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Abstract: Molecular recognition features (MoRFs) are one important type of intrinsically disordered
proteins functional regions that can undergo a disorder-to-order transition through binding to their
interaction partners. Prediction of MoRFs is crucial, as the functions of MoRFs are associated with
many diseases and can therefore become the potential drug targets. In this paper, a method of
predicting MoRFs is developed based on the sequence properties and evolutionary information.
To this end, we design two distinct multi-layer perceptron (MLP) neural networks and present
a procedure to train them. We develop a preprocessing process which exploits different sizes of
sliding windows to capture various properties related to MoRFs. We then use the Bayes rule together
with the outputs of two trained MLP neural networks to predict MoRFs. In comparison to several
state-of-the-art methods, the simulation results show that our method is competitive.
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1. Introduction

Intrinsically disordered proteins (IDPs) possess flexible and instable structures which make them
play a crucial role in a variety of important biological functions [1]. Being an important type of functional
region in IDPs, molecular recognition features (MoRFs), generally consisting of 10–70 consecutive
residues and are located in the long disordered regions, can undergo a disorder-to-order transition
through binding to their interaction partners [2,3]. There are four types of MoRFs, i.e., α-MoRFs,
β-MoRFs, γ-MoRFs and complex-MoRFs, which correspond to α-helix, β-strand, coil secondary
structures and multiple secondary structures [4]. Many MoRFs, acting as molecular switches in
molecular-interaction networks, play a role in the signaling and alternative splicing of cells [2]. It is
observable that MoRFs are abundant in proteins with recognition functions [5]. Prediction of MoRFs is
crucial, as the functions of MoRFs are associated with many diseases and may therefore be potential
drug targets [6].

In recent years, many computational schemes for predicting MoRFs have been reported,
including α-MoRF-Pred I [5], α-MoRF-Pred II [7], ANCHOR [8], MoRFpred [9], MSPSSMpred [10],
DISOPRED3 [11] and MoRFCHiBi [12]. Of these reported methods, α-MoRF-Pred I and α-MoRF-Pred
II are only capable of predicting α-MoRFs. ANCHOR, using estimated energy calculations [13]
to capture the biophysical properties of MoRFs, cannot yield enough prediction accuracy in many
cases. MoRFpred is a comprehensive method relying on a lot of features, such as evolutionary
information [14] and physiochemical properties [15], solvent accessibility [16], and B-factors [17],
as well as predicted disorder probabilities from several other predictors [18–21]. MoRFCHiBi predicts
MoRFs by extracting features from physicochemical properties [15] and utilizing two support vector
machine (SVM) models [12]. MoRFCHiBi does not depend on the results of other predictors, and obtains
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better prediction performance than MoRFpred. However, the prediction accuracy of MoRFCHiBi is
still expected to improve. Besides, MoRFCHiBi_Web [22] and MoRFCHiBi_Light [23] are two methods
based on combining MoRFCHiBi with other predictors, and obtain better performance than MoRFCHiBi.
OPAL [24] is also a combined predictor, which utilizes the results of two independent predictors. The
first one is MoRFCHiBi, and the second one is PROMIS [24], obtained by half-sphere exposure, solvent
accessible surface area and backbone angle information. These combined predictors usually perform
better than individual predictors. However, they all need to combine MoRFCHiBi with other predictors.

In this paper, we design an individual prediction method for MoRFs based on two distinct
multi-layer perceptron (MLP) neural networks where one of them is MLP1 trained by the 16 sequence
properties and the other is MLP2 with the evolutionary information. We present a procedure to train
these two MLP neural networks. The training procedure utilizes the data from the preprocessing
process developed by us, which involves different sizes of the sliding windows to capture various
properties related to MoRFs. The outputs of MLP1 and MLP2 are then used to predict MoRFs based on
the Bayes rule. Finally, the TEST464 and TEST_EXP53 sets are used to compare the performances of
our method with ANCHOR, MoRFpred, MoRFCHiBi, MoRFCHiBi_Web, MoRFCHiBi_Light, PROMIS and
OPAL. The simulation results show that the AUCs generated from our method are equal to 0.806 and
0.792 on the TEST464 and TEST_EXP53 sets, respectively.

2. Materials and Methods

In this section, we employ the sequence properties as well as the evolutionary information of the
protein sequence to train two distinct MLP neural networks respectively. Utilizing the probability
distributions yielded from these two distinct MLP neural networks, we then follow the Bayes rule to
predict MoRFs.

