data are very similar, and there is

good discrimination between groups.

(C) Volcano plot. We set adjust p values <0.05 and | log2(FC)| R 1 as the difference genes. Red dots are upregulated genes, and blue dots are downregulated

genes.

(D) Heatmap plot. We showed the top 30 upregulated and the top 30 downregulated genes in IHF and control groups.
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For example, RNASE2 was involved in adrenergic signaling in cardiomyocytes, cell cycle, cellular senescence, IL-17 signaling pathway, and

proteasome. MFAP4 was involved in biosynthesis of unsaturated fatty acids and histidine metabolism. KCNN3 participates in the TGF-beta

signaling pathway. Chordin-like 1(CHRDL1) participates in proteasome, primary immunodeficiency, and circadian rhythm, etc. Detailed re-

sults and visualization were shown in Figure 7.

Immune cell infiltration analysis

Due to the important role of immune cells in the development of IHF, we also performed an immune infiltration analysis of the dataset by

means of the CIBERSORT algorithm. The bar charts clearly show the content of the different subpopulations in each sample. We assessed

the heterogeneity of cell composition between the heart failure samples and the healthy samples and the results showed that therewere three

immune cell infiltrates that were significantly different. Macrophages M2 and monocytes were higher in normal samples than in heart failure

samples, and T cells gamma delta was lower than in heart failure samples. The differential infiltration of these 3 types of immune cells may

provide potential regulatory points for the treatment of IHF. The visualization results were shown in Figure 8.

DISCUSSION

HF is always amajor public health challenge. Among them, left ventricular systolic dysfunction due to obstructive coronary artery disease is the

most common cause of heart failure worldwide. While new treatments such as mechanical unloading and modulation of the inflammatory

response look promising, understanding the mechanisms of IHF is a key step in finding new ways to address the risk of heart failure.8

A

B C

Figure 3. WGCNA analysis result

(A) The scale-free fit index for soft-thresholding powers and mean connectivity.

(B) Gene and trait clustering dendrograms. Gene clustering trees (dendrograms) obtained by hierarchical clustering of neighbor-based differences.

(C) 16 gene co-expression modules. The numbers in each cell means the correlation coefficient and p value. C: Control group; P: IHF group.
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In this study, we explored the potential mechanisms of IHF through three enrichment analyses. The results suggest that the underlyingmech-

anisms of IHF are mostly related to inflammation, immunity, and metabolism. For example, antigen processing and presentation and Th1 and

Th2 cell differentiation in the enrichment results are involved in cellular immuneprocesses. It has beendemonstrated that cardiac fibroblasts take

up andprocess antigens andpromote cardiac fibrosis and dysfunction through IFNg.9 Inflammatory cytokines such as IFNg, TNF-a, IL-2, and IL-6

secreted by Th1 and Th2 cells have also been important players in the development of heart failure.10,11 The proteasome involves the ubiquitin-

proteasome system, which plays a key role in maintaining protein homeostasis and cardiac function.12 On the one hand, the ubiquitin-protea-

some system is the major protein degradation system involved in the regulation of inflammation and selective mitochondrial autophagy during

heart failure.13 On the other hand, this system is also involved in the development of heart failure in terms of cardiac energy metabolism.14 In

addition, how tomitigate the cardiotoxicity induced by proteasome inhibitors of anticancer drugs has been a popular research in recent years.15

We also used bioinformatics tools and machine learning algorithms to screen for Hub genes for IHF, namely RNASE2, MFAP4, CHRDL1,

and KCNN3, and validated them in a larger dataset. The AUC value of this 4-gene diagnostic model in the validation set was 0.961, implying

A

C D

B

Figure 4. Functional enrichment analysis of IHF

(A) GSEA enrichment analysis results. Include upregulated gene pathway and downregulated gene pathway.

(B) The intersection of DEGs and the turquoise module. We intersected DEGs with the turquoise module genes to obtain 92 IHF key genes.

(C) GO enrichment analysis results.

(D) KEGG enrichment analysis results.
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that this diagnostic model has a high diagnostic value. Nomograms were also plotted to aid the application of this diagnostic model. We

completed the ssGSEA analysis of these 4 genes in order to provide new ideas for our understanding of the molecular mechanism of IHF.

Ribonuclease A family member 2 (RNASE2) is a non-secretory ribonuclease that belongs to the RNaseA superfamily. Also known as an

eosinophil-derived neurotoxin (EDN), RNASE2 is involved in immune and inflammatory related pathways.16 Its broad antiviral activity is pri-

marily directed against single-stranded RNA viruses, such as human immunodeficiency virus.17 Studies have shown that RNASE2 acts as a

catalyst for human dendritic cells and promotes the secretion of a plethora of cytokines and chemokines.18 RNASE2 also functions as an

endogenous ligand for toll-like receptor (TLR) 2. On the one hand, downstream pathway stimulation via TLR may activate myeloid

differentiation factor 88 (MyD88) and mitogen-activated protein kinase (MAPK) to promote the production of pro-inflammatory factors

such as IL-10.19,20 On the other hand, TLR immunosensing against live pathogens may also allow RNASE2 to act as a bridge between innate

and adaptive immunity.21 In the cardiovascular context, TLR2 has been reported to regulate myocardial ischemia, and thus RNASE2 may be

involved in innate immune responses in the pathogenesis of IHF via TLR2.22

Microfibrillar associated protein 4 (MFAP4) is an extracellular matrix protein that belongs to the fibrinogen-associated protein superfamily.

Vascular smooth muscle cells produce MFAP4, which is highly enriched in the vessels of the heart and lungs, and is believed to contribute to

the structure and function of elastic fibers.23 Thus, MFAP4 holds significant research value in arterial vascular-related diseases. Studies have

shown that MFAP4 can induce the proliferation andmigration of vascular smoothmuscle cells and promotemonocyte chemotaxis, which can

accelerate neointimal proliferation after vascular injury.24 Additionally, two clinical studies have demonstrated the potential of MFAP4 as a

biomarker of atherosclerotic disease. In patients with stable coronary artery disease, serum MFAP4 levels were lower compared to patients

with acute infarction.25 Moreover, MFAP4 has the potential to serve as a biomarker for assessing the degree of coronary artery stenosis in

acute heart attacks.26 Concerning heart failure, MFAP4 plays a crucial role in macrophage infiltration, inflammation, andmyocardial fibrosis.27

MFAP4 knockout experiments have shown that MFAP4 deficiency can lead to dysregulated integration of G protein-coupled receptors and

A

C D

B

Figure 5. Machine learning in screening candidate diagnostic biomarkers for IHF

(A) Biomarkers screening in the Lasso model. LASSO coefficient profiles of the candidate optimal feature genes and the optimal lambda was determined when

the partial likelihood deviance reached the minimum value. Each coefficient curve in the left picture represents a single gene. The solid vertical lines in right

picture represent the partial likelihood deviance, and the number of genes (n = 17) corresponding to the lowest point of the cure is the most suitable for LASSO.

(B) Biomarkers screening in the SVM-RFE model. The SVM-RFE algorithm was used to further candidate optimal feature genes with the highest accuracy and

lowest error obtained in the curves. The x axis shows the number of feature selections, and the y axis shows the prediction.

accuracy.

(C) Biomarkers screening in the RFmodel. Relative importance of overlapping candidate genes calculated in random forest. We showed the results for the top 20

genes.

(D) Venn diagram shows that four candidate diagnostic genes are identified via the previous three algorithms.
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integrin signaling in the heart, which exacerbates cardiomyocyte hypertrophy.28 Therefore, the decreased ejection fraction and myocardial

fibrosis in IHF patients may be related to the dysregulation of MFAP4.

CHRDL1 is a secreted protein that acts as an antagonist of bone morphogenetic protein (BMP).29 There has been little research on the

association of CHRDL1 with heart disease, but recently Mauro Giacca and his team have identified the cardioprotective effects of

CHRDL1 by a method called cardiac FunSel.30 Its cardioprotective effect stems from the maintenance of cardiomyocyte viability by blocking

the negative effect of BMP4 on cardiomyocyte autophagy. Also, CHRDL1 inhibits post-infarction cardiac fibrosis and enables post-infarction

remodeling by inhibiting the negative effects of TGF-b on cardiac fibroblasts. In addition, a chromosomal genetic analysis showed that

A

C

E F

D

B

Figure 6. Results of diagnostic value assessment

(A) The visible nomogram for diagnosing IHF.