2.1. Datasets

For comparison with other methods, we use the same datasets created by Disfani et al. [9], which
is from Protein Data Bank (PDB) [25]. The datasets include 840 MoRFs, which contain 181 helical,
34 strand, 595 coil and 30 complex MoRF regions. In [9], the 840 MoRFs dataset are divided into the
TRAINING and TEST set with which there are 421 and 419 protein sequences respectively. Thus,
the TRAINING set contains 245,984 residues including 5396 MoRF residues, while the TEST set has
258,829 residues with 5153 MoRF residues. After that, Disfani et al. also used another test set, TESTNEW.
TESTNEW has 45 sequences consisting of 37,533 residues with 626 MoRF residues. We combine the
TEST and TESTNEW sets into single set TEST464. In addition, we use the TEST_EXP53 assembled by
Malhis et al. [22] as the third test set. TEST_EXP53 has 53 sequences, including 2432 MoRF residues,
which consist of 729 short MoRF residues (up to 30 residues) and 1703 long MoRF residues (more
than 30 residues). We use the same TRAINING set to train our two distinct MLP neural networks and
TEST set to evaluate it. The TEST464 and TEST_EXP53 sets are utilized to compare our method with
other methods.

2.2. Feature Selection

We rely on the sequence properties and evolutionary information of the protein sequences to
predict MoRFs. Protein sequences with MoRFs generally comprise of MoRFs, MoRFs’ flanking (Flanks)
and other non-MoRF residues. We define the Flanks as other residues in the disordered regions
where MoRFs are located. Our computation of the sequence properties and evolutionary information
of the protein sequences does not require to do any special treatment on Flanks relies only on the
protein sequences.

The sequence properties we use include 13 physicochemical properties from the Amino Acid
Index [15] listed in Table A1 of Appendix A and 3 structural properties, which include the topological
entropy [26], and the Remark 465 and Deleage/Roux propensities, both from the GlobPlot NAR
paper [27]. Evolutionary information in this paper is obtained by the Position Specific Scoring Matrix
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(PSSM) through executing three iterations of PSI-BLAST against NCBI [14] non-redundant database
with default parameters.

The 16 sequence properties we select are preprocessed as follows: Given a protein sequence of
length L, we select a sliding window of size N(N < L) and append
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to capture properties especially related to MoRFs, as they are usually much shorter than the 
surrounding disordered regions. The longer sliding windows are used to extract information from 
the surrounding regions of MoRFs. Thus, using these three sizes of sliding windows, we can compute 
a 48-dimensional feature vector associated with each residue of the protein sequence.  

For this given protein sequence of length 𝐿, the evolutionary information is computed through 
the PSSM which yields a 20 × 𝐿 matrix [28]. We first transform this 20 × 𝐿 matrix into a 20 × 𝐿  
matrix by appending 20 × ⌊𝑁/2⌋ zeros at the beginning and end of this 20 × 𝐿 matrix, respectively. 
Then we again choose three sizes of the sliding windows, i.e., N = 10, 45 and 90, to slice a 20 × 𝑁 
matrix from the 20 × 𝐿  transformed matrix. We can compute an average value for each row for this 20 × 𝑁 matrix, and then use Equation (1) to yield a 20 × 1 vector for each residue. Since three sizes 
of the sliding windows are employed, a 60-dimensional feature vector containing the evolutionary 
information is obtained for each residue. 

2.3. MLP Prediction Models 

We train two distinct multi-layer perceptron (MLP) neural networks, where one of them is 
trained using the sequence properties and the other is trained through the evolutionary information 
obtained from the above section. Both these models contain two hidden layers, with each hidden 
layer having 12 perceptrons and one bias. We use the ReLU functions as the activation functions in 
each hidden layer and the sigmoid functions in the output layers. During the training process, a 
dropout algorithm [29] is utilized to avoid overfitting. The forward propagation with dropout 
algorithm proceeds as follows: 𝒁 = 𝑾 ∙ 𝑨 + 𝒃  , (2)𝑨 = 𝑔 𝒁 ∗ 𝑹(𝑝 ) , (3)