(B) Expression of Hub genes in IHF patients compared to normal controls in GSE21610 and GSE76701.

(C) The ROC curve of nomogram and each candidate genes showed the IHF diagnostic value.

(D) The ROC curve of each candidate genes in GSE57338.

(E) The ROC curve of the 4-gene diagnostic model in GSE57338.

(F) Expression of Hub genes in IHF patients compared to normal controls in GSE57338.
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CHRDL1 was strongly associated with lowered lipids, suggesting that CHRDL1 has potential in coronary plaque control and may improve

myocardial supply and treat IHF by lowering LDL and reversing plaque.31 Therefore, targeting CHRDL1 therapy may improve exercise toler-

ance and cardiac output in IHF patients.

Potassium calcium-activated channel subfamily N member 3(KCNN3) belongs to the KCNN family of potassium channels. It encodes an

integral membrane protein that forms a voltage-independent calcium-activated channel, which is thought to regulate neuronal excitability by

contributing to the slow component of synaptic AHP.32 Thus, KCNN3 has potential in the treatment of arrhythmias, especially since GWAS

evidence suggests that variants in the KCNN3 gene are associated with atrial fibrillation.33 In the field of heart failure, it has been shown that

ventricular expression of KCNN3 is significantly increased in heart failure when ventricular tissue from patients with heart failure is compared

Figure 7. The results of ssGSEA enrichment analysis. Include upregulated gene pathway and downregulated gene pathway

(A) The results of CHRDL1.

(B) The results of KCNN3.

(C) The results of MFAP4.

(D) The results of RNASE2.
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to healthy samples, in line with our findings.34 It has also been shown that upregulation of KCNN3 leads to deterioration of ventricular func-

tion, which may be related to the involvement of this gene in the induction of ventricular tachycardia, but the specific mechanisms behind this

need further investigation.35 In general, the overexpression of KCNN3 in IHF patients may increase the risk of arrhythmia and sudden cardiac

death, and aggravate clinical symptoms such as palpitations after activity in IHF patients.36

The results of the immune infiltration analysis showed that therewere three types of immune cell infiltration that were significantly different.

Macrophages were divided into two subpopulations based on their function and level of inflammatory factor secretion: macrophagesM1 and

macrophagesM2. MacrophagesM2 have an anti-inflammatory effect and are mainly activated by IL-4 inflammatory factor, inhibitingM1mac-

rophages mainly by secreting anti-inflammatory cytokines such as IL-10, which play a role in processes such as wound healing and tissue

repair.37 Macrophages M2 are lower in heart failure samples than in normal samples, and imbalanced M1/M2 macrophages may exacerbate

inflammatory damage to cardiomyocytes, exacerbatingmyocardial dysfunction, and fibrosis.38 Monocytes play a key role in orchestrating the

inflammatory cascade response and the pathogenesis of HF. However, the highly differentiated nature of monocytes complicates their

A

B

C

Figure 8. Immune cell infiltration analysis between IHF and control

(A) The proportion of 22 kinds of immune cells in different samples visualized from the bar plot.

(B) The expression of the 22 immune cells in the different samples can be seen in the heatmap.

(C) Expression of the 3 dysregulated immune cells in the IHF and controls as seen in the boxplot.
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function. On the one hand, monocytes are one of the major cellular targets of pro-inflammatory cytokines, and TNF-a induces monocytes to

promote NO synthase production, thereby inducing apoptosis in cardiomyocytes, which in turn leads to further activation of the cascade by

monocytes, resulting in a vicious cycle in the failing myocardium.39 On the other hand, it has been suggested that activated monocytes can

infiltrate the myocardium in order to exert phagocytic and reparative effects.40 This may explain the general lack of clinical success in treating

HF by modulating the cytokine system. The main biological effect of T cells gamma delta (Tgd cells) is cytotoxicity, which may account for its

elevation in heart failure samples. Studies have shown that modulation of the IL-17A/Tgd cells axis can effectively modulate inflammation

levels and slow down the process of myocardial fibrosis, thus exerting an anti-heart failure effect.41,42

The 4 Hub genes screened out by us also seem to be related to the immune infiltration of IHF samples. Studies have shown that RNASE2 is

the most abundant member of the RNASEA family in macrophages and is also mainly expressed in monocytes, which may be one of the rea-

sons why the expressions of RNASE2, macrophages M2, and monocytes in IHF samples are lower than those in normal samples.43,44 In addi-

tion, the overexpression ofMFAP4 and KCNN3 can promote themigration ofmonocytes, whichmay be another reason why themonocytes of

IHF samples are lower than those of normal samples.45,46

In addition to our study, there are currently several bioinformatic studies on IHF. However, due to the different datasets and analysis

methods selected, the Hub genes obtained by each study are also different. For example, Wang C and Kong X, although their researches

were all based on the dataset GSE57338, Wang C obtained the three Hub genes of ASB14, CD163, and CCL5 through the traditional PPI

algorithm, and Kong X obtained seven Hub genes through WGCNA and machine learning algorithms.47,48 This does not mean that these

results are in conflict. The occurrence and development of the disease involves multiple genes and multiple pathways, and it is difficult to

explain clearly with a few genes. Our results and theirs can complement each other and provide more ideas for further understanding the

mechanism and therapeutic targets of IHF.

The novel aspects of our study are as follows. First, in the selection of datasets, we selected 2 IHF datasets and merged them. Currently,

there are no similar studies using these two datasets. Secondly, we identified RNASE2,MFAP4, CHRDL1, and KCNN3 as potential biomarkers

and therapeutic targets for IHF through bioinformatics and three machine learning approaches. Thirdly, we validated these four genes in

other dataset, and the validation results showed that the diagnostic model composed of these four genes has high diagnostic value, which

provides new ideas for our future research on the molecular mechanisms of IHF. In addition, our enrichment analysis and immune infiltration

analysis of the dataset showed that the molecular mechanisms of IHF are related to immunity and inflammation, which provides us with ideas

for developing new therapeutic modalities for IHF.

In summary, we conducted a bioinformatic analysis of theGEOdataset to investigate the underlyingmolecularmechanisms of IHF and the

immune cell infiltration environment within the failing myocardium. Through the implementation of three machine learning algorithms

(LASSO, RF, and SVM-RFE), we have identified RNASE2, MFAP4, CHRDL1, and KCNN3 as potential biomarkers and therapeutic targets

for the treatment of IHF. Of particular significance, we have developed diagnostic models and nomogram tools based on these four genes,

providing a novel understanding of the pathogenesis of IHF and offering exciting prospects for future in-depth studies.

Limitations of the study

Nevertheless, there are some shortcomings in this study. Firstly, it is difficult to establish a causal relationship between gene expression dif-

ferences and the pathophysiological mechanisms of heart failure. Secondly, the sample lacked information on gender and race, which may

affect the generalizability of the results. Thirdly, our dataset was derived from myocardial tissue and the lack of validation of the peripheral

blood dataset may limit the application of diagnostic models. Therefore, although our results were validated in external datasets, further clin-

ical trials are needed to affirm the value of our diagnostic model. Whether interfering with the Hub gene can treat IHF needs to be further

verified in animal experiments.
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J.R., Cinca, J., Jorge, E., Martı́nez-Dolz, L.,
Portolés, M., and Rivera, M. (2015). Patients
with Dilated Cardiomyopathy and Sustained
Monomorphic Ventricular Tachycardia Show
Up-Regulation of KCNN3 and KCNJ2 Genes
and CACNG8-Linked Left Ventricular
Dysfunction. PLoS One 10, e0145518. https://
doi.org/10.1371/journal.pone.0145518.

36. Mahida, S., Mills, R.W., Tucker, N.R.,
Simonson, B., Macri, V., Lemoine, M.D., Das,
S., Milan, D.J., and Ellinor, P.T. (2014).
Overexpression of KCNN3 results in sudden
cardiac death. Cardiovasc. Res. 101, 326–334.
https://doi.org/10.1093/cvr/cvt269.