where 𝑔  denotes the vector activation function of the 𝑙 -th layer, and 𝑙 = 1,2,3 in our model. 𝑹(𝑝 ) is a vector obeying the Bernoulli distribution with 𝑝  being the dropout parameter which 
represents the remaining probability of each perceptron in the hidden layers. Furthermore, 𝑨  is 
the input feature matrix and 𝑨  is the prediction result. Then, we employ the Adam algorithm [30] 
to optimize 𝑾 and 𝒃  in the back propagation. 
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sequence. In each region determined by the window, we compute the topological entropy through
Equation 14 of [26]. Each of the rest 15 sequence properties is assigned to the average value of the
amino acid scales of the residues in this region. Thus, each window can obtain a 16-dimensional vector
vi(1 ≤ i ≤ L). Then, we associate it with every residue in the window. Finally, for each residue, we
assign the average value of all the vi associated with it as the feature vector of this specific residue.
The feature vector x j(1 ≤ j ≤ L) can be computed as

x j =



1
j+N0

j+N0∑
i=1

vi , 1 ≤ j ≤ N0

1
N

j+N0∑
i= j+N0−N+1

vi , N0 < j ≤ L−N0

1
L0− j−N0+1

L0−N+1∑
i= j+N0−N+1

vi , L−N0 < j ≤ L

, (1)

where N0 = N/2 and L0 = L + 2N0. In this paper, we use three sizes of the sliding windows, i.e.,
N = 10, 45 and 90, to compute 16 sequence properties. The smaller size of the sliding window is used to
capture properties especially related to MoRFs, as they are usually much shorter than the surrounding
disordered regions. The longer sliding windows are used to extract information from the surrounding
regions of MoRFs. Thus, using these three sizes of sliding windows, we can compute a 48-dimensional
feature vector associated with each residue of the protein sequence.

For this given protein sequence of length L, the evolutionary information is computed through
the PSSM which yields a 20× L matrix [28]. We first transform this 20× L matrix into a 20× L0 matrix
by appending 20×N/2 zeros at the beginning and end of this 20× L matrix, respectively. Then we
again choose three sizes of the sliding windows, i.e., N = 10, 45 and 90, to slice a 20×N matrix from the
20× L0 transformed matrix. We can compute an average value for each row for this 20×N matrix, and
then use Equation (1) to yield a 20× 1 vector for each residue. Since three sizes of the sliding windows
are employed, a 60-dimensional feature vector containing the evolutionary information is obtained for
each residue.

2.3. MLP Prediction Models

We train two distinct multi-layer perceptron (MLP) neural networks, where one of them is trained
using the sequence properties and the other is trained through the evolutionary information obtained
from the above section. Both these models contain two hidden layers, with each hidden layer having
12 perceptrons and one bias. We use the ReLU functions as the activation functions in each hidden layer
and the sigmoid functions in the output layers. During the training process, a dropout algorithm [29]
is utilized to avoid overfitting. The forward propagation with dropout algorithm proceeds as follows:

Z[l] = W[l]
·A[l−1] + b[l], (2)

A[l] = g[l]
(
Z[l]

)
∗R(pd) , (3)

where g[l] denotes the vector activation function of the l-th layer, and l = 1, 2, 3 in our model. R(pd) is a
vector obeying the Bernoulli distribution with pd being the dropout parameter which represents the
remaining probability of each perceptron in the hidden layers. Furthermore, A[0] is the input feature
matrix and A[3] is the prediction result. Then, we employ the Adam algorithm [30] to optimize W[l]

and b[l] in the back propagation.
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From Section 2.1, the TRAINING set contains 245,984 residues, among which there are 5396 MoRF
residues. We only randomly select 5396 non-MoRF residues from the TRAINING set to train our two
MLP neural networks, which ensures our trained MLP neural networks to being capable of more
effectively identifying both MoRF and non-MoRF residues. Finally, in order to increase the robust
of our MLP neural networks and reduce the influence of the initial weights, we train the two MLP
neural networks five times and use the average values of them as the final outputs of our MLP neural
networks. Finally, we use the Bayes rule together with the outputs of our two MLP neural networks to
compute the prediction of MoRFs. The detailed paradigm of our method is shown in Figure 1.