37. Mouton, A.J., Li, X., Hall, M.E., and Hall, J.E.
(2020). Obesity, Hypertension, and Cardiac
Dysfunction: Novel Roles of
Immunometabolism in Macrophage
Activation and Inflammation. Circ. Res. 126,
789–806. https://doi.org/10.1161/
CIRCRESAHA.119.312321.

38. Zhang, L., Chen, J., Yan, L., He, Q., Xie, H.,
and Chen, M. (2021). Resveratrol Ameliorates
Cardiac Remodeling in a Murine Model of
Heart Failure With Preserved Ejection
Fraction. Front. Pharmacol. 12, 646240.
https://doi.org/10.3389/fphar.2021.646240.

39. Balligand, J.L., Ungureanu, D., Kelly, R.A.,
Kobzik, L., Pimental, D., Michel, T., and Smith,
T.W. (1993). Abnormal contractile function
due to induction of nitric oxide synthesis in rat
cardiac myocytes follows exposure to
activated macrophage-conditioned medium.
J. Clin. Invest. 91, 2314–2319. https://doi.org/
10.1172/JCI116461.

40. Wrigley, B.J., Lip, G.Y.H., and Shantsila, E.
(2011). The role of monocytes and
inflammation in the pathophysiology of heart
failure. Eur. J. Heart Fail. 13, 1161–1171.
https://doi.org/10.1093/eurjhf/hfr122.

41. Blanco-Domı́nguez, R., de la Fuente, H.,
Rodrı́guez, C., Martı́n-Aguado, L., Sánchez-
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yan Li

(liyan88130@163.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data

This study analyzes existing, publicly available data. The sources for the datasets are listed in the key resources table.

Code

This study does not report original code. All codes were used in this study in alignment with recommendationsmadeby authors of R packages

in their respective user’s guide, which can be accessed at https://bioconductor.org. All code used in the analyses is deposited on https://

github.com/YidingYu96/ML.

Additional information requests

Any additional information required to reanalyze the data used in this study is available from the lead contact upon request.

Availability of data and materials

Publicly available datasets were analyzed in this study. These data can be found here: GSE76701; GSE21610; GSE57338.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

IHF dataset 1 (Schwientek P et al.)49 GEO: GSE21610

IHF dataset 2 (Kim EH et al.)50 GEO: GSE76701

IHF verification set (Liu Y et al.)51 GEO: GSE57338

Software and algorithms

R (v4.2.0) The R Project https://www.r-project.org

GEOquery (R package) (Davis S et al.)52 https://bioconductor.org/packages/release/

bioc/html/GEOquery.html

sva (R package) (Leek JT et al.)53 https://bioconductor.org/packages/release/

bioc/html/sva.html

ggplot2 (R package) (Wickham H et al.)54 https://cran.r-project.org/web/packages/

ggplot2/index.html

ComplexHeatmap (R package) (Gu Z et al.)55 https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

Limma (R package) (Ritchie et al.)56 https://bioconductor.org/packages/release/

bioc/html/limma.html

WGCNA (R package) (Langfelder et al.)57 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

clusterProfiler (R package) (Yu G et al.)58 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

glmnet (R package) (Engebretsen S et al.)59 https://github.com/cran/glmnet

ssGSEA (R package) (Yi et al.)60 https://github.com/broadinstitute/ssGSEA2.0

CIBERSORT (R package) (Newman AM et al.)61 https://github.com/zomithex/CIBERSORT
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We used "ischemic heart failure" as the keyword to search in the GEO database (as of March 31, 2023). Select the "Homo sapiens" dataset

and experiment type should be "Expression profiling by array". In addition, the diseasemust be clearly defined as ischemic heart failure in the

dataset description. We finally obtained 8 IHF-related datasets (GSE57345 and GSE57338 are the same dataset). The details of the datasets

are shown in Table S1. We select datasets based on the following two principles: 1. The sample size of the control group and the

disease group are close. 2. Select as many datasets as possible for merging. Since only datasets of the same platform can be combined,

we finally selected GSE21610 and GSE76701 of the GPL570 platform as the dataset for ischemic heart failure, and GSE57338 as the