Entropy 2019, 21, x FOR PEER REVIEW 4 of 11 

 

From Section 2.1, the TRAINING set contains 245,984 residues, among which there are 5396 
MoRF residues. We only randomly select 5396 non-MoRF residues from the TRAINING set to train 
our two MLP neural networks, which ensures our trained MLP neural networks to being capable of 
more effectively identifying both MoRF and non-MoRF residues. Finally, in order to increase the 
robust of our MLP neural networks and reduce the influence of the initial weights, we train the two 
MLP neural networks five times and use the average values of them as the final outputs of our MLP 
neural networks. Finally, we use the Bayes rule together with the outputs of our two MLP neural 
networks to compute the prediction of MoRFs. The detailed paradigm of our method is shown in 
Figure 1. 

Protein sequences

Calculate the feature matrix for MLP1

Evolutionary information
Physicochemical 

properties
Structural 
properties

Sequence properties

MLP1_1 
training

MLP1_2 
training

MLP1_3 
training

MLP1_4 
training

MLP1_5 
training

Sample sets 1
Initial values 1

MLP1_1 
predicting

MLP1_2 
predicting

MLP1_3 
predicting

MLP1_4 
predicting

MLP1_5 
predicting

Training MLP1

Sample sets 2
Initial values 2

Sample sets 3
Initial values 3

Sample sets 4
Initial values 4

Sample sets 5
Initial values 5

Calculate the feature matrix based on TRAINING set

MLP2_1 
training

MLP2_2 
training

MLP2_3 
training

MLP2_4 
training

MLP2_5 
training

Sample sets 1
Initial values 1

MLP2_1 
predicting

MLP2_2 
predicting

MLP2_3 
predicting

MLP2_4 
predicting

MLP2_5 
predicting

Training MLP2

Sample sets 2
Initial values 2

Sample sets 3
Initial values 3

Sample sets 4
Initial values 4

Sample sets 5
Initial values 5

Calculate the feature matrix based on TRAINING set

Calculate the feature matrix for MLP2

Fusion by Bayes rule

Predicted results
(MoRF or non-MoRF)

Performance evaluation

[1]
1Ŷ
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2.4. Performance Evaluation

We use the ROC curve and three evaluation metrics to evaluate performance in this paper.
These are the AUC (the area under the ROC curve), TPR (the true positive rate) and FPR (the false
positive rate). The computation equations of TPR and FPR are TPR = TP/NMoRF , FPR = TN/Nnon,
where TP and TN respectively represent the numbers of accurately predicted MoRFs and non-MoRFs
residues. In addition, we denote the total number of MoRFs and non-MoRFs residues as NMoRF and
Nnon, respectively.

3. Results and Discussion

Using the TEST set defined in Section 2.1, we run our trained multi-layer perceptron (MLP)
neural networks. The outputs of two trained MLP neural networks MLP1 and MLP2 are then utilized
to predict MoRFs based on the Bayes rule. Finally, the TEST464 and TEST_EXP53 sets are used to
compare the performances of our method with ANCHOR, MoRFpred, MoRFCHiBi, MoRFCHiBi_Web,
MoRFCHiBi_Light, PROMIS and OPAL. The simulation results show that the AUC values generated
from our method are equal to 0.806 and 0.792 on the TEST464 and TEST_EXP53 sets, respectively.
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3.1. Prediction Performance of Sequence Properties

For the 16 sequence properties, three windows with lengths of 10, 45 and 90 are used to perform
preprocessing and calculate the feature matrix. Then we train the first MLP neural network MLP1
as shown in Figure 1. In MLP1, the perceptron number of two hidden layers is set to Nneur = [12,12],
where the two numbers correspond to the perceptron numbers of the first hidden layer and the second
hidden layer. The dropout parameter is pd = 0.5, and the learning rate is 0.001. Figure 2 shows the
ROC curves of five independent MLPs of MLP1 on the TEST set, and the ROC curves of the average
values which are described by the red curves. Figure 2a shows the overall ROC curves, and Figure 2b
shows the ROC curves in the low FPR region.
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Figure 2. ROC curves of MLP1 on the TEST set. (a) The overall ROC curves. (b) The ROC curves at
low FPR region.

From Figure 2a, the red curve is higher than the other curves. Furthermore, in Figure 2b, although
the pink curve is the highest, the red one is very close to it, and the pink curve is obviously lower than
the red one when FPR > 0.2. Similar to the pink curve, other curves may be slightly higher than the red
curve in some small regions, but may be lower in other regions. Therefore, the prediction performance
can be improved by training five independent networks and taking their average values of outputs as
the final outputs of the MLP1.