verification set.49–51,62

METHOD DETAILS

Data processing and differentially expressed gene screening

To collate and analyze our data, we utilized R software (version 4.2.0) and accessed the GEO database through the GEOquery package to

download the GSE21610 andGSE76701 datasets.52 To ensure accuracy and consistency, we removed probes corresponding tomultiple mol-

ecules and retained only the probe with the highest signal value for each molecule. We utilized the ComBat function of the sva package to

eliminate batch effect from the filtered data.53 The essence of difference analysis is a generalized linear model. The limma package can fit a

linear equation to the expression of each gene. Therefore, using the limma package for difference analysis is currently the most recommen-

ded way. To gain insights into the differences between heart failure and normal samples, we employed the limma package and identified

genes with adjust p values <0.05 and | log2(FC)| R 1 as the difference genes. We further visualized our findings using the ggplot2 package

and the pheatmap package.54–56 To assess normalization, we utilized a boxplot, and for clustering between sample subgroups, we used a

PCA plot.

Weighted Gene Co-Expression Network Analysis and module gene selection

In addition to obtaining differential genes with the limma package, we also used the WGCNA package to explore gene modules with relat-

edness.57 A scale-free co-expression network was created after removing ineligible genes and samples by the goodSamplesGenes function

with a filtering criterion of 0.5. Subsequently, adjacency was calculated by default using b = 30 and scale-free R2 = 0.9 as a soft threshold, and

adjacency was converted to a topological overlap matrix (TOM), which was used to determine gene ratios and dissimilarity. Genes with the

same expression profile were grouped into gene modules using average linkage hierarchical clustering. We preferred larger modules, so we

set the minimum module size to 200. Finally, we calculate the similarity of the modules’ signature genes, select the cut lines of the module

dendrogram to combine several modules for the next step of the study, and complete the visualization of the signature gene network.

WGCNA analysis was used to identify important modules in IHF.

Functional enrichment analysis

We utilized the clusterProfiler package to conduct Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA) enrichment analyses and visualizations.58,63‒65 Specifically, we performedGSEA enrichment analysis on all genes

within our dataset. Subsequently, we identified the key genes of IHF by intersecting the DEGs with the important module genes of WGCNA.

Finally, we performed GO and KEGG enrichment analyses on the key genes of IHF.

Machine learning

Wewill use threemachine learning algorithms, LASSO, RF and SVM-RFE, to further screen candidate genes for IHF diagnosis.66–68We use the

glmnet package to perform the LASSO algorithm, choosing 10-fold cross-validation to select the prominent genes.59 We used the random-

Forest package to complete the RF algorithm, selecting the top 30 genes as alternative genes. We used the e1071 package to complete the

SVM-RFE algorithm to select the number of genes with the highest precision as candidate genes. After completing the calculation, we

selected the intersection of the three as the diagnostic genes for IHF.

Nomogram construction and validation of diagnostic model

Weutilized the rms package to develop a nomogram for the identification of IHF diagnostic genes.69 Points represent the scores of candidate

genes and Total Points represent the sum of all the above gene scores. Subsequently, boxplots of gene expression were generated (The dif-

ferences in gene expression between IHF and normal groups were compared by t-test) and receiver operating characteristic (ROC) curves

were constructed to determine the diagnostic value of the candidate genes. The area under the curve (AUC) was calculated to quantify their

value, with an AUC value greater than 0.7 being considered as the ideal diagnostic threshold. To further validate our findings, we conducted

an analysis of individual and combined genes using the GSE57338 dataset. We assessed the discriminatory ability of the diagnostic model by

ROC curves once again.
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ssGSEA enrichment analysis

Weused the clusterProfiler package to complete ssGSEA enrichment analysis of genes from the IHF diagnostic model to explore the function

of these genes in the IHF process.60

Immune infiltration analysis

We used the CIBERSORT package to assess the content of immune cells and stromal cells in IHF myocardial samples to depict a cellular het-

erogeneous landscape of myocardial expression profiles and to complete the immune cell infiltration analysis.61 Bar charts were used to visu-

alize the proportion of each type of immune cell in the different samples. Differences in cell distribution between the IHF and normal groups

were compared by t-test, with the cut-off value set at p < 0.05.
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