3.2. Impact of Different MLP1 Parameters

In this section, we change the perceptron number Nneur and the dropout parameter pd in MLP1 to
analysis their influence. Firstly, we change the perceptron number, and set the dropout parameter and
the learning rate to 0.5 and 0.001, respectively. Figure 3 shows the ROC curves of MLP1 on the TEST
set when Nneur = [12,12], [25,25], [50,50].

The curves in Figure 3 are the prediction results of MLP1 calculated by the average values of
five independent networks. The red curves are higher than other curves in Figure 3a,b. Thus, the
perceptron number of MLP1 is set to Nneur = [12,12].

After determining the perceptron number, we change the dropout parameter pd in MLP1. Figure 4
shows the ROC curves on the TEST set when pd = 0.5, 0.7, 1. Although these three curves are
approximate to each other in Figure 4a,b, the red curve in Figure 4a is slightly higher than the others,
and the red and blue curves in Figure 4b are slightly higher than the pink curve. Finally, the dropout
parameter of MLP1 is set to pd = 0.5.
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Figure 3. ROC curves of MLP1 with different Nneur. (a) The overall ROC curves; (b) the ROC curves in
the low FPR region.
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Figure 4. ROC curves of MLP1 with different pd. (a) The overall ROC curves. (b) The ROC curves in
the low FPR region.

3.3. Prediction Performance of Evolutionary Information

For the evolutionary information, after calculating the PSSM for each protein sequence, three
windows of 10, 45 and 90 are also used to perform preprocessing and calculate the feature matrix.
Then we train the second MLP neural network MLP2 as shown in Figure 1. We first set the perceptron
number to Nneur = [25,25] in MLP2. The dropout parameter is pd = 0.7, and the learning rate is 0.0001.
Similar to Figure 2, Figure 5 shows the ROC curves of five independent MLPs of MLP2 on the TEST
set, and the ROC curves of the average values, which are also the red curves.

From Figure 5, the red curves are higher than other curves both in (a) and (b). Thus, for the
evolutionary information, the prediction performance is also improved by training five independent
networks and taking their average values of outputs as the final outputs of MLP2.
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Figure 5. ROC curves of MLP2 on the TEST set. (a) The overall ROC curves; (b) the ROC curves at low
FPR region.

3.4. Impact of Different MLP2 Parameters

We change the perceptron number Nneur and the dropout parameter pd in MLP2 to analyze their
influence. Firstly, we only change Nneur; simultaneously, the dropout parameter is set to pd = 0.7
and the learning rate is also 0.0001. Figure 6 shows the ROC curves of MLP2 on the TEST set when
Nneur = [12,12], [25,25], [50,50]. In Figure 6a, the blue curve is higher than the other curves, and it is
also higher when FPR > 0.06 in Figure 6b. Finally, we set Nneur = [25,25] in MLP2.
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Figure 6. ROC curves of MLP2 with different Nneur. (a) The overall ROC curves. (b) The ROC curves
in the low FPR region.

After determining the perceptron number in MLP2, we change the dropout parameter pd. Figure 7
shows the ROC curves on the TEST set when pd = 0.5, 0.7, 1. In Figure 7a, the blue and pink curves
are better than the red curve. However, the blue curve is better than the other curves in Figure 7b.
Therefore, the dropout parameter of MLP2 is set to pd = 0.7.
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Figure 7. ROC curves of MLP2 with different pd. (a) The overall ROC curves. (b) The ROC curves in
the low FPR region.

3.5. Prediction Performance of the Fusion Results

In this section, the outputs of MLP1 and MLP2 are fused using the Bayes rule to predict MoRFs.
Figure 8 shows the ROC curves of MLP1, MLP2 and the fusion results on the TEST set. The ROC curve
of MLP2 gets a better performance in the low FPR region, while the ROC curve of MLP1 performs
better when the FPR is higher than 0.2. Thus, the ROC curves of MLP1 and MLP2 cross each other in
Figure 8a. However, the curve of the fusion results is higher than the other curves both in low FPR and
high FPR regions.
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Figure 8. ROC curves of MLP1, MLP2 and the fusion results. (a) The overall ROC curves. (b) The ROC
curves at low FPR region.

3.6. Comparison with other Methods

In this section, using the TEST464 and TEST_EXP53 sets, we compare our method, named
MoRFMLP, with ANCHOR, MoRFpred, MoRFCHiBi, MoRFCHiBi_Web, MoRFCHiBi_Light, PROMIS and
OPAL. The results of other methods are from [24] and the online predictor of MoRFCHiBi system. Table 1
shows the AUC values of these methods that run on these two test sets. Since TEST_EXP53 contains
long MoRF regions, we not only compare the AUC values on the overall dataset (EXP53_all), but also
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compare the AUC values on the datasets that only contain long MoRF regions (EXP53_long) and short
MoRF regions (EXP53_short), respectively. In these methods, MoRFCHiBi_Web, MoRFCHiBi_Light and
OPAL are combined component predictors. They usually perform better than individual predictors.
The bold data in Table 1 indicate the best values in individual and combined component predictors,
respectively. Our method is an individual predictor, so we mainly compare with ANCHOR, MoRFpred,
MoRFCHiBi and PROMIS, which are also individual predictors. From Table 1, MoRFMLP obtains a
higher AUC on the TEST464 set, and PROMIS gets a higher AUC on the TEST_EXP53 set.

Table 1. AUC on TEST464 and TEST_EXP53.

TEST464 EXP53_All EXP53_Short EXP53_Long

MoRFMLP 0.806 0.792 0.818 0.781
ANCHOR 0.605 0.615 0.683 0.586
MoRFpred 0.675 0.620 0.673 0.598
PROMIS 0.790 0.818 0.823 0.815

MoRFCHiBi 0.743 0.712 0.790 0.679
MoRFCHiBi_Light, 0.777 0.799 0.869 0.770
MoRFCHiBi_Web 0.805 0.797 0.886 0.758

OPAL 0.816 0.836 0.870 0.823

In addition, to further analyze the prediction performance of these methods, we also calculate
the FPR values at different TPR on TEST464 and EXP53_all sets, as shown in Table 2. From Table 2,
MoRFMLP gets the lowest FPR when TPR is set to 0.2, 0.3 and 0.4 in five individual predictors, which
indicates that MoRFMLP can obtain higher TPR at low FPR. Therefore, as an individual predictor,
MoRFMLP is competitive.

Table 2. FPR at different TPR on TEST464 and EXP53_all.

TPR = 0.2 TPR = 0.3 TPR = 0.4

TEST464 EXP53_All TEST464 EXP53_All TEST464 EXP53_All

MoRFMLP 0.015 0.030 0.029 0.051 0.051 0.079
ANCHOR 0.079 0.104 0.163 0.173 0.246 0.263
MoRFpred 0.033 0.083 0.071 0.146 0.143 0.221
PROMIS 0.031 0.032 0.069 0.056 0.103 0.081

MoRFCHiBi 0.031 0.031 0.063 0.064 0.104 0.125
MoRFCHiBi_Light, 0.020 0.016 0.040 0.043 0.073 0.068
MoRFCHiBi_Web 0.016 0.016 0.033 0.033 0.057 0.061

OPAL 0.025 0.015 0.052 0.029 0.074 0.056

4. Conclusions

In this paper, we propose a new method, MoRFMLP, to predict MoRFs. We employ the sequence
properties as well as the evolutionary information to train two distinct MLP neural networks.
The sequence properties contain 13 physicochemical properties and 3 structural properties, and
are extracted by preprocessing using 3 different windows. The evolutionary information is extracted
from PSSM and preprocessed by the same windows as sequence properties. Then, the outputs of the
two MLP neural networks are utilized to predict MoRFs based on Bayes rule. Finally, we test MoRFMLP

using TEST464 and TEST_EXP53 sets. Compared to other individual predictors, the simulation results
show that MoRFMLP achieves higher AUC on TEST464 set, and gets higher TPR at low FPR on TEST464
and EXP53_all sets.
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Appendix A

The 13 physicochemical properties selected from the Amino Acid Index are given in the
following list.

Table A1. The properties selected from the Amino Acid Index.

Index: Definition:

CIDH920101 Normalized hydrophobicity scales for alpha-proteins
EISD860103 Direction of hydrophobic moment
NISK860101 14 A contact number
QIAN880105 Weights for alpha-helix at the window position of -2
ROBB760101 Information measure for alpha-helix
ROBB760108 Information measure for turn
ROBB760112 Information measure for coil
ROBB760113 Information measure for loop
CORJ870103 PRIFT index
CORJ870106 ALTLS index
CORJ870107 TOTFT index
CORJ870108 TOTLS index
MIYS990104 Optimized relative partition energies—method C
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